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1. Introduction

Composite and sandwich structures are widely used in indus-
trial field due to their excellent mechanical properties. In this con-
text, they can be submitted to severe conditions which imply to
take into account thermal effects. In fact, they can play an impor-
tant role on the behavior of structures in services, which leads to
evaluate precisely their influence on stresses, particularly at the
layer interfaces.

The aim of this paper is to construct an accurate and efficient
approach for analyzing laminated beams including thermome-
chanical effects in elasticity for small displacements. As pointed
out in [1], it is important to consider the real distribution of the
temperature issued from the heat conduction problem.

From the literature, various mechanical models for composite
or sandwich beams were extended to include thermal effects. It
is well-established that they can be classified as Equivalent Single
Layer (ESL) or Layerwise (LW) models. In the first one, the number
of unknowns are independent of the number of layers, but the
shear stress continuity at the layer interfaces are often violated.
We can find the classical laminate theory [2], the first order shear
deformation theory ([3] with a linear variation of temperature
through the thickness), and higher order theories [4,5] for thermal
stresses analysis of beams or plates. The LW approach aims at
overcoming the restriction of the ESL. Lee has included the thermal
effect for beam structures in [6]. Unfortunately, the cost increases
with the number of plies. Carrera [7,8] has presented various ESL
and LW theories with mixed and displacement-based approaches
for assumed distribution of temperatures (uniform, linear, local-
ized) in the framework of the Carrera’s Unified Formulation
(CUF). A family of higher-order beam elements has been derived
with different displacement field approximations over the cross-
section. The Fourier heat conduction problem is solved analytically
and a Navier-type closed form solution with radial basis function is
obtained in [9]. As an alternative, refined models have been devel-
oped in order to improve the accuracy of ESL models avoiding the
additional computational cost of LW approach. Based on physical
considerations and after some algebraic transformations, the num-
ber of unknowns becomes independent of the number of layers. In
this framework, Kapuria used a zigzag theory for displacements for
beams in [10]. A piecewise linear function along the thickness is
used for the temperature. A global–local approach in conjunction
with a Hermite interpolation of the temperature through the thick-
ness is carried out in [11]. For an overview about the thermal anal-
ysis, see for example [4,12–14].

Over the past years, the Proper Generalized Decomposition
(PGD) has shown interesting features in the reduction model
framework [15]. It has been used in the context of coordinate vari-
ables separation in multi-dimensional PDEs [15]. In particular, it
has been applied for composite beams in [16] and plates based
on Navier-type solution in [17] or using finite element (FE) method
in [18,19]. Concerning the thermal problem, it has been adressed in
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[20]. For a review about the PGD and its fields of applications, the
reader can refer to [21,22].

So, the aim of the present work is to extend the previously
developed method to take into account the thermo-mechanical
coupling for laminated composite and sandwich beams. In this
way, the temperature and the displacements are written under
the form of a sum of products of unidimensional polynomials of
x and z. For the mechanical unknowns, a piecewise fourth-order
Lagrange polynomial of z is chosen as it is particularly suitable
for such laminated structures (see [19]). The temperature
unknowns are also interpolated with the same order expansion.
As far as the variation with respect to the axial coordinate is con-
cerned, a 1D three-node FE is employed. Using this method, each
unknown function of x is classically approximated using one
degree of freedom (dof) per node of the mesh and the LW unknown
functions of z are global for the whole beam. Finally, the deduced
thermal and mechanical non-linear problems imply the resolution
of two linear problems alternatively. This process yields to two 1D
problems in which the number of unknowns is much smaller than
a classical Layerwise approach. It should be noted that weakly cou-
pled problems are studied. The thermal problem is first solved, and
then the solution of the mechanical problem is obtained consider-
ing the temperature distribution as a load. As the temperature
unknowns are expressed under a separated form, the variables
separation of the mechanical part remains unchanged. Moreover,
the approach allows us to refine easily the description of the tem-
perature variation without increasing significantly the computa-
tional cost which is important to derive an accurate mechanical
response.

We now outline the remainder of this article. First, the thermo-
mechanical formulation is given. In particular, the heat conduction
problem and the coupling behavior law are recalled. Then, the res-
olution of the thermal problem based on the variables separation is
described and the FE discretization is given. Finally, it is illustrated
by numerical tests involving thermal loads and thermo-mechanical
coupling. They have been performed upon various laminated and
sandwich beams for different boundary conditions. The behavior
of the method is discussed. It is assessed by comparing with clas-
sical LW approach, exact solutions and also 2D FEM computations
issued from a commercial finite element software. These examples
show the efficiency and the accuracy of the presented approach.

2. Thermo-mechanical problem description

Let us consider a beam occupying the domain B ¼ Bx � Bz�
� b
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� �
in a Cartesian

coordinate ðx; y; zÞ. The beam has a rectangular uniform cross
section of height h, width b and is assumed to be straight. The
beam is made of NC layers of different linearly elastic materials.
Each layer may be assumed to be orthotropic in the beam axes.
The x axis is taken along the central line of the beam whereas y
and z are the two axes of symmetry of the cross section intersect-
ing at the centroid, see Fig. 1. As shown in this figure, the y axis is
along the width of the beam. This work is based upon a displace-
ment approach for geometrically linear elastic beams.
Fig. 1. The laminated beam and co-ordinate system.
In the following, the beam is considered in the ðx; zÞ plane as a
plane stress assumption is used.

2.1. Heat conduction problem

2.1.1. Thermal constitutive relation
The physical problem considered here involves the two-

dimensional linear heat conduction equations with thermal con-
ductivity components k1, k3 in the x; z directions respectively. The
constitutive equation is given by the Fourier law:

Q ¼ q1

q3

� �
¼ �k gradðhÞ ð1Þ

where

�k ¼ k1 0
0 k3

� �
and gradðhÞ ¼ h;x

h;z

� �
qi ði ¼ 1;3Þ is the heat flux components with respect to the coordi-
nate system x; z respectively. h;x , h;z stand for the derivative of h
with respect to x and z respectively.

2.1.2. The weak form of the boundary value problem

For dh 2 dH (dH ¼ fh 2 H1ðBÞ=h ¼ 0 on @Bhg), the variational
principle is given by: find h 2 H such that:

�
Z Z

B
gradðdhÞTQ ðhÞdBþ

Z Z
B
dhrd dBþ

Z
@Bh

dhhd d@B¼0 8dh2dH

ð2Þ
where rd and hd are the prescribed volume heat source and surface
heat flux applied on @Bh respectively. H is the space of admissible
temperatures, i.e. H ¼ fh 2 H1ðBÞ=h ¼ hd on @Bhg.

In the present work, the convection heat transfer is not
considered.

2.2. Thermo-mechanical problem

2.2.1. Constitutive relation
The reduced two dimensional constitutive law of the kth layer

with thermo-mechanical coupling is given by

rðkÞ ¼ CðkÞ eðkÞ � �aðkÞDhðkÞ
� �

ð3Þ

The stress and strain tensor can be written as

rT ¼ ½r11 r33 s13�; eT ¼ ½e11 e33 c13�
We have also

CðkÞ ¼
CðkÞ
11 CðkÞ

13 0

CðkÞ
33 0

symm CðkÞ
55

2664
3775

where CðkÞ
ij are the moduli of the material for the kth layer taking

into account the zero transverse normal stress hypothesis
(r22 ¼ 0). They are expressed by

CðkÞ
ij ¼ CðkÞ

ij � CðkÞ
i2 CðkÞ

j2 =C
ðkÞ
22 ð4Þ

where CðkÞ
ij are orthotropic three-dimensional elastic moduli. We

also have CðkÞ
55 ¼ CðkÞ

55 .

The vector �aðkÞT ¼ ½aðkÞ
1 aðkÞ

3 0� contains the thermal expansion
coefficients.

2.2.2. The weak form of the boundary value problem
Using the above notation and Eq. (3), the variational principle is

given by:



Find uðMÞ 2 U (space of admissible displacements) such thatZ Z
B
deTCðkÞe dV ¼

Z Z
@VF

du � t dS

þ
Z Z

B
deTCðkÞ�aðkÞDh dV 8du 2 dU ð5Þ

where t is the prescribed surface forces applied on @VF . The body
forces are not considered in this expression.

3. Application of the variables separation to the
thermo-mechanical analysis of beam

The Proper Generalized Decomposition (PGD) was introduced in
[15] and is based on an a priori construction of separated variables
representation of the solution. For the thermal analysis, the solution
with separated coordinate variables has been developed in [20]. In
the present scope, a weak thermo-mechanical coupling is consid-
ered, the resolution process is divided into 2 steps. First, the thermal
problem is solved by introducing the separated representation in Eq.
(2). It will be described in the following sections. Then, the mechan-
ical response is deduced from the resolution of Eq. (5) following
[16]. It will not be detailed hereafter for brevity reason.

3.1. The temperature field

The temperature solution hðx; zÞ is constructed as the sum of N
products of functions of only one spatial coordinate (N 2 N is the
order of the representation) such that:

hðx; zÞ ¼
XN
i¼1

Ti
xðxÞTi

zðzÞ ð6Þ

where Ti
zðzÞ is defined in Bz and Ti

xðxÞ is defined in Bx. A classical
quadratic FE approximation is used in Bx and a LW description is
chosen in Bz as it is particulary suitable for the modeling of compos-
ite structures.

The expression of the gradient of the temperature is given as
follows:

gradðhÞ ¼
XN
i¼1

Ti
x;xðxÞTi

zðzÞ
Ti
xðxÞTi

z;zðzÞ

" #
ð7Þ

3.2. The problem to be solved

The resolution of Eq. (2) is based on a greedy algorithm. If we
assume that the first m functions have been already computed,
the trial function for the iteration mþ 1 is written as

hmþ1ðx; zÞ ¼ hmðx; zÞ þ TxðxÞTzðzÞ ð8Þ
where Tx and Tz are the functions to be computed and hm is the
associated known sets at iteration m defined by

hmðx; zÞ ¼
Xm
i¼1

Ti
xðxÞTi

zðzÞ ð9Þ

The test function is

dðTxTzÞ ¼ dTx:Tz þ Tx:dTz ð10Þ
The test function defined by Eq. (10), the trial function defined

by Eq. (8) are introduced into the weak form Eq. (2) to obtain the
two following equations, where the prescribed volume and surface
heat source are assumed to be nill:Z
Bx

Z
Bz

gradðdTxTzÞT �kgradðTzTxÞ dzdx

¼ �
Z
Bx

Z
Bz

gradðdTxTzÞT �kgradðhmÞ dzdx ð11Þ
Z
Bz

Z
Bx

gradðdTzTxÞT �kgradðTxTzÞ dxdz

¼ �
Z
Bz

Z
Bx

gradðdTzTxÞT �kgradðhmÞ dxdz ð12Þ

From Eqs. (11) and (12), a coupled non-linear problem is
derived. Thus, a non linear resolution strategy has to be used.
The simplest one is a fixed point method. An initial function
Tð0Þ
x ; Tð0Þ

z is set, and at each step, the algorithm computes two new

pairs ðT ðkþ1Þ
x ; T ðkþ1Þ

z Þ such that

� Tðkþ1Þ
x satisfies Eq. (11) for Tz sets to TðkÞ

z

� Tðkþ1Þ
z satisfies Eq. (12) for Tx sets to Tðkþ1Þ

x

These two equations are linear and the first one is solved on Bx,
while the second one is solved on Bz. The fixed point algorithm is
stopped when

kTðkþ1Þ
x Tðkþ1Þ

z � T ðkÞ
x TðkÞ

z kB
kT ð0Þ

x Tð0Þ
z kB

6 e ð13Þ

where kAkB ¼ R
Bx

R
Bz
A2 dxdz

h i1=2
and e is a small parameter to be

fixed by the user. In this paper we set e ¼ 10�6.

Remark. When a prescribed temperature is imposed on @Bh, the
first couple is built so as to fulfill this requirement. Then, the
following couples are computed satisfying a zero temperature on
@Bh.
3.3. Finite element discretization

To build the beam finite element approximation, a discrete rep-
resentation of the functions ðTx; TzÞ must be introduced. We use
classical finite element approximation in Bx and Bz. The elementary
vectors of degree of freedom (dof) associated with the finite ele-
ment mesh in Bx and Bz are denoted q x

e and q z
e , respectively. The

temperature fields and the associated gradient are determined
from the values of q x

e and q z
e by

Txe ¼ Nxq x
e ; Ee

x ¼ Bxq x
e ;

Tze ¼ Nzq z
e ; Ee

z ¼ Bzq z
e ;

ð14Þ

where Ee
x
T ¼ Tx;x Tx½ � and Ee

z
T ¼ Tz Tz;z½ �. The matrices

½Nx�; ½Bx�; ½Nz�, ½Bz� contain the interpolation functions, their deriva-
tives and the jacobian components dependent on the chosen dis-
crete representation.

3.4. Finite element problem to be solved on Bx

For the sake of simplicity, the function T ðkÞ
z which is assumed to

be known, will be denoted eT z, and the function Tðkþ1Þ
x to be com-

puted will be denoted Tx. The gradient in Eq. (11) is defined as

gradðeT zTxÞ ¼ RzðeTzÞEx ð15Þ
with

RzðeTzÞ ¼
eT z 0
0 eTz;z

" #
ð16Þ

The variational problem defined on Bx from Eq. (11) isZ
Bx

dET
xkzðeTzÞExdx ¼ �

Z
Bx

dET
xQ zðeT z; h

mÞdx ð17Þ



with

kzðeT zÞ ¼
Z
Bz

RzðeT zÞ
T �kRzðeT zÞdz ð18Þ

Q zðeT z; h
mÞ ¼

Z
Bz

RzðeTzÞ
T �kgradðhmÞdz ð19Þ

The introduction of the finite element approximation Eq. (14) in
the variational Eq. (17) leads to the linear system

KzðeT zÞq x ¼ RxðeTz; h
mÞ ð20Þ

where q x is the vector of the nodal temperatures associated with

the finite element mesh in Bx, KzðeTzÞ the conductivity matrix

obtained by summing the elements’ conductivity matrices Ke
zðeTzÞ

and RxðeTz; h
mÞ the equilibrium residual obtained by summing the

elements’ residual load vectors Re
xðeT z; h

mÞ

Ke
zðeT zÞ ¼

Z
Le

BT
x kzðeT zÞBxdx ð21Þ

and

Re
xðeT z; h

mÞ ¼ �
Z
Le

BT
xQ zðeT z; h

mÞdx ð22Þ
boundary

material

mesh: Nx
3.5. Finite element problem to be solved on Bz

For the sake of simplicity, the function Tðkþ1Þ
x which is assumed

to be known, will be denoted eTx, and the function T ðkþ1Þ
z to be com-

puted will be denoted Tz. The gradient in Eq. (12) is defined as

gradðeTxTzÞ ¼ RxðeTxÞEz ð23Þ
with

RxðeTxÞ ¼
eTx;x 0

0 eTx

" #
ð24Þ

The variational problem defined on Bz from Eq. (12) isZ
Bz

dET
z kxðeTxÞEzdz ¼ �

Z
Bz

dET
zQ xðeTx; h

mÞdz ð25Þ

with

kxðeTxÞ ¼
Z
Bx

RxðeTxÞ
T �kRxðeTxÞdx ð26Þ

Q xðeTx; h
mÞ ¼

Z
Bx

RxðeTxÞ
T �kgradðhmÞdx ð27Þ

The introduction of the finite element discretization Eq. (14) in
the variational Eq. (25) leads to the linear system

KxðeTxÞq z ¼ RzðeTx; h
mÞ ð28Þ

where q z is the vector of the nodal temperature associated with the

finite element mesh in Bz, KxðeTxÞ the conductivity matrix obtained

by summing the elements’ conductivity matrices Ke
xðeTxÞ and

RzðeTx; h
mÞ the equilibrium residual obtained by summing the ele-

ments’ residual load vectors Re
zðeTx; h

mÞ

Ke
xðeTxÞ ¼

Z
Lze

BT
z kxðeTxÞBzdz ð29Þ

and

Re
zðeTx; h

mÞ ¼ �
Z
Lze

BT
zQ xðeTx; h

mÞdz ð30Þ
3.6. Remarks on the resolution of the thermo-mechanical problem

The mechanical problem has been already solved using the vari-
ables separation for composite beam structures in [16] and the
accuracy and efficiency of the approach has been shown. Thus,
the same way is used in the present work with a fourth-order
expansion for the z-functions. The resolution of the thermo-
mechanical coupling is limited to the computation of the second
term of the right hand side of Eq. (5). As the temperature is
expressed under a separated form, the computation of this integral
can be also divided into 2 parts, one over Bx and the other one over
Bz. Thus, the key point of the method remains available. This com-
putation is given in Section A.

4. Numerical results

In this section, several static tests are presented validating our
approach, evaluating its efficiency and showing the properties of
the algorithm for the thermal and the thermo-mechanical prob-
lems. A classical 8-node quadratic finite element is used for the
thermal and mechanical unknowns depending on the x-axis coor-
dinate. For the transverse direction, a fourth-order layer-wise
description is chosen.

First, the heat conduction problem is solved. The approach is
assessed by comparing with exact solution and LayerWise models
including or not the continuity of the transverse heat flux. Then,
the thermo-mechanical coupling is considered for different lami-
nated and sandwich beams. Different thermal boundary conditions
are also addressed. Their influence on the behavior of the structure
is rather important and can make the modeling of such structures
difficult. For these tests, the number of dofs is also precised for the
two problems associated with the x-function and z-function. They
are denoted Ndofhx;Ndofhz for the thermal unknowns and
Ndofx;Ndofz for the mechanical unknowns.

Note that the convergence rate of the fixed point process is
high. Usually, only less than four iterations are required. This sub-
ject is not discussed here.

4.1. Problem of heat conduction in a sandwich media

In this section, several cases are presented to evaluate the effi-
ciency of our approach to solve the thermal problem. The obtained
results are assessed by comparing with exact solution from [23],
and also LayerWise model with a 2nd order expansion in each layer
(See [5]). In this latter, the continuity of the transverse heat flux q3

at the interface between the layers can be enforced (denoted
”LW2-c”) or not (denoted ”LW2”).
4.1.1. Problem 1
A rectangular symmetric sandwich media is considered (see

[23]):

geometry: The sandwich is composed by an isotropic core of
thickness h� 2ef , and isotropic skins of equal thick-
ness ef ¼ 0:2h. We have S ¼ L

h ¼ 2 (very thick beam).
It is represented in Fig. 2.
conditions: The structure is submitted to a sinusoidal
temperature loading given by �htðxÞ ¼ hc sinðpx=LÞ at its
top edge, with hc ¼ 1, while zero temperature is pre-
scribed on the three other edges.
properties: The conductivity coefficients are

kskin ¼ 0:5 W=ðKmÞ and kcore ¼ 50:5 W=ðKmÞ.
is the number of elements over Bx. One numerical layer
per physical layer is used. For the separated variable



number o

results: Th
T
L
w

Table 1
Convergence

Nx

2
4
8
16
32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Dis
approach, it corresponds to the number of elements per
layer over Bz.
f dofs: Ndofhx ¼ 2Nx þ 1ð¼ 33 for Nx ¼ 16Þ and Ndofhz ¼
4 � NC þ 1 ¼ 13
e temperature is made non-dimensional as �h ¼ h

hc
.

he results are compared with exact solution [23] and
ayerWise model with a 2nd order expansion in each layer
ith and without continuity conditions [5].
First, a convergence study is performed, see Table 1. Two cou-
ples are built to obtain the solution. It can be seen that the con-
vergence rate is very high for both temperature and transverse
heat flux. Only a Nx ¼ 4 mesh for the whole beam is sufficient
to obtain the converged value. The heat flux q1 is more sensitive
to the refinement, and a Nx ¼ 16 mesh is needed. It will be used
hereafter.

Temperature and heat flux distributions along the thickness at
x ¼ L=2 and x ¼ L are shown in Figs. 3 and 4. The temperature vari-
Fig. 2. Rectangular sandwich media.

study – Problem 1.

�hðL=2;0:8hÞ q1ðL=2;h=2Þ q3ðL;hÞ
3.936E�02 2.705 �2.486
3.956E�02 2.454 �2.484
3.957E�02 2.371 �2.484
3.957E�02 2.349 �2.484
3.957E�02 2.344 �2.484
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tribution of temperature across the thickness at x ¼ L=2 – Problem 1.
ation is rather important in the top skin of the sandwich. The
results of the present approach are in excellent agreement with
the reference (exact) solution and are more accurate than the
LayerWise models for the transverse heat flux q3. Numerical results
for the heat flux q1 and q3 given in Table 2 and Table 3 prove it. In
theses tables, -/-/- indicates the number of numerical subdivisions
in each layer. The maximum error rate of the present approach is
less than 1%. We also notice that these results (with only one
numerical layer per physical layer) are similar to the LW2 approach
with 4/6/4 numerical layers. The continuity of the transverse heat
flux is also fulfilled without any constraints. Thus, the introduction
of the variables separation does not decrease the accuracy of the
results and the choice of the 4th order expansion in the thickness
direction is a key issue. Moreover, the comparison of the number of
dofs given in Table 2 and Table 3 shows the very interesting ratio
between cost and accuracy of the present approach.
4.1.2. Problem 2
The second thermal problem is described as follows:

geometry: A three-layer sandwich beam with graphite-epoxy faces
and a soft core with thickness e ¼ 0:1h is considered (Cf. [10]).
S ¼ L

h ¼ 10.
boundary conditions:constrained opposite temperature on the top
and the bottom surfaces of the beam such as: hðx;h=2Þ ¼
�hðx;�h=2Þ ¼ hmax sinðpx=LÞ
material properties: The orientation of all the plies is ck ¼ 0; k ¼
1;2;3. for the face: kL ¼ 1:5 Wm�1K�1, kT ¼ 0:5 Wm�1 K�1

where L refers to the fiber direction, T refers to the transverse
direction.
for the core: k1 ¼ k3 ¼ 3:0 Wm�1 K�1

mesh: Nx ¼ 16, one numerical layer per physical layer is used.

results: The results are compared with exact solution [23] and
LayerWise model with a 2nd order expansion in each layer with
and without continuity conditions [5].

The solution is obtained with four couples. The couples ðTi
x; T

i
zÞ

are represented in Fig. 5. The first couple allows to ensure the pre-
scribed temperature on the structure and Tx is parabolic along x
while Tz is equal to �1 at the bottom and þ1 at the top. It must
be denoted that the variation across the thickness is linear per
layer. The second one is a global correction. Then, the third and
fourth ones bring a local correction near the edge of the beam.
The distribution of the associated z-functions through the thick-
ness becomes more complex. The resulting distribution of the tem-
perature across the thickness are the same as the reference
solution (see Fig. 6). Again, it should be noticed that the distribu-
tion of the transverse heat flux is very accurate with only one
numerical layer per physical layer for the present model with a
fourth-order z-expansion. The continuity of the transverse heat
flux is satisfied whereas it must be constrained for the LW2 model
(Fig. 7 right). Moreover, in this later, 2/6/2 numerical layers (620
dofs) are needed to be close to the reference solution. Thus, the
importance of the z-expansion order is highlighted.
4.2. Thermo-mechanical analysis

4.2.1. Sandwich beam
The thermo-mechanical analysis of the sandwich beam

described in Section 4.1.2 is performed. It is detailed below:
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Fig. 4. Distribution of heat flux q1 and q3 across the thickness at x ¼ L (left) and x ¼ L=2 (right) – Problem 1.

Table 2
heat flux q1 across the thickness – Nx ¼ 16 – Problem 1.

z Present LW2-c LW2 Exact
1/1/1 1/1/1 4/6/4

1st layer 0 0.00 0.000 0.000 0
0.1 0.010 0.010 0.010 0.010
0.2� 0.021 0.020 0.021 0.021

2nd layer 0.2+ 2.081 2.050 2.081 2.072
0.5 2.349 2.348 2.349 2.340
0.8� 3.149 3.182 3.149 3.137

3rd layer 0.8+ 0.031 0.032 0.031 0.031
0.9 0.405 0.404 0.405 0.403
1 0.788 0.788 0.788 0.785

d.o.f. 33 + 13 62 868 –

Table 3
heat flux q3 across the thickness – Nx ¼ 16 – Problem 1.

z Present LW2-c LW2 Exact

1/1/1 1/1/1 2/3/2 4/6/4

1st layer 0 �0.064 �0.066 �0.064 �0.064 �0.065
0.1 �0.065 �0.064 �0.065 �0.065 �0.066
0.2� �0.067 �0.063 �0.067 �0.067 �0.068

2nd layer 0.2+ �0.067 �0.063 �0.064 �0.066 �0.068
0.5 �1.089 �1.198 �1.094 �1.087 �1.089
0.8� �2.357 �2.333 �2.340 �2.354 �2.356

3rd layer 0.8+ �2.357 �2.333 �2.352 �2.356 �2.356
0.9 �2.391 �2.400 �2.386 �2.390 �2.390
1 �2.484 �2.467 �2.479 �2.483 �2.483

d.o.f. 33 + 13 62 434 868 –
geometry: thick sandwich beam with S ¼ 5
boundary conditions: simply-supported beam
material properties: for the face
YL ¼ 131:1 GPa;YT ¼ 6:9 GPa, GLT ¼ 3:588 GPa;GTT ¼ 2:3322 GPa,
mLT ¼ 0:32; mTT ¼ 0:49, aL ¼ 0:0225 10�6 K�1, aT ¼ 22:5 10�6 K�1,
for the core
E1 ¼ 0:2208MPa;E2 ¼ 0:2001MPa, E3 ¼ 2760MPa, G12 ¼ 16:56MPa;
G23 ¼ 455:4MPa, G13 ¼ 545:1MPa, m12 ¼ 0:99;m13 ¼ 310�5;

m23 ¼ 310�5, a1 ¼ a3 ¼ 30:610�6 K�1

mesh: half of the beam is meshed using Nx FE along x-direction.
Nf ;Nc are the number of elements in the face and in the core,
respectively. For the present method, they are related to the 1D
mesh over Bz, while it is associated to the number of 2D elements
along z-direction for the 2D FEM analysis from ANSYS.
results: The results ð�u; �w; �r11; �r13Þ are nondimensionalised using:
�u ¼ 100u1

aT Shhmax
, �w ¼ 100u3

aT S2hhmax
, �r11 ¼ r11

aT EThmax
, �r13 ¼ Sr13

aT ET hmax
. The results are

compared with 2D FEM analysis using ANSYS with plane stress
assumptions. The eight-node element PLANE77 is used for the
thermal part and PLANE183 for the mechanical analysis.

First, a convergence study is carried out for both ANSYS modeling
and the present approach. For the 2D FEM analysis, the results are
summarized in Table 4 varying Nx with a fixed value of Nf and Nc ,
and varying Nf and Nc for a fixed value of Nx. A very refined mesh is
needed to obtain satisfactory results. The convergence of the trans-
verse displacement and the in-plane stress wrt Nx is greater than
those of the in-plane displacement at the end of the beam. A
Nx ¼ 512 mesh can be retained. The transverse shear stress is more
sensitive to the thickness refinement. Nf ¼ Nc ¼ 32 drives to a con-
verged value. Moreover, the location of the maximum of �r13 is
close to the top or bottom surface, which implies to have a refined
description through the thickness with a suitable mesh.

The same study is performed for the variables separation
approach. It is shown in Table 5. The same comments can be made.
From this table, it can be inferred that a Nx ¼ 128 mesh with
Nf ¼ 4;Nc ¼ 4 can be used. So, the convergence rate is higher for
the present approach.

As already proposed in [24], an alternative thickness refinement
consists in discretizing the z-functions using 4 elements in the face
with smaller size near the top surface and the layer interface,
namely h

100 /
h
25 /

h
25/

h
100. The associated numerical results are denoted

Nf ¼ 4 (sr) in Table 5. 14 couples are built to obtain the mechanical
response. The maximum error rate is less than 2% when compared
to 2D FEM results from ANSYS. For further comparison, the distribu-
tion of the displacements and the stresses through the thickness
are also shown in Figs. 8 and 9. The results are in very good agree-
ment with the reference solution. A zig-zag effect occurs for the
axial displacement and the transverse displacement is non-linear.
The distribution of the transverse shear stress in the face is rather
complex. The maximum value is located near the free top/bottom
surface, which makes difficult to recover the free boundary condi-
tions. Nevertheless, it is nearly satisfied with the present model by
using suitable numerical layers. It should be noted that the 2D FE
results need also a high refinement.

From a computational point of view, the 2D ANSYS model implies
about 300.000 dofs with a bandwidth of the linear system equal to
586, whereas only Ndofx ¼ 514=Ndofz ¼ 98 dofs are involved in the
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Table 4
Convergence study (2D FEM ANSYS).

�umax �wmax �r11max �r13maxð�zÞ
Convergence wrt Nx with Nf ¼ Nc ¼ 4
Nx ¼ 32 0.196 0.5331 0.0319 0.159 (-0.475)
Nx ¼ 64 0.202 0.5331 0.0318 0.176 (-0.475)
Nx ¼ 128 0.223 0.5331 0.0318 0.181 (-0.475)
Nx ¼ 256 0.237 0.5331 0.0318 0.181 (-0.475)
Nx ¼ 512 0.245 0.5331 0.0318 0.180 (-0.475)
Nx ¼ 1024 0.249 0.5331 0.0318 0.180 (-0.475)

Convergence wrt Nf ;Nc with Nx ¼ 512
Nf ¼ Nc ¼ 4 0.245 0.5331 0.0318 0.180 (-0.475)
Nf ¼ Nc ¼ 8 0.248 0.5331 0.0321 0.189 (-0.487)
Nf ¼ Nc ¼ 16 0.246 0.5331 0.0322 0.178 (-0.487)
Nf ¼ Nc ¼ 32 0.246 0.5331 0.0322 0.176 (-0.485)
Nf ¼ Nc ¼ 48 0.246 0.5331 0.0322 0.176 (-0.485)
x and z problems of the variables separation approach with a band-
width of 6. Moreover, as shown previously, the refinement of the
description of the solution through the thickness is needed. For
that, it is also necessary to refine the mesh in the x-direction in
the 2D FEM to ensure a correct size ratio of the elements. Thus,
the refinement in one direction has an influence on the other direc-
tion. That is not the case in the present work where the size of
10-3
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Fig. 7. Distribution of heat flux q3 along the thickness with and wit
elements of the two problems (x and z functions) is independent.
So, all these features make this approach very efficient.

4.2.2. A symmetric four-layer beam
In this section, a symmetric laminated composite beam taken

from [10] is considered:

geometry: Composite cross-ply beam ½0�=90�=90�=0�� with
S ¼ 5;10. Each layer has the same thickness (h=4).
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Table 5
Convergence study – variable separation approach.

�umax �wmax �r11max �r13maxð�zÞ
Convergence wrt Nx with Nf ¼ Nc ¼ 1
Nx ¼ 16 0.195 0.5334 0.0323 0.102 (-0.465)
Nx ¼ 32 0.203 0.5336 0.0323 0.130 (-0.470)
Nx ¼ 64 0.197 0.5336 0.0322 0.147 (-0.475)
Nx ¼ 128 0.187 0.5335 0.0322 0.154 (-0.475)
Nx ¼ 256 0.185 0.5335 0.0322 0.156 (-0.480)

Convergence wrt Nf ;Nc with Nx ¼ 128
Nf ¼ 1;Nc ¼ 1 0.187 0.5335 0.0322 0.154 (-0.475)
Nf ¼ 2;Nc ¼ 2 0.251 0.5328 0.0321 0.166 (-0.480)
Nf ¼ 4;Nc ¼ 4 0.251 0.5325 0.0319 0.167 (-0.475)
Nf ¼ 4 (sr), Nc ¼ 4 0.241 0.5332 0.0322 0.171 (-0.484)
boundary conditions: Two thermal loads are prescribed:
TC1
TC2
hðx
Me
ma

GP
aT
:hðx;h=2Þ ¼ �hðx;�h=2Þ ¼ hmax sinðpx=LÞ
: zero temperature hðx; zÞ at x ¼ 0 and x ¼ L
;h=2Þ ¼ �hðx;�h=2Þ ¼ hmax sinðpx=LÞ
chanical BC: simply-supported beam.
terial properties: EL ¼ 181 GPa; ET ¼ 10:3 GPa, GLT ¼ 7:17
a;GTT ¼ 2:87 GPa, mLT ¼ 0:28; mTT ¼ 0:33, aL ¼ 0:02 10�6 K�1,
¼ 22:5 10�6 K�1, kL ¼ 1:5 Wm�1K�1, kT ¼ 0:5 Wm�1K�1.
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Fig. 9. Distribution of �r11 (left) and �r13 (right) along the thickn
sh: half of the beam is meshed.
me
results: The results ð�u; �w; �r11; �r13Þ are made nondimensional as in
Section 4.2.1. The results are compared with 2D FEM analysis using

ANSYS with plane stress assumptions and converged mesh from the
previous section.

For TC1, 4 and 10 couples are built for the thermal and mechan-
ical solution, respectively. The distribution of the temperature over
the whole beam and at x ¼ 0; x ¼ L=2 is shown in Figs. 10(a), (b)
and 12. The variation is linear in the middle of the beam, but not
linear at the end. For further comparison, a zoom on the tempera-
ture distribution is shown in Fig. 11(a) and (b). The distributions
are very close to the reference solution. The accuracy of the
induced displacements and stresses are assessed in Table 6. The
maximum error rate is 1.3%. The distributions of the displacements
and stresses are also presented in Figs. 13 and 14. It is seen that the
present work performs very well when compared with the refer-
ence solution. High variation of the slope occurs for the in-plane
displacement. We also observe that the variation of the in-plane
stress is non-linear in the 0� layers. For the transverse shear stress,
steep gradient occurs near the two free surfaces and the 0�=90�

interface. It seems that a singularity exists at the interface. This
is well-captured by using numerical layers as in the previous sec-
tion. The accuracy of the results can be improved by using 6/4/4/6
numerical layers per physical layer instead of 1/1/1/1 discretiza-
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Fig. 10. Distribution of temperature – S = 5–4 layers ½0�=90�=90�=0��.

Fig. 11. Distribution of temperature with a scale over ½�0:15; 0:15� – S = 5–4 layers ½0�=90�=90�=0��.
tion, as shown in Fig. 15. The free boundary conditions on the top
and bottom surfaces are also nearly recovered despite the chal-
lenging test case.
As far as the TC2 is concerned, only two couples are sufficient
for the temperature and one couple for the mechanical solution.
The temperature distribution over the structure is compared with
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Fig. 12. Distribution of temperature along the thickness at x ¼ 0 (left) and x ¼ L=2 (right) – S = 5–4 layers ½0�=90�=90�=0�� – TC1.

Table 6
4 layers ½0�=90�=90�=0�� – TC1.

Present Error 2D FEM

�uð0;�h=2Þ 0.4386 0.9% 0.4426
�wðL=2;�h=2Þ 0.8663 0.0% 0.8860
�r11ðL=2;�h=4Þ 0.7112 1.3% 0.7207
�r13ð0;0Þ �0.4791 1.2% �0.4731

5.005.0-
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
 present
 2D FEM

Fig. 13. Distribution of �u (left) and �w (right) along the
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Fig. 14. Distribution of �r11 (left) and �r13 (right) along th
a reference solution in Figs. 10(c), (d) and 11(c), (d). It can be
inferred from these figures that the agreement with the reference
solution is very good. Table 7 shows that the present model is very
efficient and accurate for very thick and moderately thick beam.
The maximum error rate is less than 0.3%. It is confirmed by show-
ing the distribution of the displacements, the axial, transverse
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thickness – S = 5–4 layers ½0�=90�=90�=0�� – TC1.
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Fig. 15. Distribution of �r13 (right) along the thickness – S = 5–4 layers – 1/1/1/1 and
6/4/4/6 Numerical layers – TC1.

Table 7
4 layers ½0�=90�=90�=0�� - TC2.

�uð0;h=2Þ �wðL=2; 0Þ �wðL=2;
5 Present �0.4003 (0.0 %) �0.1795 (0.1 %) 0.8651

2D FEM �0.4004 �0.1794 0.8652
10 Present �0.3151 (0.0 %) 0.0904 (0.1 %) 0.3559

2D FEM �0.3152 0.0905 0.3560
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Fig. 16. Distribution of �u (left) and �w (right) along the
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Fig. 17. Distribution of �r11 (left) and �r13 (right) along th
shear and normal stresses in Figs. 16 and 17. It can be seen that the
physical requirements are fulfilled.

This test case illustrates also the influence of the thermal
boundary conditions on the mechanical response. Even though
the temperature distribution seems to be similar (Fig. 10(a) and
(c)) for the two test cases, rather small discrepancies can be
observed (Fig. 11(a) and (c)). These ones make the transverse shear
stress distribution through the thickness very different (see Figs. 14
(right) and 17(middle)). It appears that TC2 is less challenging than
TC1.

5. Conclusion

In this article, a beam finite element based on the variables sep-
aration has been presented and evaluated through different bench-
marks for thermo-mechanical problems. This method has been
applied to the modeling of both laminated and sandwich compos-
ite. The temperature and displacement are expressed as a sepa-
rated representation of two 1D functions. The axial functions
have a quadratic interpolation. For the transverse functions, a
h=2Þ �r11ðL=2;�h=4þÞ �r13ð0;0Þ �r33max
(0.0 %) 0.7207 (0.0 %) �0.1657 (0.0 %) 1.3316 (0.2 %)

0.7207 �0.1657 1.3337
(0.0 %) 0.7349 (0.0 %) �0.1659 (0.1 %) 0.6585 (0.3 %)

0.7349 �0.1661 0.6605
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fourth-order expansion are considered. The derived iterative pro-
cess implies the resolution of 1D problems and each of them has
a low computational cost. The total cost depends on the number
of couples used to represent the solution.

This study has showed the interesting capability of the method
to solve the coupling problem. As in the mechanical analysis, it has
been emphasized the importance of the choice of the z-expansion
order for such structures. The thermal effect can cause complex
behavior on the mechanical response which is needed to modelise
with accuracy. It has been shown that complex shape functions in
the transverse direction can be built for the temperature. Then, the
excellent accuracy on the thermal response allows us to obtain
accurate mechanical results. Moreover, this approach is very inter-
esting from a computational point of view, especially in the frame-
work of LW approach. Indeed, only 1D problems with few dofs are
involved in this analysis. Finally, we have proved that it is particu-
larly suitable to model laminated and sandwich composite beam.

Based on these promising results, the use of the method for
plate and shell structures will be carried out in the framework of
multi-fields analysis.

Appendix A. Thermo-mechanical load

The computation of the second term of the right hand side of Eq.
(5) is detailed here. It is denoted Ithme ¼

R R
B de

TCðkÞ�aðkÞDh dV . In the
following, the notations defined in [16] are used. As in the thermal
part, two problems have to be solved. We recall that

eð�f � vÞ ¼ Bzð�f ÞEv with Ee
v ¼ Bmech

x qve ðA:1Þ
and

eð�v � fÞ ¼ Bxð�vÞEf with Ee
f ¼ Bmech

z q f
e ðA:2Þ

The matrices Bx and Bz contain the interpolation functions, their
derivatives and the jacobian components dependent on the chosen
discrete representation. The elementary vector of degree of free-
dom (dof) associated with the finite element mesh in Bx and Bz

is denoted qve and q f
e , respectively.

A.1. Finite element problem to be solved on Bx

Using Eq. (A.1) and the expression of the temperature under the
separated form given in Eq. (6), Ithme can be written as

Ithme ¼
Z
Bx

dET
v

Z
Bz

BT
z ð�f ÞCðkÞ�aðkÞTi

zðzÞdz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fithmez

Ti
xðxÞ dx ðA:3Þ

Thus, the elements’ thermo-mechanical load is deduced:

Fe
thmez ð�f Þ ¼

XN
i¼1

Z
Le

BmechT

x f ithmez T
i
xðxÞ dx ðA:4Þ

A.2. Finite element problem to be solved on Bz

Using Eqs. (A.2) and (6), we have

Ithme ¼
Z
Bz

dET
f

Z
Bx

BT
x ð�vÞCðkÞ�aðkÞTi

xðxÞdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fðkÞ

i

thmex

Ti
zðzÞ dz ðA:5Þ
Thus, the elements’ thermo-mechanical load is deduced:

Fe
thmex ð�vÞ ¼

XN
i¼1

Z
ze

BmechT

z fðkÞ
i

thmex
Ti
zðzÞ dz ðA:6Þ
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