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a b s t r a c t

The introduction of the Proper Generalized Decomposition (PGD) is presented for the layer-wise model-
ing of heterogeneous cylindrical shells. The displacement field is approximated as a sum of separated
functions of the in-plane coordinates and the transverse coordinate. This choice yields to an iterative pro-
cess that consists of solving a 2D and 1D problem successively at each iteration. In the thickness direction,
a fourth-order expansion in each layer is considered. For the in-plane description, classical Finite Element
method is used. The approach is assessed through mechanical tests for thin/thick and deep/shallow lam-
inated cylindrical shells. Both convergence rate and accuracy are discussed.
1. Introduction

Composite shells are widely used in the industrial field (aero-
space, automotive, marine, medical industries . . .) due to their excel-
lent mechanical properties, especially their high specific stiffness
and strength. For composite design, accurate knowledge of displace-
ments and stresses is required. One way consists in considering
three-dimensional modelisation. However, due to the complexity
of such numerical simulations, it is suitable to represent the problem
as a two-dimensional model leading to the construction of shell
theories. There are two ways for defining the approximation of the
displacement field. A ‘‘pure shell model’’ can be considered in which
the displacement is associated with the local curvilinear vectors, and
strain and stress are deduced using differential geometry [1]. Alter-
natively, the shell-like solid approach [2] for obtaining shell FE is
widely used in commercial software, as it is more simple. In this case,
the displacement vector is defined in the global cartesian frame and
jacobian matrix transformation is used to express strain and stress
with respect to reference frame defined on the middle surface in or-
der to introduce the constitutive law. In this approach, differentia-
tion is simplified and the curvatures are not directly calculated [3].
So, the development of efficient computational models for the anal-
ysis of shells appears thus of major interest.

According to published research, various theories based on the Fi-
nite Element (FE) method for composite shells have been developed.
In the following, most of the mentioned works refer to the pure shell
model. Thus, two families of models [4] can be identified:
� the Equivalent Single Layer Models (ESLM), where the classical
Shell Theory (CST/Koïter) and First Order Shear Deformation
Theory (FSDT/Nagdhi) models can be found. The reader can
refer to [9] to have a description of the assumptions on the
strain for deriving different shell models. CST leads to inaccu-
rate results for composites because both transverse shear and
normal strains are neglected. Triangular and rectangular ele-
ments are used in [5–7] respectively, for shallow laminated
shells. FSDT is the most popular model due to the possibility
to use a C0 FE, but it needs shear correction factors and trans-
verse normal strain is always neglected. A rectangular isopara-
metric element based on a MITC approach is presented in a
recent work [8]. So, Higher-order Shear Deformation Theories
(HSDT) have been developed to overcome these drawbacks.
Sgambitterra et al. [10] proposes a three-node flat shell ele-
ment based on a 1,2-order theory including 7 parameters. A
HSDT with 9 parameters based on a nine-node quadrilateral
isoparametric element is developed by Kant and Menon [11].
A third-order theory with a four-node isoparametric element
including 7 parameters is considered in [12]. Different theo-
ries based on the Carrera’s Unified Formulation are addressed
in [13].
In the ESLM context, a simple way to improve the estimation of
the mechanical quantities consists in adding one zig-zag func-
tion (Murakami) in the expression of the displacement to intro-
duce the slope discontinuity at the interface between two
adjacent layers. It allows to describe the so-called zig-zag effect.
It has been carried out by Brank [14]. The approach includes 7
parameters and is based on the Reissner’s formulation. See also
the work of Bhaskar [15] based on a HSDT approach.
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� the Layer-Wise Models (LWM) where the expression of the
mechanical quantities is written in each layer. A quadratic tri-
angle element based on a constant shear angle is considered
in [16], but a shear correction factor is needed. A three-dimen-
sional shell element is proposed in [17]. A LW triangle FE is
developed in [18] with a condensation technique at the pre-pro-
cessing level. [19] deals with a hybrid strain flat triangular FE
based on the Hellinger–Reissner variational principle. Note that
the transverse normal and shear stresses are only taken into
account in [20] where a four-node isoparametric assumed
strain is considered. We can mention the eight-node 3D
hybrid-EAS solid shell element based on the Hu–Washizu vari-
ational principle in [21]. See also the previously mentioned
work [13]. In all the aforementioned works, the number of
unknowns depends on the number of layers.

As an alternative, refined models have been developed in or-
der to improve the accuracy of ESL models avoiding the addi-
tional computational cost of LW approach. Based on physical
considerations and after some algebraic transformations, the
number of unknowns becomes independent of the number of lay-
ers. We can mention the recent work of Yasin [22] dedicated to
shallow shells. A four-node quadrilateral element with 5 param-
eters is built. Shariyat [23] has also developed a so-called zig-zag
model including 15 parameters. A full compatible Hermitian rect-
angular elements are employed. It should be also mentioned the
work of Dau [1] where a C1 triangular six-node FE (Argyris–Ga-
nev) based on the Sinus model is considered involving 5 param-
eters. The approach ensures the continuity conditions of the
transverse shear stresses at the interfaces between two adjacent
layers.

For the present topics, it should be noted that the mentioned
works are based on the Finite Element method for linear elasticity
problem in mechanics and applied to laminated composites,
knowing that many other approaches (meshless, analytical,
semi-analytical . . .) are involved in open literature. Furthermore,
the fundamental subject about the shear and membrane locking
of shell is not addressed here. So, this above literature deals with
only some aspects of the broad research activity about composite
shells. An extensive assessment of different approaches for both
various theories and/or finite element applications can be found
in [24–31].

Over the past years, the Proper Generalized Decomposition
(PGD) [32–35] has shown interesting features in the reduction
model framework. It has been used in the context of separation
of coordinate variables in multi-dimensional PDEs [34]. And in
particular, it has been applied for composite beams and plates in
[36–40].

The main goal of this work consists in assessing the Proper
Generalized Decomposition to model cylindrical composite shell
structures. So, the present approach is based on the separation
representation where the displacements are written under the
form of a sum of products of bidimensional polynomials of
ðn1; n2Þ and unidimensional polynomials of z. A piecewise
fourth-order Lagrange polynomial of z is chosen. As far as the
variation with respect to the in-plane coordinates is concerned,
a 2D eight-node quadrilateral FE is employed. Using the PGD,
each unknown function of ðn1; n2Þ is classically approximated
using one degree of freedom (dof) per node of the mesh and
the LW unknown functions of z are global for the whole shell.
Finally, the deduced non-linear problem implies the resolution
of two linear problems alternatively. This process yields to a
2D and a 1D problems in which the number of unknowns is
smaller than a classical Layerwise approach. The interesting
feature of this approach lies on the possibility to have a high-
er-order z-expansion and to refine the description of the
mechanical quantities through the thickness without increasing
the computational cost. This is particularly suitable for the
modeling of composite structures.

We now outline the remainder of this article. First, the shell
definition and the differential geometry are recalled. Then, the
mechanical formulation is given. The principles of the PGD are
precised in the framework of our study. The particular assump-
tion on the displacements yields a non-linear problem and an
iterative process is chosen to solve this one. The FE discretization
is also described and finally, numerical tests are performed. A
preliminary convergence study is performed. Then, the influence
of classical assumptions on the strains and the number of numer-
ical layers are studied. The approach is also assessed for deep and
shallow shells and different slenderness ratios. The accuracy of
the results is evaluated by comparison with a 2D elasticity solu-
tion from [41].
2. Shell definitions and differential geometry

A shell C with a middle surface S and a constant thickness e, see
Fig. 1, is defined by Bernadou [42]:

C ¼ M 2 R3 : ~OMðn; n3 ¼ zÞ ¼ ~UðnÞ þ z~a3; n 2 X; �1
2

e 6 z 6
1
2

e
� �

where the middle surface can be described by a map ~U from a para-
metric bidimensional domain X as:

~U : X � R2 ! S � R3

n ¼ ðn1; n2Þ# ~UðnÞ
ð1Þ

In Fig. 1, the map ~U describing the shell middle surface (in grey)
and the local basis vectors are presented. The basis vectors ~ai are
defined for a point on S and the basis vectors ~gi are defined for a
generic point of the shell.

For a point on the shell middle surface, the covariant basis vec-
tors defining the tangent plane to the middle surface are usually
obtained as follows:

~aa ¼ ~Uðn1; n2Þ;a; ~a3 ¼
~a1 �~a2

jj~a1 �~a2jj
ð2Þ

where~a3 is the unit normal vector to the surface S, see Fig. 1. In Eq.
(2) and further on, latin indices i; j; . . . take their values in the set
f1;2;3g while greek indices a; b; . . . take their values in the set
f1;2g. The summation convention on repeated indices is used and
partial derivative is denoted by ðÞ;a.

A shell is characterized by the first fundamental form aab and
the second one bab. Their covariant, contravariant and mixed form
definitions are given by:

aab ¼~aa � ~ab aab ¼~aa � ~ab bab ¼~aaa;b � ~a3 bb
a ¼~ab � ~a3;a ð3Þ

For a generic point of the shell, covariant basis vectors must be
defined and we have:

~ga ¼ ~OMðn; zÞ;a ¼ ðd
b
a � zbb

aÞ~ab ¼ lb
aðzÞ~ab and ~g3 ¼~a3 ð4Þ

where db
a is the Kronecker symbol and bb

a is the mixed form of the
second fundamental form. This basis ~gi, illustrated in Fig. 1, must
be used to define quantities for any point of the shell. The form
lb

aðzÞ introduced in Eq. (4) defines the transport from the shell
middle surface to any point of the shell and is associated with the
curvature variation along the thickness direction z of the shell.
The inverse tensor of the mixed tensor lb

a is denoted mb
a and is

defined as:

mb
a ¼ ðl�1Þba ¼

1
l
fdb

a þ z ðbb
a � 2Hdb

aÞg ð5Þ
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Fig. 1. The map ~U and the local basis vectors ~ai and ~gi for a shell panel.
where we have introduced the determinant of the mixed tensor
l ¼ detðlb

aÞ ¼ 1� 2Hn3 þ ðn3Þ2K and the invariants of the second
fundamental form H ¼ 1

2 trðbb
aÞ and K ¼ detðbb

aÞ. Finally, the surface
element dS and the volume element dC are given by:

dS ¼
ffiffiffi
a
p

dn1 dn2 dC ¼ l dSdz ð6Þ

where a is the determinant of the first fundamental form aab. The
geometry of a shell can also be defined using contravariant or mixed
forms. Furthermore, covariant and contravariant differentiation
involving Christoffel symbols are not detailed here and readers
can refer to the book [42].
3. Reference problem description

3.1. The definition of the strain field

For geometrically linear elastic analysis, the components of the
strain tensor eij expressed in the contravariant basis~ai are obtained
through covariant differentiation, denoted j, as follows:

e ¼eij ð~ai �~ajÞ with

2 eck ¼ mb
k ucjb � bcb u3
� �

þma
c ukja � bka u3
� �

2 ec3 ¼ ucj3 þma
c u3;a þ bk

a uk

� �
e33 ¼ u3;3

ð7Þ

The mixed tensor mb
k carries out the transport from any point of

the shell to the shell middle surface, that is from ~gi to ~ai.

3.2. Constitutive relation

The stress tensor is obtained from the strain tensor using the
constitutive equations. For this purpose, all these tensors must
be referred to the covariant and contravariant basis vectors, ~ai

and~ai respectively, associated with the middle surface of the shell.
In case of laminated shells composed of orthotropic plies, this ref-
erence frame ensures to consistently take into account the differ-
ent material orientations of the layers. The tensorial relation is:

rij¼Cijkl ekl with rij ð~ai�~ajÞ; Cijkl ð~ai�~aj�~ak�~alÞ; ekl ð~ak�~alÞ ð8Þ

It should be noted that the stress tensor is defined in the covariant
reference frame, whereas the strain components are defined in the
contravariant frame. If the frame is assumed to be orthonormal then
covariant and contravariant components are equal, that is super-
script and sub-script are interchangeable. With this assumption
and for a shell made of NC perfectly bonded orthotropic layers,
the three-dimensional constitutive law of the kth layer is expressed
in matrix notation by:
rðkÞ11 ðn; zÞ
rðkÞ22 ðn; zÞ
rðkÞ33 ðn; zÞ
rðkÞ23 ðn; zÞ
rðkÞ13 ðn; zÞ
rðkÞ12 ðn; zÞ

2
66666666664

3
77777777775
¼

CðkÞ11 CðkÞ12 CðkÞ13 0 0 0

CðkÞ22 CðkÞ23 0 0 0

CðkÞ33 0 0 0

CðkÞ44 0 0

sym CðkÞ55 0

CðkÞ66

2
66666666664

3
77777777775

eðkÞ11 ðn; zÞ
eðkÞ22 ðn; zÞ
eðkÞ33 ðn; zÞ
cðkÞ23 ðn; zÞ
cðkÞ13 ðn; zÞ
cðkÞ12 ðn; zÞ

2
66666666664

3
77777777775

ð9Þ

where we denote CðkÞij the three-dimensional stiffness coefficients of
the layer k, the stress vector r½ � and the strain vector ½e� .

3.3. The weak form of the boundary value problem

Using the above matrix notation and for admissible displace-
ment d~u 2 dU, the variational principle is given by:

Find ~u 2 U (space of admissible displacements) such that

�
Z
C
½eðd~uÞ�T ½rð~uÞ�dC þ

Z
C
½du�T ½b�dC þ

Z
@CF

½du�T ½t�d@C

¼ 0; 8d~u 2 dU ð10Þ

where [b] and [t] are the prescribed body and surface forces applied
on @CF .

4. Application of the Proper Generalized Decomposition to
cylindrical shell

In this section, we develop the application of the PGD for shell
analysis. This work is an extension of the previous studies on beam
and plate structures [38–40].

4.1. Cylindrical geometry

A cylindrical shell (see Fig. 2) is described using the following
map:

x1ðn1; n2Þ ¼ R cos n1

R

� �

x2ðn1; n2Þ ¼ R sin n1

R

� �

x3ðn1; n2Þ ¼ n2

8>>><
>>>:

ð11Þ

Following Eq. (3), the non-zero terms for the covariant and
mixed forms are:

a11 ¼ a22 ¼ 1 b11 ¼ b1
1 ¼ �

1
R

l1
1 ¼ 1þ z

R
m1

1

¼ 1þ z
R

� ��1
ð12Þ

and l ¼ 1þ z
R
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Fig. 2. Middle surface of the cylindrical shell.
4.2. The displacement

Let us denote ðu1ðn1;n2;n3¼ zÞ; u2ðn1;n2;n3¼ zÞ; u3ðn1;n2;n3¼ zÞÞ
the curvilinear components of the displacement field associated
with the contravariant basis vectors ~ai. Let X and Xz the
bidimensional domain associated with the mid-surface of the
shell (see Eq. (1)), and the unidimensional domain associated with
the normal fiber respectively. This displacement solution is
constructed as the sum of N products of functions of in-plane
coordinates and transverse coordinate (N2N is the order of the
representation)

½u� ¼
u1ðn; n3 ¼ zÞ
u2ðn; n3 ¼ zÞ
u3ðn; n3 ¼ zÞ

2
64

3
75 ¼X

N

j¼1

f j
1ðzÞv

j
1ðnÞ

f j
2ðzÞv

j
2ðnÞ

f j
3ðzÞv

j
3ðnÞ

2
664

3
775 ð13Þ

where ðf j
1; f

j
2; f

j
3Þ are defined in Xz and ðv j

1; v
j
2;v

j
3Þ are defined in X. In

this paper, a classical eight-node FE approximation is used in X and
a LW description is chosen in Xz as it is particulary suitable for the
modeling of composite structure.

4.3. The strain field for the cylindrical composite structure

The strain field in Eq. (7) is free of any approximated shell kine-
matics. These strain components are simplified using Eq. (12) and
we recover the following relations:

e11 ¼ 1þ z
R

� ��1
u1;1 þ

1
R

u3

	 


e22 ¼ u2;2

e33 ¼ u3;3

c23 ¼ u2;3 þ u3;2

c13 ¼ u1;3 þ 1þ z
R

� ��1
u3;1 �

1
R

u1

	 


c12 ¼ u1;2 þ 1þ z
R

� ��1
u2;1

ð14Þ

where covariant derivative becomes classical derivative for the case
of a cylindrical shell.

Eq. (13) must be introduced at this level in order to obtain the
compatible strain expansion along the normal coordinate z of the
shell. So, we obtain:

½eðuÞ� ¼
XN

j¼1

l�1 f j
1 v j

1;1 þ 1
R f j

3 v j
3

� �
f j
2 v j

2;2

ðf j
3Þ
0
v j

3

ðf j
2Þ
0
v j

2 þ f j
3 v j

3;2

ðf j
1Þ
0
v j

1 þ l�1 f j
3 v j

3;1 � 1
R f j

1 v j
1

� �
f j
1 v j

1;2 þ l�1 f j
2 v j

2;1

2
666666666664

3
777777777775

ð15Þ
where the prime stands for the classical derivative f 0i ¼
dfi
dz

� �
, ðÞ;a for

the partial derivative and l ¼ 1þ z
R.

4.4. The problem to be solved

For sake of clarity, the body forces are neglected in the develop-
ments and the weak form of the shell problem introduced in Eq.
(10) simplifies inZ
S

Z
Xz

½eðd~uÞ�T ½C�½eð~uÞ�ldzdS þ
Z
@CF

½du�T ½t�d@C ¼ 0 ð16Þ

where ½C� represents, in each layer ðkÞ, the matrix of the elastic
moduli. For the present work, @CF is considered as the top or bottom
surface of the shell, that is z ¼ zF with zF ¼ 	e=2.

Eq. (16) is solved by an iterative procedure. If we assume that
the first n functions have been already computed, the trial function
for the iteration nþ 1 is written as

½unþ1� ¼ ½un� þ
f1 v1

f2 v2

f3 v3

2
64

3
75 ð17Þ

where ðv1;v2; v3Þ; ðf1; f2; f3Þ are the functions to be computed and
un½ � is the associated known set at iteration n defined by

½un� ¼
Xn

i¼1

f i
1 v i

1

f i
2 v i

2

f i
3 v i

3

2
64

3
75 ð18Þ

The test function is

d

f1 v1

f2 v2

f3 v3

2
64

3
75 ¼

df1 v1 þ f1 dv1

df2 v2 þ f2 dv2

df3 v3 þ f3 dv3

2
64

3
75 ¼ ½V � ½df � þ ½F� ½dv � ð19Þ

with

½v � ¼
v1

v2

v3

2
64

3
75 ½f � ¼

f1

f2

f3

2
64

3
75 ½V � ¼

v1 0 0
0 v2 0
0 0 v3

2
64

3
75 ½F� ¼

f1 0 0
0 f2 0
0 0 f3

2
64

3
75

ð20Þ

The test function defined by Eq. (19) and the trial function defined
by Eq. (17) are introduced into the weak form Eq. (16) to obtain the
two following equations:Z
S

Z
Xz

½eðF dvÞ�T ½C�½eðFvÞ�
� �

ldzdS

¼
Z
S

Z
Xz

�½eðF dvÞ�T ½C�½eðunÞ�ldzdS

þ
Z
S
½F dv �T ½t�l
� �

jz¼zF
dS ð21Þ

Z
Xz

Z
S
½eðV df Þ�T ½C�½eðVf Þ�
� �

dSldz

¼
Z

Xz

Z
S
�½eðV df Þ�T ½C�½eðunÞ�dSldzþ

Z
S
½V df �T ½t�ldSjz¼zF

ð22Þ

As these equations define a coupled non linear problem, a non
linear resolution strategy has to be used. The simplest strategy is
a fixed point method. An initial function f ð0Þ is set, and at each step,
the algorithm computes a new pair (v ðmþ1Þ; f ðmþ1ÞÞ such that

� v ðmþ1Þ satisfies Eq. (21) for f set to f ðmÞ (i.e. F is given)
� f ðmþ1Þ satisfies Eq. (22) for v set to v ðmþ1Þ (i.e. V is given)

These two equations are linear and the first one is solved on S,
while the second one is solved on Xz. As in [40], the fixed point



algorithm is stopped when the relative distance e between two
consecutive solutions is smaller than a fixed value e0. In this paper,
we use e0 ¼ 10�3.

4.5. Finite element discretization

To build the shell finite element approximation, a discrete rep-
resentation of the functions ðv ; f Þ must be introduced. We use a
classical finite element approximation in X, and a polynomial
expansion in Xz. The elementary vector of degrees of freedom
(dof) associated with one element Xe of the mesh in X is denoted
½qv

e �. The vector of dofs associated with the polynomial expansion
in Xz is denoted ½qf �. The displacement fields and the strain fields
are determined from the values of ½qv

e � and ½qf � by

ve½ � ¼ ½Nn�½qv
e �; ½Ee

v � ¼ ½Bn�½qv
e �; f½ � ¼ ½Nz�½qf � and ½Ef �

¼ ½Bz�½qf � ð23Þ

where

½Ee
v �

T ¼ v1 v1;1 v1;2 v2 v2;1 v2;2 v3 v3;1 v3;2½ �

and

½Ef �T ¼ f1 f 01 f2 f 02 f3 f 03
� �

The matrices ½Nn�; ½Bn�; ½Nz�, ½Bz� contain the interpolation func-
tions, their derivatives and the jacobian components.

4.6. Finite element problem to be solved on X

For the sake of simplicity, the function f ðmÞ which is assumed to
be known, will be denoted ~f (and ~F), and the function v ðmþ1Þ to be
computed will be denoted v. The strain in Eq. (21) is defined in ma-
trix notations as

½eð~F vÞ� ¼ ½Rzð~f Þ�½Ev � ð24Þ

with

½Rzð~f Þ� ¼

0 ~f 1=l 0 0 0 0 ~f 3=ðlRÞ 0 0

0 0 0 0 0 ~f 2 0 0 0

0 0 0 0 0 0 ~f 03 0 0

0 0 0 ~f 02 0 0 0 0 ~f 3

~f 01 � ~f 1=ðlRÞ 0 0 0 0 0 0 ~f 3=l 0

0 0 ~f 1 0 ~f 2=l 0 0 0 0

2
66666666664

3
77777777775

ð25Þ

The variational problem defined on X from Eqs. (21) and (6) isZ
X
½dEv �T ½kzð~f Þ�½Ev �

ffiffiffi
a
p

dX ¼
Z

X
½dv �T ½tzð~f Þ�

ffiffiffi
a
p

dX

�
Z

X
½dEv �T ½rzð~f ;unÞ�

ffiffiffi
a
p

dX ð26Þ

with

½kzð~f Þ� ¼
Z

Xz

½Rzð~f Þ�
T
½C�½Rzð~f Þ�ldz ð27Þ

½tzð~f Þ� ¼ ~F
h iT
½t�l

	 





z¼zF

ð28Þ

½rzð~f ; unÞ� ¼
Z

Xz

½Rzð~f Þ�
T
½C�½eðunÞ�ldz ð29Þ

Note that the calculation of Eqs. (27) and (29) is performed
using an analytical integration.

The introduction of the finite element approximation Eq. (23) in
the variational Eq. (26) leads to the linear system
Kzð~f Þ
h i

qv½ � ¼ Rvð~f ;unÞ
h i

ð30Þ

where

� qv½ � is the vector of the nodal displacements in the contravariant
basis,
� Kzð~f Þ
h i

is the stiffness matrix obtained by summing the ele-
ments’ stiffness matrices Ke

zð~f Þ
h i

¼
R

Xe
½Bn�T ½kzð~f Þ�½Bn�

ffiffiffi
a
p

dXe

� Rv ð~f ;unÞ
h i

is the equilibrium residual obtained by summing the
elements’ residual load vectors
Re

v ð~f ;unÞ
h i

¼
R

Xe
½Nn�T ½tzð~f Þ�

ffiffiffi
a
p

dXe �
R

Xe
½Bn�T ½rzð~f ;unÞ�

ffiffiffi
a
p

dXe

4.7. Finite element problem to be solved on Xz

For the sake of simplicity, the function v ðmþ1Þ which is assumed
to be known, will be denoted ~v (and ~V), and the function f ðmþ1Þ to
be computed will be denoted f. The strain in Eq. (22) is defined in
matrix notations as

½eð~V f Þ� ¼ ½Rnð~vÞ�½Ef � ð31Þ

with

½Rnð~vÞ� ¼

~v1;1=l 0 0 0 ~v3=ðlRÞ 0
0 0 ~v2;2 0 0 0
0 0 0 0 0 ~v3

0 0 0 ~v2 ~v3;2 0
�~v1=ðlRÞ ~v1 0 0 ~v3;1=l 0

~v1;2 0 ~v2;1=l 0 0 0

2
666666664

3
777777775

ð32Þ

The variational problem defined on Xz from Eq. (22) isZ
Xz

½dEf �T ½knð~vÞ�½Ef �ldz ¼ ½df �T ½tnð~vÞ�l
� �

jz¼zF

�
Z

Xz

½dEf �T ½rnð~v ;unÞ�ldz ð33Þ

with

½knð~vÞ� ¼
Z

X
½Rnð~vÞ�T ½C�½Rnð~vÞ�

ffiffiffi
a
p

dX ð34Þ

½tnð~vÞ� ¼
Z

X

~V
h iT

½t�
ffiffiffi
a
p

dX ð35Þ

½rnð~v ;unÞ� ¼
Z

X
½Rnð~vÞ�T ½C�½eðunÞ�

ffiffiffi
a
p

dX ð36Þ

The introduction of the finite element discretization Eq. (23) in the
variational Eq. (33) leads to the linear system

Knð~vÞ½ � qf
� �
¼ Rf ð~v ;unÞ
� �

ð37Þ

where qf
� �

is the vector of degree of freedom associated with the
polynomial expansion in Xz, Knð~vÞ½ � is a stiffness matrix defined
by Eq. (38) and Rf ð~v ;unÞ

� �
an equilibrium residual defined by Eq.

(39)

Knð~vÞ½ � ¼
Z

Xz

½Bz�T ½knð~vÞ�½Bz�ldz ð38Þ

Rf ð~v; unÞ
� �

¼ ½Nz�T ½tnð~vÞ�l
� �

jz¼zF
�
Z

Xz

½Bz�T ½rnð~v;unÞ�ldz ð39Þ
5. Numerical results

In this section, an eight-node quadrilateral FE based on the Ser-
endipity interpolation functions is used for the unknowns depend-
ing on the in-plane coordinates. The geometry of the shell is



Fig. 3. Mesh 22 � 10 with a space ratio (10/50) for one quarter of the shell panel –
/ ¼ p=3 – R ¼ 10.

Table 1
Convergence study – one layer [0�] – S = 100 – / ¼ p=3 – Nz ¼ NC – mesh with space
ratio (10/50).

Mesh �uð0; e=2Þ �wðL;0Þ �r11ð�e=2Þ �r13Max �r33Max

6 � 10 20.1920 0.0631 �0.6398 0.5568 �16.310
12 � 10 23.8830 0.0746 �0.7507 0.5717 �18.456
22 � 10 24.1520 0.0755 �0.7579 0.5679 �18.517
32 � 10 24.1700 0.0755 �0.7582 0.5668 �18.501
64 � 10 24.1750 0.0755 �0.7582 0.5658 �18.483

Navier 24.1758 0.0755 �0.7581 0.5652 �18.349

Exact 24.1723 0.0755 �0.7581 0.5651 �18.346
approximated by this classical FE in the parametric space. The geo-
metrical transformation is based on an explicit map ~U. A Gaussian
numerical integration with 3 � 3 points is used to calculate the ele-
mentary matrices. Several static tests are presented validating our
approach and evaluating its efficiency.

First, a convergence study is carried out to determine the suit-
able mesh for the further analysis. Then, the influence of the
approximation on the factor 1=l is addressed [43,1]. Three orders
of expansion are considered. The influence of the numerical layers
are also studied to show the possibility to refine the transverse
description of the displacements and the stresses. Finally, the pres-
ent approach is assessed for deep/shallow and thick/thin shells to
show the wide range of validity.

All the following numerical assessments are based on the test
case proposed by Ren [41]. It concerns a semi-infinite simply-sup-
ported cylindrical shell submitted to a sinusoidal pressure. It is de-
scribed below:

Geometry: composite cross-ply cylindrical shell,
R ¼ 10;/ 2 fp=8;p=3;p=2g, with the following stacking
sequences ½0
�; ½0
=90
�; ½0
=90
=0
�. All layers have the same
thickness. S ¼ R

e 2 f2;4;10;40;100g. The panel is supposed infi-
nite along the x2 ¼ n2 direction (bC ¼ 8aCÞ (Cf. Fig. 2).
Boundary conditions: simply-supported shell along its straight
edges, subjected to a sinusoidal pressure along the curvature:
qðn1Þ ¼ q0 sin pn1

R/ .
Material properties: EL ¼ 25 GPa; ET ¼ 1 GPa; GLT ¼ 0:2 GPa; GTT ¼
0:5 GPa; mLT ¼ mTT ¼ 0:25 where L refers to the fiber direction, T
refers to the transverse direction.
Mesh: only a quarter of the structure is meshed. The mesh is
constituted of Nx � Ny elements in the n1 and n2 directions
respectively. A space ratio is considered in these two directions
(ratio between the size of the larger and the smaller element).
Numerical layers: Nz is the total number of numerical layers.
Number of dofs: Ndofxy ¼ 3ðNx þ 1ÞðNy þ 1Þ and Ndofz ¼ 12�
aNC þ 3 are the number of dofs of the two problems
associated with v i

j and f i
j respectively. a is the number of

numerical layers per physical layer. So the total number of dofs
is Ndofxy þ Ndofz.
Results: The results are made nondimensional using:
�u ¼ u1ð0; bC=2; zÞ ET

eq0S3 ; �w ¼ u3ðaC=2; bC=2; zÞ100ET

eq0S4 ;

�raa ¼
raaðaC=2; bC=2; zÞ

q0S2 ; �r13 ¼
r13ð0; bC=2; zÞ

q0S
;

�r33 ¼
r33ðaC=2; bC=2; zÞ

q0.
Reference values: The 2D exact elasticity results are obtained as
in [41].

Few iterations are required to reach the convergence of the
fixed point algorithm (cf. Section 4.4). Moreover, for this test case,
only one couple is needed to obtain the solution.

5.1. Convergence study

First, a convergence study is performed to obtain the suitable
mesh on the most critical test, i.e. a one-layered shell with
S ¼ 100. A constant space ratio for the mesh is taken as 10 for
the n1-direction and 50 in the n2-direction. It is inferred from Ta-
ble 1 that a 22 � 10 mesh (see Fig. 3) is adequate to model the
structure. The results can be considered as converged values. The
results issued from the Navier approach which is the asymptotic
value of the present model, are also given. Moreover, the maxi-
mum error rate remains less than 0.9% for both displacements
and stresses with respect to the 2D elasticity solution given by
Ren [41]. This mesh is used for the following investigations.
5.2. Influence of the expansion for the factor 1=l

In this section, the influence of the approximation on the factor
1=l ¼ 1=ð1þ z=RÞ is addressed. The zero, one and two-order
expansions are compared in Table 2 for very thick to thin homoge-
neous shells. The zero-order approximation (thin shell hypothesis
or Love’s hypothesis) seems to be valid only for the thin structure
with S P 40. The solution is improved significantly for S 6 10
when the order of the development of 1=l increases. It concerns
both the displacements and the stresses. Nevertheless, the use of
the second-order expansion has a significant influence only for
the thick shell.

It can be noticed that the error rate on the transverse shear and
normal stresses remains high for the thick structures regardless of
the degree of approximation of 1=l. This problem is investigated in
the following section.
5.3. Influence of the number of numerical layers

The influence of the number of numerical layers is studied for
the homogeneous case. In Table 3, four numerical layers per phys-
ical layer are considered for moderately thick to very thick cases
that are the most representative ones. The results for two orders
of expansion of 1=l are given. First, it can be observed that the re-
sults are improved when compared with Table 2, regardless of the
degree of approximation. In particular, the effect on the accuracy of
the stresses is pronounced. Then, the use of the second order
expansion of 1=l drives to a very good agreement with the refer-
ence solution. The maximum error rate is 1%, even for the very
thick case. Nevertheless, this expansion is needed only for S � 4.

For further comparison, Fig. 4 shows the distribution of the
transverse shear and normal stresses along the thickness (S = 2)
for different number of numerical layers. Four numerical layers



Table 2
influence of the order-approximation of 1=l – one layer [0�] – / ¼ p=3 – mesh 22 � 10 – Nz ¼ NC.

S Expansion Model �uð0; e=2Þ �wðL;0Þ �r11ð�e=2Þ �r13Max �r33Max

2 Zero-order Present 3.9745 0.7981 �1.4083 0.4689 0.8867
Error 16.67% 19.84% 42.63% 15.73% 11.33%

One-order Present 4.9847 1.0171 �2.2567 0.6020 0.9345
Error 4.51% 2.17% 8.06% 8.19% 6.55%

Two-order Present 4.7938 0.9767 �2.1799 0.5781 0.8971
Error 0.51% 1.90% 11.19% 3.88% 10.29%
Exact 4.7696 0.9956 �2.4546 0.5565 1.0000

4 Zero-order Present 2.3664 0.2792 �1.0399 0.5289 0.9207
Error 10.39% 10.51% 21.86% 7.84% 7.93%

One-order Present 2.6734 0.3153 �1.3426 0.5990 0.9179
Error 1.24% 1.06% 0.88% 4.39% 8.21%

Two-order Present 2.6386 0.3111 �1.3253 0.5912 0.9058
Error 0.09% 0.26% 0.42% 3.02% 9.42%
Exact 2.6408 0.3120 �1.3309 0.5739 1.0000

10 Zero-order Present 2.5622 0.1094 �0.8064 0.5563 �1.3617
Error 4.55% 4.56% 9.37% 4.05% 9.58%

One-order Present 2.6930 0.1150 �0.8928 0.5854 �1.4172
Error 0.32% 0.32% 0.33% 0.97% 5.89%

Two-order Present 2.6845 0.1146 �0.8901 0.5835 �1.4128
Error 0.01% 0.00% 0.03% 0.64% 6.19%
Exact 2.6843 0.1146 �0.8898 0.5798 �1.5059

40 Zero-order Present 9.2613 0.0770 �0.7537 0.5625 �7.0432
Error 1.23% 1.23% 2.46% 1.11% 0.83%

One-order Present 9.3781 0.0780 �0.7729 0.5698 �7.1240
Error 0.02% 0.02% 0.03% 0.17% 0.31%

Two-order Present 9.3756 0.0779 �0.7727 0.5695 �7.1233
Error 0.01% 0.01% 0.00% 0.12% 0.30%
Exact 9.3765 0.0780 �0.7727 0.5688 �7.1021

100 Zero-order Present 24.0330 0.0751 �0.7504 0.5651 �18.4420
Error 0.58% 0.58% 1.02% 0.00% 0.52%

One-order Present 24.1530 0.0755 �0.7579 0.5680 �18.5150
Error 0.08% 0.08% 0.03% 0.52% 0.92%

Two-order Present 24.1520 0.0755 �0.7579 0.5679 �18.5170
Error 0.08% 0.08% 0.03% 0.50% 0.93%
Exact 24.1723 0.0755 �0.7581 0.5651 �18.3467

Table 3
One layer [0�] – / ¼ p=3 – mesh 22 � 10 – Nz ¼ 4NC.

S Expansion Model �uð0; e=2Þ �wðL; 0Þ �r11ð�e=2Þ �r13Max �r33Max

2 One-order Present 4.9423 1.0326 �2.5402 0.5755 1.0517
Error 3.62% 3.72% 3.49% 3.42% 5.17%

Two-order Present 4.7640 0.9937 �2.4596 0.5537 1.0118
Error 0.12% 0.19% 0.20% 0.49% 1.18%
Exact 4.7696 0.9956 �2.4546 0.5565 1.0000

4 One-order Present 2.6754 0.3160 �1.3491 0.5796 1.0229
Error 1.31% 1.28% 1.37% 1.00% 2.29%

Two-order present 2.6411 0.3119 �1.3321 0.5721 1.0097
Error 0.01% 0.03% 0.09% 0.31% 0.97%
Exact 2.6408 0.3120 �1.3309 0.5739 1.0000

10 One-order Present 2.6930 0.1150 �0.8926 0.5808 �1.5205
Error 0.32% 0.32% 0.31% 0.17% 0.97%

Two-order Present 2.6846 0.1146 �0.8899 0.5789 �1.5158
Error 0.01% 0.00% 0.01% 0.15% 0.65%
Exact 2.6843 0.1146 �0.8898 0.5798 �1.5059

Table 4
Two layers ½0
=90
� – mesh 22 � 10 – Nz ¼ NC – / ¼ p=3 – two-order approximation of 1=l.

S Model �uð0;�e=2Þ �wðL;0Þ �r11ð�e=2Þ �r11ðe=2Þ �r13Max �r33Max

4 Present 12.6988 0.7041 �2.7619 0.2724 0.9434 0.9975
Error 0.49% 0.49% 0.41% 0.53% 0.67% 0.25%
Exact 12.7610 0.7076 �2.7732 0.2739 0.9371 1.0000

10 Present 17.7380 0.4436 �2.3182 0.2339 0.9070 �2.6116
Error 0.74% 0.74% 0.74% 0.81% 0.73% 1.10%
Exact 17.8707 0.4469 �2.3356 0.2359 0.9136 �2.6406

100 Present 135.3100 0.3974 �2.1605 0.2315 0.8866 �28.9150
Error 0.40% 0.40% 0.31% 0.59% 1.39% 0.62%
Exact 135.8586 0.3990 �2.1672 0.2328 0.8745 �28.7372
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Fig. 7. Distribution of �r11 (left), �r13 (middle) and �r33 (right) along the thickness – S = 4 – two layers – / ¼ p=3.
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Table 5
Three layers [0�/ 90�/0�] – mesh 22 � 10 – Nz ¼ NC – / ¼ p=2 – two-order approximation of 1=l.

S Model �uð0; e=2Þ �wðL;0Þ �r11ð�e=2Þ �r13ð0; 0Þ �r33Max

4 Present 31.5706 1.9094 �3.7645 0.9303 �1.7613
Error 0.02% 0.04% 0.07% 0.21% 0.32%
Exact 31.5782 1.9101 �3.7620 0.9323 �1.7556

10 Present 34.5670 0.7862 �2.4574 0.9533 �4.5981
Error 0.01% 0.01% 0.01% 0.08% 0.28%
Exact 34.5699 0.7863 �2.4572 0.9541 �4.5854

100 Present 272.8200 0.5539 �2.0900 0.9330 �46.5030
Error 0.43% 0.43% 0.27% 0.24% 0.70%
Exact 273.9914 0.5563 �2.0956 0.9308 �46.1786

Table 6
three layers [0�/ 90�/0�] – mesh 22 � 10 – Nz ¼ NC – / ¼ p=3 – two-order approximation of 1=l.

S Model �uð0; e=2Þ �wðL; 0Þ �r11ð�e=2Þ �r13ð0; 0Þ �r33Max

4 Present 4.1668 0.4581 �1.7737 0.4757 1.0052
Error 0.02% 0.01% 0.12% 0.17% 0.52%
Exact 4.1658 0.4581 �1.7715 0.4765 1.0000

10 Present 3.5370 0.1440 �0.9951 0.5251 �1.4917
Error 0.01% 0.00% 0.02% 0.07% 0.25%
exact 3.5367 0.1440 �0.9949 0.5254 �1.4879

100 Present 25.1330 0.0785 �0.7865 0.5243 �17.2160
Error 0.05% 0.05% 0.00% 0.17% 0.45%
Exact 25.1468 0.0786 �0.7866 0.5234 �17.1396

Table 7
Three layers [0�/ 90�/0�] – mesh 22 � 10 – Nz ¼ NC – / ¼ p=8 – two-order approximation of 1=l.

S Model �uð0;�e=2Þ �wðL;0Þ �r11ð�e=2Þ �r13ð0;0Þ �r33Max

4 Present 0.3168 0.0343 �0.3827 0.1074 0.9987
Error 0.21% 0.05% 0.18% 0.38% 0.13%
Exact 0.3175 0.0343 �0.3834 0.1078 1.0000

10 Present 0.1887 0.0076 �0.1996 0.1488 1.0014
Error 0.01% 0.02% 0.01% 0.08% 0.14%
Exact 0.1887 0.0076 �0.1996 0.1489 1.0000

100 Present 0.2158 0.0013 �0.1009 0.1769 �1.9355
Error 0.01% 0.01% 0.01% 0.02% 0.12%
Exact 0.2158 0.0013 �0.1009 0.1768 �1.9332
are sufficient to recover the reference solution. The boundary con-
ditions on the upper and lower surfaces are nearly fulfilled. To
show the accuracy of the approach, both displacements and stres-
ses are represented on Figs. 5 and 6. Complex distributions along
the thickness can be obtained. We can observe that the dissymme-
try of the results is well-captured.
It should be also noted that only the number of dofs of the 1D
problem increases (Ndofz ¼ 12� aNC þ 3), so the additional
computational cost is negligible, the size of the 2D problem
remaining unchanged. That is different for a LW approach
where the total number of unknowns would be Ndofxy � Ndofz

¼ Ndofxy � ð12� aNC þ 3Þ.
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5.4. Anti-symmetric shell

In this section, the approach is assessed on an anti-symmetric
shell, that is a two-layer case ½0
=90
�. It is inferred from Table 4
that the accuracy of the results is very good. The error rate is less
than 1.3% regardless of the slenderness ratio. Only the in-plane,
transverse shear and normal stresses are shown in Fig. 7 for a thick
structure. The present approach yields very satisfactory results for
the anti-symmetric shell.
5.5. Deep/shallow shell

This section deals with the capability of the present approach to
model both deep and shallow shells. For this purpose, three opening
angles are considered, / ¼ p=8;p=3;p=2 for a three-layer shell. A
second-order expansion of 1=l is considered as thick to thin struc-
tures are involved in this study. Only one numerical layer is consid-
ered. Table 5–7 show the excellent accuracy of the results for all the
configurations. The error rate is less than 0.7%. The variation of the
normalized in-plane, transverse shear and normal stresses, and in-
plane, transverse displacements through the thickness for S = 4 are
presented in Figs. 8 and 9 for / ¼ p=2. The results are in very good
agreement with the reference solution of the deep shell.
6. Conclusion

In this article, the PGD is applied to the modeling of cylindrical
composite shell using a fourth-order LW description of the dis-
placements. The results are assessed through different classical
benchmarks. The influence of classical strain assumption (approx-
imation of 1=l) is discussed. We have shown the importance of the
expansion of this term for thick shells. The accuracy of the results
could be also improved by using numerical layers in each physical
layer without increasing significantly the computational cost. Fi-
nally, accurate results have been obtained for a wide type of shell
configurations. Both deep/shallow and very thick/thin shell struc-
tures can be modeled with an excellent accuracy. Moreover, the
present method allows to address complex layered structures
without resorting to a costly Layer-Wise FE model.

Based on these promising results, the membrane and shear
locking phenomenon will be addressed in future investigation.
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