
HAL Id: hal-01366962
https://hal.science/hal-01366962

Submitted on 8 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessment of the refined sinus plate finite element: free
edge effect and Meyer-Piening sandwich test.

P. Vidal, O. Polit, M. d’Ottavio, E. Valot

To cite this version:
P. Vidal, O. Polit, M. d’Ottavio, E. Valot. Assessment of the refined sinus plate finite element: free
edge effect and Meyer-Piening sandwich test.. Finite Elements in Analysis and Design, 2014, 92,
pp.60–71. �10.1016/j.finel.2014.08.004�. �hal-01366962�

https://hal.science/hal-01366962
https://hal.archives-ouvertes.fr


Assessment of the refined sinus plate finite element:
Free edge effect and Meyer-Piening sandwich test

P. Vidal n, O. Polit, M. D'Ottavio, E. Valot
LEME EA 4416, Université Paris Ouest, 50 rue de Sèvres, 92410 Ville d'Avray, France

a b s t r a c t

This paper deals with the assessment of a refined sinus model for multilayered composite plates in the
framework of severe test cases to highlight the interest and limitations of such an approach. The present
sinus model is enriched by higher-order terms for both in-plane and transverse displacements, and layer
refinement. This kinematics allows us to exactly ensure both (i) the continuity conditions for
displacements and transverse shear stresses at the interfaces between layers of a laminated structure,
and (ii) the traction-free conditions at the upper and lower surfaces of the plates. The number of
unknowns is independent of the number of layers. A C1 6-node triangular finite element implementation
is proposed, which does not suffer any numerical pathologies.

First, the present approach is assessed on its capability to capture the steep transverse stress
gradients occurring in the vicinity of free edges and is also compared with models available in the
literature. Then, a highly anisotropic sandwich structure proposed by Meyer-Piening is also addressed for
further comparison.

1. Introduction

Composite and sandwich structures are widely used in the
weight-sensitive industrial applications due to their excellent
mechanical properties, especially their high specific stiffness and
strength. In this context, they can be subjected to severe mechan-
ical loading. For composite design, accurate knowledge of displa-
cements and stresses is required. So, it is important to take into
account effects of the transverse shear deformation due to the low
ratio of transverse shear modulus to axial modulus, or failure due
to delamination. In fact, they can play an important role on the
behavior of structures in services, which leads to evaluate pre-
cisely their influence on local stress fields in each layer, particu-
larly at the interface between layers.

The aim of this paper is to assess the refined sinus model
including a higher-order expansion with respect to its capability to
capture local effects for laminated and sandwich structures.

It is nowadays well established that theoretical models for
heterogeneous structures can be classified as follows:

� the Equivalent Single Layer Models (ESLM), where the classical
Love-Kirchhoff (CLT) and Reissner-Mindlin (FSDT) models can be

found for plates. The first one leads to inaccurate results for
composites because both transverse and normal strains are
neglected. The second one where only the transverse normal strain
is neglected, needs a shear correction factor. So, the higher order
shear deformation theory has been developed (see the work of
Reddy [1]), but transverse shear and normal stress continuity
conditions at the interfaces between layers are violated. In the
ESLM context, a simple way to improve the estimation of the
mechanical quantities has been proposed by Murakami [2]: one
function is added in each in-plane displacement to introduce the
slope discontinuity at the interface between two adjacent layers. It
allows us to describe the so-called zig-zag effect.

� the Layer-Wise Models (LWM) that aim at overcoming the
restriction of the ESL concerning the discontinuity of out-of-
plane stresses at the interface between adjacent layers. The
reader can refer to the works of Pagano [3] and Reddy [4].

According to Reddy [5], the number of unknowns remains
independent of the number of constitutive layers in the ESLM,
while the same set of variables is used in each layer for
the LWM.

Another way for obtaining new models is based on the
introduction of interface conditions into higher-order model
pertaining to the ESLM or to the LWM. This permits us to
reduce the number of unknowns and can be viewed as a Zig-
Zag model. Excellent reviews have been made in the following
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articles [6–9] or in the most recent review proposed by Zhang
and Yang [10].

It is known that relevant transverse stresses arise in the
presence of in-plane stress gradients and in the vicinity of material
and/or geometric discontinuities. Free-edge effects are typical
boundary layer effects where a 3D stress concentration is locally
confined in a small region in the vicinity of the free edge [11]. The
free-edge effect arising in a composite plate subjected to tensile
loads has been extensively studied since the seminal works of
Pipes and Pagano [12,13]. We also note the test case introduced by
Meyer-Piening [14] where a highly anisotropic non-symmetric
sandwich structure is submitted to a localized pressure. These
two configurations can be considered as representative test cases
allowing to discriminate 2D models.

Since an exhaustive review is out of the scope of the present
investigation, we refer the interested reader to the more complete
surveys of this topic by Mittelstedt and Becker [15,16] and focus
only on the works related to the Pipes-Pagno tests in the following.

Except the first numerical analysis of the Pipes–Pagano pro-
blem provided in [12], which is based on a Finite Difference
scheme and the work of Tahani and Nosier [17] based on a semi-
analytical approach, most of the numerical reference solutions
have been obtained by means of the Finite Element Method (FEM).
Wang and Crossman employed generalized plane strain, three-
node triangular elements for discretizing the mid-section x1 ¼ 0
(axis notation according to Fig. 5) of the laminate [18]. Other
approaches are based on the quasi-3D model (Q3D) which refers
to the hypothesis of zero gradients along the axial coordinate x1
and retaining an axial warping of the ðx2; zÞ-planes which depends
only on x2 and z. We can mention the works of [19,20]. Note also
the 1D FEM formulation of Gaudenzi et al. for which a sublaminate
approach was used [21]. As an alternative, the layer-wise kine-
matics proposed by Reddy [5], in which the displacement compo-
nents are interpolated along z through Lagrange polynomials, was
successfully applied by Robbins and Reddy to the Pipes–Pagano
problem [22]. Eight-node quadratic plate elements have been used
to solve the problem in the ðx1; x2Þ-plane. An h and p- refinement
along the thickness (i.e., increase of the number of mathematical
layers per physical ply or the order of the polynomial expansion)
are addressed. The same authors developed in a subsequent work
a variable kinematics FEM which permitted them to limit the
computationally expensive LW plate elements to the free-edge
region, while the inner region was modeled by lower-order (FSDT)
elements [23].

Nevertheless, the classical displacement-based method suffers
some inherent limitations, in particular the discontinuity of the
transverse stress field at the bi-material interface and the approx-
imate satisfaction of the stress-free boundary conditions. So,
stress-based equilibrium approaches have been proposed in con-
junction with either analytical [24] or numerical FEM-based
solutions [25]. Starting from the mixed Hellinger-Reissner (HR)
variational principle, Pagano proposed a sound formulation that
permits him to express a variationally consistent displacement
field starting from only stress assumptions [26]. The mixed HR
principle has been employed by Spilker and Chou for developing
hybrid-stress FE for the analysis of the Pipes–Pagano problem [27]
with the generalized plane strain assumption. The mixed approach
of Pagano [26] has been also employed by Nguyen and Caron for
formulating LW finite plate elements dedicated to the analysis of
free-edge effects [28]. Furthermore, a partially mixed 2D element
has been developed by Desai et al. and successfully applied to the
free-edge problem [29].

Another way already mentioned above consists in introducing
the physical requirements to deduce Zig-zag model. Wu and Chen
proposed a higher-order ESL displacement model along with a
3-node finite plate element [30]. This one satisfies a C1 weak-

continuity condition. Fifth and third-order expansions have been
used for the in-plane and transverse displacement components,
respectively. The exact satisfaction of the interlaminar continuity
condition for the transverse shear stress reduces the unknown
functions to 18. The present refined sinus approach belongs to this
family.

Finally, it should be mentioned the family of models based on
the Carrera's Unified Formulation employing the Principle of
Virtual Displacements and the Reissner's Mixed Variational Theo-
rem. It is one of the only approach which has been assessed on a
wide range of test cases [31–33], in particular concerning the local
stress concentration occurring in both free edge and localized
pressure for highly anisotropic sandwich. Both ESL and LW
approaches are addressed.

Based on the sinus theory developed by Vidal and Polit [34] for
beams, its generalization to plate has been presented in [35]
where a model with 11 parameters is derived. This work has
shown accurate results for the modeling of thin to very thick
structures of any lamination schemes in the framework of multi-
field problems with a high convergence rate. The double super-
position hypothesis is introduced for the in-plane displacement.
The transverse displacement is refined allowing the use of the
three-dimensional constitutive law. This is essential for thick
structures and multifield problems. All interface continuity and
boundary conditions are exactly satisfied for displacement and
transverse shear stresses using the Heaviside function. Moreover,
transverse shear stresses can be obtained directly from the three-
dimensional constitutive law.

In the present work, this refined sinus model is extended and
assessed with respect to its capacity to capture stress concentrations.
In this way, a sinus kinematics including a fourth and third-order
expansion is chosen for the in-plane and transverse displacements,
respectively. It yields to 16 independent generalized unknowns.
Furthermore, a six-node triangular finite element is described and
applied to test cases involving local effects. In order to develop a
conform, efficient and accurate FE, Argyris and Ganev interpolations
are used as in Polit and Touratier [36]. Note that the FE presented in
[36] was dedicated to cross ply and symmetric angle ply schemes.
These FE approximations are C1 and semi-C1, providing a high
convergence rate [35]. Furthermore, since Argyris interpolation is a
polynomial of the fifth-order and Ganev interpolation of the fourth-
order, the field compatibility for the FE approximations of the
transverse shear strains is automatically fulfilled, avoiding the trans-
verse shear locking. So, this FE exhibits no numerical pathology [35].

We now outline the remainder of this article. This new triangular
FE with 16 unknown functions is detailed out in the first two
sections. Numerical evaluations are subsequently presented. Present
numerical results for the Pipes–Pagano problem are first compared
with those available in the literature. The study considers symmetric
cross-ply and angle-ply laminates. Furthermore, the paper presents
results of 3D FEM computations performed with the commercial
software ANSYS, against which results from plate models are thor-
oughly compared. Finally, the modeling of the Meyer-Piening sand-
wich structure is addressed. In all cases, a comparison with ESL
models issued from the Carrera's Unified Formulation is performed. It
should be noted that this study is focused on the capabilities of the
refined sinus model and not on the performance of the FE which has
been already assessed in previous works [36,35].

2. Description of the plate problem

2.1. The governing equations for mechanics

Let us consider a plate occupying the domain V ¼Ω�
½�h=2rzrh=2� in a Cartesian coordinate ðx1; x2; zÞ. The plate is



defined by an arbitrary region Ω in the ðx1; x2Þ plane, as midplane
for z¼0, and by a constant thickness h, see Fig. 1.

2.1.1. Constitutive relation
The plate is assumed to be made of NC perfectly bonded

orthotropic layers. Using matrix notation, the three dimensional
constitutive law of the kth layer is given by

σðkÞ
11

σðkÞ
22

σðkÞ
33

σðkÞ
23

σðkÞ
13

σðkÞ
12

2
6666666666664

3
7777777777775
¼

CðkÞ
11 CðkÞ

12 CðkÞ
13 0 0 CðkÞ

16

CðkÞ
22 CðkÞ

23 0 0 CðkÞ
26

CðkÞ
33 0 0 CðkÞ

36

CðkÞ
44 CðkÞ

45 0

sym CðkÞ
55 0

CðkÞ
66

2
6666666666664

3
7777777777775

εðkÞ11

εðkÞ22

εðkÞ33

γðkÞ23

γðkÞ13

γðkÞ12

2
6666666666664

3
7777777777775
i:e: ½σðkÞ� ¼ ½CðkÞ�½εðkÞ�

ð1Þ
where we denote the stress vector ½σ�, the strain vector ½ε� and Cij
the three-dimensional stiffness coefficients with respect to the
plate's reference frame ðx1; x2; zÞ.

2.1.2. The weak form of the boundary value problem
Using the above matrix notation and for admissible virtual

displacement u!n

AUn, the variational principle reads:
find u!AU (space of admissible displacements) such that

�
Z
V
½εð u!nÞ�T ½σð u!Þ� dVþ

Z
V
½un�T ½f � dVþ

Z
∂VF

½un�T ½F�d∂V ¼ 0 8 u!n

AUn

ð2Þ
where ½f � and ½F� are the prescribed body and surface forces
applied on ∂VF and εð u!nÞ is the virtual strain. Un is the space of
admissible virtual displacements.

2.2. The displacement field for laminated plates

Based on the sinus function (see [37,38]), a model which takes
into account the transverse normal deformation is presented in
this section. It is based on

� various works on beams, plates and shells, [37,39] covering the
refined theory, and

� the so-called 1,2-3 double-superposition theory of Li and
Liu [40] developed in the sinus approach for plate in Vidal
and Polit [35].

Moreover, this refined model (see Vidal and Polit [41]) takes
into account the continuity conditions between layers of the
laminate for both displacements and transverse shear stresses,
and the traction-free conditions on the upper and lower
surfaces.

The important feature in this new model is the introduction of
(i) a layer refinement with physical meaning, (ii) the transverse

normal effect in the framework of plate structures, and (iii) high-
order expansion to capture local effects.

For this, the model kinematics is written in terms of Heaviside
function according to the following particular form:

U1ðx1; x2; zÞ ¼ u0ðx1; x2Þþzu1ðx1; x2Þþ f ðzÞðw0;1ðx1; x2Þþθ2ðx1; x2ÞÞ
þz3u3ðx1; x2Þþz4u4ðx1; x2Þ

þ ∑
NC

k ¼ 1
ðuðkÞ

locðx1; x2; zÞþ ûðkÞ
locðx1; x2; zÞÞðHðz�zkÞ�Hðz�zkþ1ÞÞ

U2ðx1; x2; zÞ ¼ v0ðx1; x2Þþzv1ðx1; x2Þþ f ðzÞðw0;2ðx1; x2Þ�θ1ðx1; x2ÞÞ
þz3v3ðx1; x2Þþz4v4ðx1; x2Þ

þ ∑
NC

k ¼ 1
ðvðkÞ

locðx1; x2; zÞþ v̂ðkÞ
locðx1; x2; zÞÞðHðz�zkÞ�Hðz�zkþ1ÞÞ

U3ðx1; x2; zÞ ¼ w0ðx1; x2Þþzw1ðx1; x2Þþz2w2ðx1; x2Þþz3w3ðx1; x2Þ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð3Þ
where H is the Heaviside function defined by

Hðz�zkÞ ¼ 1 if zZzk
Hðz�zkÞ ¼ 0 otherwise

(
ð4Þ

In Eq. (3), ðu0; v0;w0Þ are the displacements of a point of the
middle surface while ðv1;θ1Þ and ðu1;θ2Þ are measurements of
rotations of the normal transverse fiber around the axis ð0; x1Þ and
ð0; x2Þ, respectively. The higher-order terms are denoted u3;u4; v3
and v4. The local functions uðkÞ

loc , û
ðkÞ
loc and vðkÞ

loc , v̂
ðkÞ
loc are based on

Legendre polynomials and can be written as

uðkÞ
locðx1; x2; zÞ ¼ ζkuk

31ðx1; x2Þþ �1
2
þ3ζ2k

2

!
uk
32ðx1; x2Þ

ûðkÞ
locðx1; x2; zÞ ¼ �3ζk

2
þ5ζ3k

2

!
uk
33ðx1; x2Þ

8>>>>><
>>>>>:

ð5Þ

vðkÞ
locðx1; x2; zÞ ¼ ζkvk31ðx1; x2Þþ �1

2
þ3ζ2k

2

!
vk32ðx1; x2Þ

v̂ðkÞ
locðx1; x2; zÞ ¼ �3ζk

2
þ5ζ3k

2

!
vk33ðx1; x2Þ

8>>>>><
>>>>>:
A non-dimensional coordinate is introduced by ζk ¼ akz�bk, with
ak ¼ 2=ðzkþ1�zkÞ, bk ¼ ðzkþ1þzkÞ=ðzkþ1�zkÞ. The coordinate sys-
tem is precised in Fig. 2.

Finally, the functions ðw1;w2;w3Þ permit us to have a non-
constant deflection for the transverse fiber and allow us to
have nonzero transverse normal strain. Furthermore, the Pois-
son or thickness locking is avoided assuming an order three for
the transverse displacement, see the work of Carrera and
Brischetto [42].

In the context of the sinus model, we have

f ðzÞ ¼ h
π

sin
πz
h

ð6Þ

It must be noticed that the classical homogeneous sinus model
[37] can be recovered from Eq. (3) assuming w0;1 ¼ �u1,
w0;2 ¼ �v1 on the one hand, and neglecting unknown functions

Fig. 2. Transverse coordinate of laminated plate.

Fig. 1. The laminated plate and coordinate system.



w1, w2, w3, u3, u4, v3, v4 and the local thickness functions uðkÞ
loc , û

ðkÞ
loc ,

vðkÞ
loc and v̂ðkÞ

loc , on the other hand. The choice of the sinus function
can be justified from the three-dimensional point of view, using
the work of Cheng [43]. As it can be seen in Polit and Touratier
[36], a sine term appears in the solution of the shear equation
(see Eq. (7) in [36]). Therefore, the kinematics proposed can be
seen as an approximation of the exact three-dimensional solution.
Furthermore, the sine function has an infinite radius of conver-
gence and its Taylor expansion includes not only the third order
terms but all the odd terms.

At this stage, 6� NCþ14 generalized displacements are
included in Eqs. (3)–(5). In the following, the number of unknown
parameters is reduced through some relations issued from

� lateral boundary conditions at top and bottom of the plate,
� interlaminar continuity conditions (displacements, transverse

shear stresses).

2.2.1. Continuity conditions and traction-free conditions
From the displacement field Eq. (3), continuity conditions on

displacements and stresses must be imposed. For an interface
layer kAf2;…;NCg, we have

� the displacement continuity conditions as in Sze et al [44], i.e.:

uðkÞ
locðx1; x2; zkÞ ¼ uðk�1Þ

loc ðx1; x2; zkÞ k¼ 2;…;NC

ûðkÞ
locðx1; x2; zkÞ ¼ ûðk�1Þ

loc ðx1; x2; zkÞ k¼ 2;…;NC

8<
: ð7Þ

vðkÞ
locðx1; x2; zkÞ ¼ vðk�1Þ

loc ðx1; x2; zkÞ k¼ 2;…;NC

v̂ðkÞ
locðx1; x2; zkÞ ¼ v̂ðk�1Þ

loc ðx1; x2; zkÞ k¼ 2;…;NC

8<
: ð8Þ

� the transverse shear stresses continuity conditions between
two adjacent layers:

σðkÞ
13ðx1; x2; zþk Þ ¼ σðk�1Þ

13 ðx1; x2; z�k Þ k¼ 2;…;NC

σðkÞ
23ðx1; x2; zþk Þ ¼ σðk�1Þ

23 ðx1; x2; z�k Þ k¼ 2;…;NC ð9Þ

This way, 6� ðNC�1Þ conditions are imposed, which allows
us to reduce the number of unknowns to 20 generalized
displacements.

Traction-free conditions of the transverse shear stresses on the
upper and lower surfaces must also be verified:

σð1Þ
13 x1; x2; z¼ �h

2

� �
¼ 0 and σðNCÞ

13 x1; x2; z¼
h
2

� �
¼ 0

σð1Þ
23 x1; x2; z¼ �h

2

� �
¼ 0 and σðNCÞ

23 x1; x2; z¼
h
2

� �
¼ 0 ð10Þ

The number of generalized displacements is reduced to 16, and
is independent of the number of layers: the unknowns are u0, u1,
θ2, u3, u4, v0, v1, θ1, v3, v4, w0, w1, w2, w3, u1

31 and v131. The resulting
model will be denoted SinRef16p.

Note that the constitutive relation Eq. (1) and the compatibility
conditions Eq. (11) are used to deduce kinematics relations from
Eqs. (9) and (10).

2.3. The strain field

From the displacement field Eq. (3) and the physical considera-
tions given in Eqs. (7)–(10), the strain components for a cross-ply

composite plate are deduced as

ε11 ¼ u0;1þzu1;1þðf ðzÞþSuβðzÞÞðw0;11þθ2;1Þ
þSuδðzÞu1

31;1þSuλðzÞw1;11þSuμðzÞw2;11þSuζðzÞw3;11

þSuηðzÞðw0;11þu1;1Þþðz3þSuγðzÞÞu3;1þðz4þSuξðzÞÞu4;1

ε22 ¼ v0;2þzv1;2þðf ðzÞþSvβðzÞÞðw0;22�θ1;2Þ
þSvδðzÞv131;2þSvλðzÞw1;22þSvμðzÞw2;22þSvζðzÞw3;22

þSvηðzÞðw0;22þv1;2Þþðz3þSvγðzÞÞv3;1þðz4þSvξðzÞÞv4;1
ε33 ¼ w1þ2zw2þ3z2w3

γ23 ¼ ðf ðzÞ;3þSvβðzÞ;3Þðw0;2�θ1ÞþSvδðzÞ;3v131þð1þSvηðzÞ;3Þðw0;2þv1Þ
þð3z2þSvγðzÞ;3Þv3þð4z3þSvξðzÞ;3Þv4
þðzþSvλðzÞ;3Þw1;2þðz2þSvμðzÞ;3Þw2;2þðz3þSvζðzÞ;3Þw3;2

γ13 ¼ ðf ðzÞ;3þSuβðzÞ;3Þðw0;1þθ2ÞþSuδðzÞ;3u1
31þð1þSuηðzÞ;3Þðw0;1þu1Þ

þð3z2þSuγðzÞ;3Þu3þð4z3þSuξðzÞ;3Þu4

þðzþSuλðzÞ;3Þw1;1þðz2þSuμðzÞ;3Þw2;1þðz3þSuζðzÞ;3Þw3;1

γ12 ¼ u0;2þv0;1þzðu1;2þv1;1Þþz3ðu3;2þv3;1Þ
þz4ðu4;2þv4;1Þþðf ðzÞþSuβðzÞÞðw0;12þθ2;2Þ
þðf ðzÞþSvβðzÞÞðw0;12�θ1;1ÞþSuδðzÞu1

31;2þSvδðzÞv131;1
þSuγðzÞu3;2þSvγðzÞv3;1þSuξðzÞu4;2þSvξðzÞv4;1
þðSuλðzÞþSvλðzÞÞw1;12þðSuμðzÞþSvμðzÞÞw2;12

þðSuζðzÞþSvζðzÞÞw3;12

þSuηðzÞðw0;12þu1;2ÞþSvηðzÞðw0;12þv1;1Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð11Þ
The expressions of the continuity functions Su�ðzÞ and Sv�ðzÞ

are not detailed here for brevity reason. The process described in
[35] can be easily extended for this higher-order kinematics.

2.4. The matrix expression for displacement and strain

Matrix notation for the displacement field defined in Eq. (3) can
be written using a generalized displacement vector as

½u�T ¼ ½FuðzÞ�½Eu� with

½Eu�T ¼ ½u0 ⋮ v0 ⋮ w0 w0;1 w0;2 ⋮ θ1 ⋮ θ2 ⋮ u1 ⋮ v1 ⋮
u3 ⋮ v3 ⋮ u4 ⋮ v4 ⋮ w1 w1;1 w1;2 ⋮

w2 w2;1 w2;2 ⋮ w3 w3;1 w3;2 ⋮ u1
31 ⋮ v131�

½u�T ¼ ½U1 U2 U3� ð12Þ
where ½FuðzÞ� depends on the normal coordinate z and is given in
Appendix A.

In a similar manner, from Eq. (11), the following expression can
be deduced for the strain field:

½ε�T ¼ ½FεðzÞ�½Eε� with

½Eε�T ¼ ½u0;1 u0;2 ⋮ v0;1 v0;2 ⋮ w0 w0;1 w0;2 w0;11 w0;12 w0;22 ⋮
θ1 θ1;1 θ1;2 ⋮ θ2 θ2;1 θ2;2 ⋮ u1 u1;1 u1;2 ⋮
v1 v1;1 v1;2 ⋮ u3 u3;1 u3;2 ⋮ v3 v3;1 v3;2 ⋮
u4 u4;1 u4;2 ⋮ v4 v4;1 v4;2 ⋮ w1 w1;1 w1;2

w1;11 w1;12 w1;22w2 w2;1 w2;2 w2;11 w2;12

w2;22 ⋮ w3 w3;1 w3;2 w3;11 w3;12 w3;22

u1
31 u1

31;1 u1
31;2 ⋮ v131 v131;1 v131;2� ð13Þ

where ½FεðzÞ� is deduced from Eq. (12) and (A.1) (Appendix A) and
is not given for brevity reason.

2.5. The matrix expression of the weak form of the boundary value
problem

Using the constitutive relation given in Eq. (1), the matrix
expression for strain fields, Eq. (13), the following expressions are



obtained for the first term of Eq. (2):

R
V ½εð u

!nÞ�T ½σð u!Þ� dV ¼
Z
V
½En

ε�T ½FεðzÞ�T ½C�½FεðzÞ�½Eε� dV ð14Þ

In this expression, the integration throughout the thickness can
be explicitly carried out taking into account the stacking sequence
of the laminae. The integration with respect to the in-plane
domain Ω is kept:Z
V
½εð u!nÞ�T ½σð u!Þ� dV ¼

Z
Ω
½En

ε�T ½kεε�½Eε� dΩ

with ½kεε� ¼
Z h=2

�h=2
½FεðzÞ�T ½C�½FεðzÞ� dz ð15Þ

where the matrix ½kεε� can be viewed as the integration over the
thickness of the constitutive relations.

Eq. (15) is a good starting point for finite element approxima-
tions of the displacement. The generalized strain vector defined by
½Eε�, see Eq. (13), must be approximated and this will be described
in the next section.

For the sake of conciseness, the expression related to the virtual
work of the external load is not detailed here.

3. The finite element approximations: the triangular
six-node FE

This section is dedicated to the finite element approximations
of the generalized displacement and strain vectors (½Eu�, ½Eε�)
defined in the previous section.

3.1. Elementary stiffness matrix

The elementary stiffness matrix ½Ke� is deduced from Eq. (15) at
the elementary level asZ
Ωe

½Enh
εe �T ½kεε�½Eh

εe � dΩe ¼ ½Qn

e �T ½Ke�½Qe� ð16Þ

where Ωe refers to one element of the triangulation of the plate
reference surface ΩC [ Ωe. The superscript h indicates the finite
element approximation. ½Qe� is the elementary vector of dofs in
global coordinates.

From Eq. (11), the unknowns associated with the deflection wh
0,

wh
1, w

h
2, w

h
3 must be at least C1-continuous functions, while all

other generalized functions can be C0-continuous. In order to
develop a conform FE approximation, we choose the Argyris
interpolation for the transverse displacements and the Ganev
interpolation for the other generalized displacements. Since the
Argyris interpolation is a polynomial of the fifth order and the
Ganev interpolation of the fourth order, we can immediately
conclude that the transverse shear locking is avoided as the field
compatibility is automatically ensured for the transverse shear
strains, see for example [45]. Note that the Argyris interpolation is
a C1 FE approximation, and the Ganev interpolation involves a
semi-C1 continuity. Due to the very long expressions for these
interpolations, the reader is referred to either the original papers
of Argyris et al [46] and Ganev and Dimitrov [47], or to a more
recent book of Bernadou [48].

Figs. 3 and 4 show the local degrees of freedom for the
approximations of wh

0, wh
1, wh

2, wh
3 and uh

α; vhα ; θh
α ; u1h

31, v1h31
respectively. The discrete form of the vector ½Eh

εe � (idem for ½Enh
εe �

adding an asterisk superscript on the degrees of freedom) may
therefore be written as

½Eh
εe � ¼ ½Λk�½Tke�½De�½Qe� ð17Þ

where ½De� is a geometric transformation matrix between local and
global degrees of freedom. This vector contains the degrees of

freedom of the three corner nodes and of the three mid-side nodes
(which are not the same):

� for a corner node, we have the following degrees of freedom:

u0 u0;1 u0;2 v0 v0;1 v0;2
w0 w0;1 w0;2 w0;11 w0;22 w0;12

θ1 θ1;1 θ1;2 θ2 θ2;1 θ2;2

u1 u1;1 u1;2 v1 v1;1 v1;2
u3 u3;1 u3;2 v3 v3;1 v3;2
u4 u4;1 u4;2 v4 v4;1 v4;2
w1 w1;1 w1;2 w1;11 w1;22 w1;12

w2 w2;1 w2;2 w2;11 w2;22 w2;12

w3 w3;1 w3;2 w3;11 w3;22 w3;12

u1
31 u1

31;1 u1
31;2 v131 v131;1 v131;2

ð18Þ

� while, for a mid-side node, they are

u0 u0;n v0 v0;n
w0;n

θ1 θ1;n θ2 θ2;n

u1 u1;n v1 v1;n
u3 u3;n v3 v3;n
u4 u4;n v4 v4;n
w1;n w2;n w3;n

u1
31 u1

31;n v131 v131;n

ð19Þ

where p;n is the derivative with respect to the normal direction of
the edge. Finally, in Eq. (17), the matrix ½Λk� is expressed as a
function of barycentric coordinates, while ½Tke� only contains
geometric constants, so that the product ½Λk�½Tke� may be seen as
the interpolations with respect to the local degrees of freedom
(see Figs. 3 and 4) for the components of the vector ½Eh

εe � (½Enh
εe �).

Fig. 3. The set ΣK of local dof of a function p for an Argyris triangle.

Fig. 4. The set ΣK of local dof of a function p for a Ganev triangle.



From Eqs. (16) and (17), the elementary stiffness matrix can be
written as

½Ke� ¼
Z
Ωe

½De�T ½Tke�T ½Λk�T ½kεε�½Λk�½Tke�½De� dΩe ð20Þ

The matrices ½De�; ½Tke�; ½Λk� are detailed in Bernadou [48].
The exact numerical integration rule for the ½Ke� matrix is given

in Dunavant [49] and requires 16 points for the shear part of this
stiffness matrix. The same rule has been used for membrane,
bending and refined bending parts.

The formulation to obtain the load vector is classical. It is not
precised here for the sake of brevity. For more details, the reader
can refer to the work of Polit and Touratier [36].

3.2. Boundary conditions

The boundary conditions to be satisfied on the generalized
displacements for a simply supported rectangular plate of plane-
form dimensions 2a and 2b are given by

� edges x1 ¼ �a and x1 ¼ a for all x2A ½�b; b�:

vh0 ¼ vh1 ¼ vh3 ¼ vh4 ¼wh
0 ¼ θh

1 ¼wh
1 ¼wh

2 ¼wh
3 ¼ v1h31 ¼ 0

� edge x2 ¼ �b and x2 ¼ b for all x1A ½�a; a�:

uh
0 ¼ uh

1 ¼ uh
3 ¼ uh

4 ¼wh
0 ¼ θh

2 ¼wh
1 ¼wh

2 ¼wh
3 ¼ u1h

31 ¼ 0

These conditions on the generalized displacements depending
on the type of interpolation can be deduced on the dofs using
Table 1. Note that these boundary conditions can be managed
automatically using a reference number.

From this table, the generalized displacements concerned by
the analytical boundary conditions specified above, and the
degrees of freedom for each node (see Eqs. (18) and (19)), it is
easy to obtain all the degrees of freedom that must be nil. For a
fixed edge, all dofs are nil.

4. The numerical results

In this section, several static tests available in open literature
are presented for assessing our higher-order refined sinus model
and evaluating its capacity to capture steep variation of stresses.
Note that the properties of the FE are not studied in the present
work. The reader can refer to [35,36] for more details about the
excellent properties of this FE concerning accuracy and conver-
gence rate. The results are discussed for both tensile plate with
free edge effect and highly anisotropic sandwich structure sub-
mitted to a localized loading. The comparisons will involve
different refined kinematics models with the same FE approxima-
tion based on Argyris–Ganev interpolations [38,45,50]:

SinRef16p present model with 16 unknown functions.

SinRef11p Refined sinus model with 11 unknown functions, the
continuity of the transverse shear stresses is fulfilled
(The higher-order functions u3, u4, v3, v4, w3 of the
SinRef16p are omitted in this model).

Furthermore, reference is also made to the systematic work of
Carrera and his “Carrera's Unified Formulation” (CUF), see [51–53]:

ED4 Equivalent Single Layer and Displacement approach, each
component is expanded until the fourth order; 15 unknown
functions are used in this kinematic.

EDZ4 Equivalent Single Layer and Displacement approach, each
component is expanded until the third order and this
expansion is extended by the Murakami Zig-Zag function;
15 unknown functions are used in this kinematic.

4.1. Free-Edge analysis

The free-edge effects are investigated by referring to the Pipes–
Pagano problem illustrated in Fig. 5. According to the common
definition of this classical benchmark, the plate width is taken to
be 2b, the total thickness made of NC identical plies is 2h¼NC hk
and the ratio b¼ 4h is employed [12,18,17,28]. A uniform axial
strain ϵ0 is applied along the x1-axis by prescribing end displace-
ments u at x1 ¼ 7a. All results will be reported in non-
dimensional form. The uniform traction load induces a constant
strain state along the x1-axis in the central region of the plate
provided the length a is sufficiently large with respect to the
perturbed regions next to the pulled edges. Convergence studies
performed with 3D ANSYS elements, not presented for the sake of

Table 1
Conditions on dofs for the two interpolations.

Edge Interpolation p p;1 p;2 p;n p;11 p;22 p;12

x1 ¼ cst Ganev 0 1 0 1 – – –

Argyris 0 1 0 1 1 0 1

x2 ¼ cst Ganev 0 0 1 1 – – –

Argyris 0 0 1 1 0 1 1

0: fixed; 1: free; –: unavailable.

Fig. 5. The Pipes–Pagano problem: composite laminate under uniaxial uniform
tensile load.

Table 2
Material properties of the ply (all
moduli in MPa).

E1 ¼ 137 900, E2 ¼ E3 ¼ 14 480,
G12 ¼ G13 ¼G23 ¼ 5860,
ν12 ¼ ν13 ¼ ν23 ¼ 0:21

2a

2b

Fig. 6. Mesh employed in the x1x2�plane for the 3D and plate simulations.



conciseness, have shown that a¼ 2b¼ 8h provides a sufficient
plate length. All plies are CFRP composites with the material
properties given in Table 2. These material properties correspond
to those employed in previous reference works [12,18,22,17] and
permit, hence, a direct comparison of the results.

In the following, the free-edge effects are studied which arise in
classical symmetric laminates, namely the cross-ply laminate
½01;901�s and the angle-ply laminate ½7451�s [18,21].

A mesh with decreasing element size towards the free edge
x2 ¼ b is employed in order to capture the steep gradients of the

Fig. 7. Distribution of v (left) and w (right) along the thickness - ½01=901�S - SinRefc-11p/SinRefc-16p.

Fig. 8. Interlaminar stresses along x2 at the bi-material interface of ½01=901�S laminate: σyz (left) and σzz (right) – SinRef11p/SinRef16p.

Fig. 9. Interlaminar stresses along y at the bi-material interface of ½01=901�S laminate: σyz (left) and σzz (right).



response. 3D FEM computations with ANSYS are performed for
providing a reference with solid elements (SOLID186). Appropriate
spacing ratios are defined for the 3D mesh which ensure a
perfectly cubic shape of the smallest element at the free edge.
Several analyses conducted with a different number of elements,
not shown for the sake of conciseness, have shown that a mesh
with 32�32 elements in the x1x2�plane is adequate, see Fig. 6.
Eight elements per physical layers are used. The same mesh is
considered in the x1x2�plane for all 2D plate computations. It is to
be noted that a coarse mesh (16�16) is sufficient in the analysis
involving the Argyris–Ganev interpolations. This particular subject
is not addressed in the present work as a singularity behavior
occurs in the vicinity of the free edge. Nevertheless, dedicated
mesh refinement strategies exist to measure this one as in [54].

First, the results computed with the refined sinus theories,
namely SinRef11p and SinRef16p models, are compared with a
reference solution computed with ANSYS for the cross-ply laminate.
In Fig. 7, the in-plane and transverse displacements with respect
to the transverse coordinate are presented for the upper half of the
plate. The SinRef11p model fails to give accurate transverse
displacements whereas the SinRef16p model yields very satisfac-
tory results. As far as the in-plane displacement is concerned, a
constant variation through the thickness is obtained for the
SinRef11p model which is not the case for the reference solution.
The results issued from the SinRef16p model are in very good
agreement with the 3D results. The transverse shear and normal
stresses along with the x2-axis is also shown in Fig. 8. It is evident
that the SinRef11p fails to capture the steepest gradient in the
vicinity of the free edge. On the contrary, the SinRef16p model,
which includes two and one additional terms for the in-plane and
transverse displacements respectively, has capability to represent
the strong variation of the stresses. A comparison with two
classical ESL models of the CUF family, the ED4 and EDZ4 theories,
can also be made. For all these results, the refined Sinus model
performs better as these two models. In particular, the displace-
ment v for EDZ4 is far from the 3D model and the maximum value
of the transverse shear stress is not well estimated by ED4 and
EDZ4. In Fig. 8 (right), the transverse normal stress is not
computed in the same way: the Hooke's law is used for the ED4
and EDZ4 models, while the integration of the equilibrium
equations is performed for the refined sinus theory. We can say
that the steep gradient is captured by the two approaches. Note
that the stress in the center of the plate is not well estimated using
the constitutive law.

Since ED4 performs better than EDZ4, it can be concluded that
in this case, the choice of the order of expansion is more important
than the use of the Murakami's zigzag function. It can also be
noticed that the introduction of the continuity conditions on the
transverse shear stresses improves the accuracy of the results.

For further comparison, the present approach is compared with
results available in the literature. The variation of the transverse
normal and shear stresses at the bi-material interfaces is shown in
Fig. 9. Except for the approach developed by Spilker and Chou [27],
all the results are rather close. Note that a quasi-analytical LW
approach and a 2D plane strain model in the x1x2�plane are
carried out in [17] and [18] respectively. These ones yield slightly
more accurate results and can handle sharp changes, but our ESL
approach with 16 parameters seems to be a good compromise
between number of unknowns and efficiency.

Then, a angle-ply laminate ½745�s is considered. It has been
shown that a high gradient at the bi-material interface occurs (see
[32]) which makes this test case a very challenging one for 2D
plate models. The same comparison as before is performed. First,
the distribution of the displacements through the thickness is
shown in Fig. 10. The results are quite satisfactory. The SinRef16p is
closer to the reference solution than the ED4 model. The same

Fig. 10. distribution of v (left) and w (right) along the thickness – ½451=�451�S – SinRef16p.

Fig. 11. Interlaminar stresses along x2 at the bi-material interface of ½451=�451�S
laminate: σxz – SinRef16p.



comment can be made for the variation of the transverse shear
stress along the x2-axis at the bi-material interface, see Fig. 11.
Note that the maximum value near the free edge for the three
approaches is under estimated but the accuracy of the SinRef16p
model remains better than the two other ones. The distribution of
the transverse shear stress through the thickness at x2 ¼ 0:99b is
also presented in Fig. 12. The high gradient at the bi-material
interfaces is rather well captured by the present model even if the
maximum value is under estimated. A strong discontinuity
appears for the EDZ4 model while the traction-free boundary
condition at the top surface is not fulfilled for the ED4 model.
Moreover, the concavity of the distribution issued from this latter
is not correct. When compared with LW approaches available in
the literature ([22,18,16]) shown in Fig. 12 right, the present ESL
approach predicts a rather good distribution of σxz through the

thickness, even if it fails to give the maximum value. The 1D FE
approach using sublaminates from Gaudenzi's work [21] yields
rather similar results as our model with a higher number of
generalized unknowns. In fact, a 4th and 5th-order expansion is
used for the in-plane and transverse displacements respectively.

4.2. Meyer-Piening sandwich

The second study deals with a benchmark problem proposed
by Meyer-Piening [14]. It involves a simply -supported rectangular
sandwich plate submitted to a localized pressure applied on an
area of 5�20 mm. The geometry of the sandwich structure is
given in Fig. 13. Due to the symmetry, only one quarter of the plate
is meshed. The faces have different thicknesses: h1 ¼ 0:5 mm
(bottom face), h3 ¼ 0:1 mm (top face). The thickness of the core
is h2 ¼ hc ¼ 11:4 mm. The material properties are given in Table 3.

Note that this benchmark involves strong heterogeneities (very
different geometric and constitutive properties between core and
face) and local stress gradient due to the localized pressure load.
For this reason, this test case can be used to well discriminate
different 2D theories. The results from the SinRef16p model are
compared again with ED4 and EDZ4 models from the CUF (see
[55,31]). In the following, the LM4 results are considered as
the reference ones. This LayerWise model is based on a Reissner's
partially Mixed Variational Theorem in which displacement
and transverse stress fields vary in each layer according to a

Fig. 12. distribution of σxz along the thickness - x2 ¼ 0:99b - ½451=�451�S – SinRef16p.

Fig. 13. Meyer-Piening sandwich plate (left) – Nx�Ny¼8�16 mesh of one quarter of the plate (right).

Table 3
Meyer-Piening sandwich: material properties of the ply (all moduli in MPa).

Faces Core

E1 ¼ 70 000, E2 ¼ 71 000 E1 ¼ E2 ¼ 3
E3 ¼ 69 000 E3 ¼ 2:8
G12 ¼ G13 ¼G23 ¼ 26 000 G12 ¼G13 ¼ G23 ¼ 1
ν12 ¼ ν13 ¼ ν23 ¼ 0:3 ν12 ¼ ν13 ¼ ν23 ¼ 0:25



fourth-order polynomial. Note that this severe test case is not
frequently addressed in open literature.

Before proceeding to the assessment of the refined sinus model, a
convergence study is carried out. The results are summarized in
Table 4 for both displacements and stresses. The number of elements
under the load is also precised (denoted Nx

load�Ny
load). It can be

inferred from this table that the convergence rate is high, especially
for the displacements and the maximum value of the transverse shear
stress at the top interface. The 8�16 mesh illustrated in Fig. 13 (right)
is sufficient to obtain converged values.

Then, the in-plane and transverse displacements along the
x1-axis at z¼ �h=2 are shown in Fig. 14. It can be noticed that the
results of the SinRef16p model perform quite well with respect to
the reference solution. The zig-zag behavior of the in-plane
displacement is well captured whereas the ED4 and EDZ4 results
are far from the reference solution (note the different scale of the
ordinates). As far as the transverse displacement is concerned, the
maximum values of these two theories are underestimated.

The variation of the transverse shear stress at the bottom and
top interfaces is presented in Fig. 15. The present refined model

Table 4
Convergence study – Meyer Piening sandwich.

Nx�Ny 5�10 8�16 10�24 12�36 18�48
Nx
load�Ny

load 1�2 2�4 2�8 4�10 4�10

wð0;0; �h=2Þ 2.197 2.197 2.197 2.197 2.197
uð�50;0; �h=2Þ 0.011 0.011 0.011 0.011 0.011
σ11ð0;0; h=2Þ �325 �253 �255 �257 �257
Max ðσ13ðx1;0;5:9ÞÞ �0.092 �0.092 �0.092 �0.092 �0.092

Fig. 14. distribution of u (left) along the thickness at x1 ¼ �50; x2 ¼ 0, and w (right) along the x1-axis at x2 ¼ 0, z¼ �h=2 – Meyer-Piening test.

Fig. 15. Interlaminar shear stresses along x1-axis at the bottom interface (left) and top interface (right) – x2 ¼ 0 – Meyer-Piening test.



gives better results as ED4 and EDZ4 approaches. The order of
magnitude of the results for these latter models is much higher
than the reference values. On the contrary, the accuracy of the
refined sinus model is rather good far from the application of the
pressure. However, the steepest stress gradient, which is due to
the loading discontinuity, is not completely well represented.
Thus, it can be inferred from this example that the fulfillment of
the continuity of the transverse shear stresses is needed again and
improved accuracy of the results when compared with ESL
theories involving the same number of generalized unknowns.

5. Conclusion

In this paper, a high-order refined sinus model has been presented
and assessed with respect to its capability to capture the steep stress
gradients. It is an extension of an original 11 parameters plate theory
and involves 16 unknown parameters. The employed sinus theory
includes a third-order kinematic per layer for the in-plane displace-
ments and a cubic distribution of the transverse displacement. The
number of unknowns is independent of the number of layers and all
interface and top/bottom boundary conditions are exactly satisfied.
Therefore, this approach has a strong physical meaning.

An original FE has been developed based on a conforming FE
method and high order FE approximations. This approach has a
high convergence rate for displacements and stresses. The field
compatibility for transverse shear strains is assured. It is free of
numerical illness such as transverse shear and Poisson lockings,
oscillation and spurious modes.

The evaluation has been conducted for the free-edge effect in
laminated plate and localized load effects in a sandwich one.
Comparisons with 3D solutions, results available in open literature
and high-order models issued from the CUF are also performed. For
some distributions, see Fig. 15, the present approach is able to
capture the overall response, but accurate values can be only
obtained by high order LW models as LM4. The results show that
it is needed to have at least a fourth-order expansion of the in-plane
displacements and a cubic one for the transverse deflection to
capture the steep mechanical quantities gradient in the vicinity of
the free edge or loads. The importance of the continuity of the
transverse shear stresses is also emphasized. Finally, the compromise
between the computational cost and the accuracy is rather good.

Appendix A. Relation between the generalized displacements

In Eq. (13), a matrix notation is introduced for the displace-
ment. In this equation, ½FuðzÞ� is a 3�24 matrix that depends on
the normal coordinate z according to

½FuðzÞ� ¼
1 0 0 Fu4ðzÞ 0 0 Fu7ðzÞ Fu8ðzÞ 0 ⋯
0 1 0 0 Fv5ðzÞ Fv6ðzÞ 0 0 Fv9ðzÞ ⋯
0 0 1 0 0 0 0 0 0 ⋯

2
64
Fu10ðzÞ 0 Fu12ðzÞ 0 0 Fu15ðzÞ 0 0 ⋯
0 Fv11ðzÞ 0 Fv13ðzÞ 0 0 Fv16ðzÞ 0 ⋯
0 0 0 0 z 0 0 z2 ⋯

Fu18ðzÞ 0 0 Fu21ðzÞ 0 Fu23ðzÞ 0
0 Fv19ðzÞ 0 0 Fv22ðzÞ 0 Fv24ðzÞ
0 0 z3 0 0 0 0

3
5 ðA:1Þ

where

Fu4ðzÞ ¼ f ðzÞþSuβðzÞþSuηðzÞ Fv5ðzÞ ¼ f ðzÞþSvβðzÞþSvηðzÞ
Fu7ðzÞ ¼ f ðzÞþSuβðzÞ Fv6ðzÞ ¼ � f ðzÞ�SvβðzÞ
Fu8ðzÞ ¼ zþSuηðzÞ Fv9ðzÞ ¼ zþSvηðzÞ
Fu10ðzÞ ¼ z3þSuγðzÞ Fv11ðzÞ ¼ z3þSvγðzÞ
Fu12ðzÞ ¼ z4þSuξðzÞ Fv13ðzÞ ¼ z4þSvξðzÞ

Fu15ðzÞ ¼ SuλðzÞ Fv16ðzÞ ¼ SvλðzÞ
Fu18ðzÞ ¼ SuμðzÞ Fv19ðzÞ ¼ SvμðzÞ
Fu21ðzÞ ¼ SuζðzÞ Fv22ðzÞ ¼ SvζðzÞ
Fu23ðzÞ ¼ SuδðzÞ Fv24ðzÞ ¼ SvδðzÞ

and

S□�ðzÞ ¼ ∑
NC

k ¼ 1
ζk �k

□1 þ �1
2
þ3ζ2k

2

!
�k

□2 þ �3ζk
2

þ5ζ3k
2

!
�k

□3

 !
ΔHðk; kþ1Þ

with □¼ fu; vg, �¼ fβ; γ; δ;η;λ;μ; ξ; ζg and ΔHðk; kþ1Þ ¼
Hðz�zkÞ�Hðz�zkþ1Þ:
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