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ABSTRACT

In this paper, a finite element based on the variables separation is presented for the thermo-mechanical
analysis of bi-dimensional laminated beams. Both the temperature and displacement fields are approx-
imated as a sum of separated functions of x (axial coordinate) and z (transverse coordinate). This choice
yields to an iterative process that consists of computing a product of two one-dimensional functions at
each iteration. A fourth-order expansion with respect to the thickness direction are considered. The capa-
bility and the behavior of the presented approach are shown on various laminated and sandwich beams
submitted to different thermal boundary conditions. Thermal and mechanical responses are assessed by
comparing with other approaches available in literature, exact solutions and 2D finite element

computation.

1. Introduction

Composite and sandwich structures are widely used in indus-
trial field due to their excellent mechanical properties. In this con-
text, they can be submitted to severe conditions which imply to
take into account thermal effects. In fact, they can play an impor-
tant role on the behavior of structures in services, which leads to
evaluate precisely their influence on stresses, particularly at the
layer interfaces.

The aim of this paper is to construct an accurate and efficient
approach for analyzing laminated beams including thermome-
chanical effects in elasticity for small displacements. As pointed
out in [1], it is important to consider the real distribution of the
temperature issued from the heat conduction problem.

From the literature, various mechanical models for composite
or sandwich beams were extended to include thermal effects. It
is well-established that they can be classified as Equivalent Single
Layer (ESL) or Layerwise (LW) models. In the first one, the number
of unknowns are independent of the number of layers, but the
shear stress continuity at the layer interfaces are often violated.
We can find the classical laminate theory [2], the first order shear
deformation theory (|3] with a linear variation of temperature
through the thickness), and higher order theories [4,5] for thermal
stresses analysis of beams or plates. The LW approach aims at
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overcoming the restriction of the ESL. Lee has included the thermal
effect for beam structures in [6]. Unfortunately, the cost increases
with the number of plies. Carrera [7,8] has presented various ESL
and LW theories with mixed and displacement-based approaches
for assumed distribution of temperatures (uniform, linear, local-
ized) in the framework of the Carrera’s Unified Formulation
(CUF). A family of higher-order beam elements has been derived
with different displacement field approximations over the cross-
section. The Fourier heat conduction problem is solved analytically
and a Navier-type closed form solution with radial basis function is
obtained in [9]. As an alternative, refined models have been devel-
oped in order to improve the accuracy of ESL models avoiding the
additional computational cost of LW approach. Based on physical
considerations and after some algebraic transformations, the num-
ber of unknowns becomes independent of the number of layers. In
this framework, Kapuria used a zigzag theory for displacements for
beams in [10]. A piecewise linear function along the thickness is
used for the temperature. A global-local approach in conjunction
with a Hermite interpolation of the temperature through the thick-
ness is carried out in [11]. For an overview about the thermal anal-
ysis, see for example [4,12-14].

Over the past years, the Proper Generalized Decomposition
(PGD) has shown interesting features in the reduction model
framework [15]. It has been used in the context of coordinate vari-
ables separation in multi-dimensional PDEs [15]. In particular, it
has been applied for composite beams in [16] and plates based
on Navier-type solution in [17] or using finite element (FE) method
in [18,19]. Concerning the thermal problem, it has been adressed in
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[20]. For a review about the PGD and its fields of applications, the
reader can refer to [21,22].

So, the aim of the present work is to extend the previously
developed method to take into account the thermo-mechanical
coupling for laminated composite and sandwich beams. In this
way, the temperature and the displacements are written under
the form of a sum of products of unidimensional polynomials of
x and z. For the mechanical unknowns, a piecewise fourth-order
Lagrange polynomial of z is chosen as it is particularly suitable
for such laminated structures (see [19]). The temperature
unknowns are also interpolated with the same order expansion.
As far as the variation with respect to the axial coordinate is con-
cerned, a 1D three-node FE is employed. Using this method, each
unknown function of x is classically approximated using one
degree of freedom (dof) per node of the mesh and the LW unknown
functions of z are global for the whole beam. Finally, the deduced
thermal and mechanical non-linear problems imply the resolution
of two linear problems alternatively. This process yields to two 1D
problems in which the number of unknowns is much smaller than
a classical Layerwise approach. It should be noted that weakly cou-
pled problems are studied. The thermal problem is first solved, and
then the solution of the mechanical problem is obtained consider-
ing the temperature distribution as a load. As the temperature
unknowns are expressed under a separated form, the variables
separation of the mechanical part remains unchanged. Moreover,
the approach allows us to refine easily the description of the tem-
perature variation without increasing significantly the computa-
tional cost which is important to derive an accurate mechanical
response.

We now outline the remainder of this article. First, the thermo-
mechanical formulation is given. In particular, the heat conduction
problem and the coupling behavior law are recalled. Then, the res-
olution of the thermal problem based on the variables separation is
described and the FE discretization is given. Finally, it is illustrated
by numerical tests involving thermal loads and thermo-mechanical
coupling. They have been performed upon various laminated and
sandwich beams for different boundary conditions. The behavior
of the method is discussed. It is assessed by comparing with clas-
sical LW approach, exact solutions and also 2D FEM computations
issued from a commercial finite element software. These examples
show the efficiency and the accuracy of the presented approach.

2. Thermo-mechanical problem description

Let us consider a beam occupying the domain B = By x B, x
[Fi<y < =00x[-8<z<x[-b<y<?] in a Cartesian
coordinate (x,y,z). The beam has a rectangular uniform cross
section of height h, width b and is assumed to be straight. The
beam is made of NC layers of different linearly elastic materials.
Each layer may be assumed to be orthotropic in the beam axes.
The x axis is taken along the central line of the beam whereas y
and z are the two axes of symmetry of the cross section intersect-
ing at the centroid, see Fig. 1. As shown in this figure, the y axis is
along the width of the beam. This work is based upon a displace-
ment approach for geometrically linear elastic beams.
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Fig. 1. The laminated beam and co-ordinate system.

In the following, the beam is considered in the (x,z) plane as a
plane stress assumption is used.

2.1. Heat conduction problem

2.1.1. Thermal constitutive relation

The physical problem considered here involves the two-
dimensional linear heat conduction equations with thermal con-
ductivity components /1, /3 in the x, z directions respectively. The
constitutive equation is given by the Fourier law:

Q- {Zj = Zgrad(0) (1)
where
7= “; )OJ and grad(0) = {gj

q; (i=1,3) is the heat flux components with respect to the coordi-
nate system x,z respectively. 0, , 0, stand for the derivative of 0
with respect to x and z respectively.

2.1.2. The weak form of the boundary value problem
For 60 € 6@ (00 = {0 € H'(B)/0 =0 on 9B,}), the variational
principle is given by: find 0 € © such that:

—//grad(éO)TQ(O)dB+//60rdd8+/ 80hgdOB=0 V30 € 60
B B OBy
(2)

where 14 and hy are the prescribed volume heat source and surface
heat flux applied on 9B, respectively. © is the space of admissible
temperatures, i.e. ® = {0 € H'(B)/0 = 0; on 85,}.

In the present work, the convection heat transfer is not
considered.

2.2. Thermo-mechanical problem

2.2.1. Constitutive relation
The reduced two dimensional constitutive law of the kth layer
with thermo-mechanical coupling is given by

o — CW (s“‘) _g® A9<k>> 3)
The stress and strain tensor can be written as
¢’ = [011 033 T13), e = [€11 €33 V13)

We have also
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where fl@j") are the moduli of the material for the kth layer taking
into account the zero transverse normal stress hypothesis
(022 = 0). They are expressed by

=y -cpcy/cy (4)

) y
where Cg‘) are orthotropic three-dimensional elastic moduli. We
also have C& = c®,

The vector a®’ = [« & 0] contains the thermal expansion
coefficients.

2.2.2. The weak form of the boundary value problem
Using the above notation and Eq. (3), the variational principle is
given by:



Find u(M) € U (space of admissible displacements) such that

//5£TE(’<)8 dV:// ou-t ds
B OV
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where t is the prescribed surface forces applied on 9Vr. The body
forces are not considered in this expression.

A0 dV You € sU (5)

3. Application of the variables separation to the
thermo-mechanical analysis of beam

The Proper Generalized Decomposition (PGD) was introduced in
[15] and is based on an a priori construction of separated variables
representation of the solution. For the thermal analysis, the solution
with separated coordinate variables has been developed in [20]. In
the present scope, a weak thermo-mechanical coupling is consid-
ered, the resolution process is divided into 2 steps. First, the thermal
problem is solved by introducing the separated representation in Eq.
(2). It will be described in the following sections. Then, the mechan-
ical response is deduced from the resolution of Eq. (5) following
[16]. It will not be detailed hereafter for brevity reason.

3.1. The temperature field

The temperature solution 0(x,z) is constructed as the sum of N
products of functions of only one spatial coordinate (N € N is the
order of the representation) such that:

N . .
=Y T,XT,(2) (6)
i=1

where T'(z) is defined in B, and T'(x) is defined in B,. A classical
quadratic FE approximation is used in B, and a LW description is
chosen in 3; as it is particulary suitable for the modeling of compos-
ite structures.

The expression of the gradient of the temperature is given as
follows:

N Tl Tz
[ @} @
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3.2. The problem to be solved

The resolution of Eq. (2) is based on a greedy algorithm. If we
assume that the first m functions have been already computed,
the trial function for the iteration m + 1 is written as

0™ (x,2) = 0"(x,2) + Tu(X)T.(2) (8)

where T, and T, are the functions to be computed and 0™ is the
associated known sets at iteration m defined by

=Y T,®Ty(2) 9)
i=1

The test function is
O(TxT;) = 0Ty.T, + Tx.0T, (10)

The test function defined by Eq. (10), the trial function defined
by Eq. (8) are introduced into the weak form Eq. (2) to obtain the
two following equations, where the prescribed volume and surface
heat source are assumed to be nill:

/ / grad(6T,T,)" igrad(T,T,) dzdx
By JB;

:—/ grad(sT,T,)" igrad(0™) dzdx 11)
By JB;

/ /grad(éTsz)TIgrad(TxTZ) dxdz

—/ grad(5T,T,)" Agrad(6™) dxdz (12)
B; J By

From Eqgs. (11) and (12), a coupled non-linear problem is
derived. Thus, a non linear resolution strategy has to be used.
The simplest one is a fixed point method. An initial function
T, T is set, and at each step, the algorithm computes two new

pairs (T**V Ty such that

o T satisfies Eq. (11) for T, sets to TS

z

o TV satisfies Eq. (12) for T, sets to T+

X

These two equations are linear and the first one is solved on By,
while the second one is solved on B,. The fixed point algorithm is
stopped when

||T§k+])T§kH T
ITOT 5

T s <e (13)

12 .
where ||A||; = [fBX s, A? dxdz] and ¢ is a small parameter to be

fixed by the user. In this paper we set ¢ = 107°.

Remark. When a prescribed temperature is imposed on 953, the
first couple is built so as to fulfill this requirement. Then, the
following couples are computed satisfying a zero temperature on
IBy.

3.3. Finite element discretization

To build the beam finite element approximation, a discrete rep-
resentation of the functions (T, T,) must be introduced. We use
classical finite element approximation in 5, and 3;. The elementary
vectors of degree of freedom (dof) associated with the finite ele-
ment mesh in By and B, are denoted q} and qZ, respectively. The
temperature fields and the associated gradient are determined
from the values of q and qZ by

Tye = NxqZ, = B,q}

Xxe Xqi ) x que ’ (14)
Tze = Nqu7 SZ = que,
where SiT =[Txx Tx] and £§T =|[T, T,.). The matrices

[Ny], [By], [N], [B;] contain the interpolation functions, their deriva-
tives and the jacobian components dependent on the chosen dis-
crete representation.

3.4. Finite element problem to be solved on B,

For the sake of simplicity, the function T ®) which is assumed to

be known, will be denoted T,, and the function T 1) t9 be com-
puted will be denoted T,. The gradient in Eq. (11) is defined as

grad(T,T,) = X,(T,) & (15)
with

=, |T. o0
Ez(Tz){O T} (16)

The variational problem defined on B, from Eq. (11) is

/ S 1 (T)Exdx = — [ 561Q,(T,, 0™)dx (17)
By

Bx



with

i(T>) :/B 2,(T,) 2%,(T,)dz (18)

Qu(T.0™) = [ () hgrad(0™)dz (19)

B,

The introduction of the finite element approximation Eq. (14) in
the variational Eq. (17) leads to the linear system

Ao(T2) Q" = Ry(T, 0™) (20)

where q* is the vector of the nodal temperatures associated with
the finite element mesh in B, A.(T.) the conductivity matrix
obtained by summing the elements’ conductivity matrices A;(TZ)
and RX(TZ,Gm) the equilibrium residual obtained by summing the

elements’ residual load vectors Rﬁ(fb om)

AS(T,) = | Bliy(T,)Bydx (21)
Le

and

RE(T,,0™) = — [ BIQ,(T,,0™)dx (22)

Le

3.5. Finite element problem to be solved on B,

For the sake of simplicity, the function T*" which is assumed
to be known, will be denoted T,, and the function T¥*" to be com-

puted will be denoted T,. The gradient in Eq. (12) is defined as

grad(TxTz) = z"x('Iwa)gz (23)
with
= Tex O
Ly (Ty) = L 24
(Tx) { 0 Tx:| (24)
The variational problem defined on B, from Eq. (12) is
SE i (To)Eadz = — / S€1Q(Tx, 0™)dz (25)
B, B,
with
() = / To(T) 25 (To)dx (26)
Q,(T., 0™ = / ¥ (T,) Zgrad(0™)dx 27)

X

The introduction of the finite element discretization Eq. (14) in
the variational Eq. (25) leads to the linear system

Ad(T) @7 = Ro(T, 0M) (28)

where qZ is the vector of the nodal temperature associated with the

finite element mesh in B,, A«(Ty) the conductivity matrix obtained
by summing the elements’ conductivity matrices Ai(Tx) and
’Rz(fx, 0™) the equilibrium residual obtained by summing the ele-

ments’ residual load vectors Rﬁ(fx, om)

A(T,) = | Bl (T,)B.dz (29)
Lz,

and

RE(Ty, 0™) = — [ BIQ,(Ty, 0™)dz (30)

Lz,

3.6. Remarks on the resolution of the thermo-mechanical problem

The mechanical problem has been already solved using the vari-
ables separation for composite beam structures in [16] and the
accuracy and efficiency of the approach has been shown. Thus,
the same way is used in the present work with a fourth-order
expansion for the z-functions. The resolution of the thermo-
mechanical coupling is limited to the computation of the second
term of the right hand side of Eq. (5). As the temperature is
expressed under a separated form, the computation of this integral
can be also divided into 2 parts, one over B, and the other one over
B,. Thus, the key point of the method remains available. This com-
putation is given in Section A.

4. Numerical results

In this section, several static tests are presented validating our
approach, evaluating its efficiency and showing the properties of
the algorithm for the thermal and the thermo-mechanical prob-
lems. A classical 8-node quadratic finite element is used for the
thermal and mechanical unknowns depending on the x-axis coor-
dinate. For the transverse direction, a fourth-order layer-wise
description is chosen.

First, the heat conduction problem is solved. The approach is
assessed by comparing with exact solution and LayerWise models
including or not the continuity of the transverse heat flux. Then,
the thermo-mechanical coupling is considered for different lami-
nated and sandwich beams. Different thermal boundary conditions
are also addressed. Their influence on the behavior of the structure
is rather important and can make the modeling of such structures
difficult. For these tests, the number of dofs is also precised for the
two problems associated with the x-function and z-function. They
are denoted Ndofy,Ndof,, for the thermal unknowns and
Ndof,, Ndof, for the mechanical unknowns.

Note that the convergence rate of the fixed point process is
high. Usually, only less than four iterations are required. This sub-
ject is not discussed here.

4.1. Problem of heat conduction in a sandwich media

In this section, several cases are presented to evaluate the effi-
ciency of our approach to solve the thermal problem. The obtained
results are assessed by comparing with exact solution from [23],
and also LayerWise model with a 2™ order expansion in each layer
(See [5]). In this latter, the continuity of the transverse heat flux g4
at the interface between the layers can be enforced (denoted
"LW2-c”) or not (denoted "LW2").

4.1.1. Problem 1
A rectangular symmetric sandwich media is considered (see
[23]):
geometry: The sandwich is composed by an isotropic core of
thickness h — 2ef, and isotropic skins of equal thick-
ness e; = 0.2h. We have § = £ =2 (very thick beam).
It is represented in Fig. 2.
boundary conditions: The structure is submitted to a sinusoidal
temperature loading given by 6;(x) = 0. sin(nx/L) at its
top edge, with 0. = 1, while zero temperature is pre-
scribed on the three other edges.
properties:  The  conductivity coefficients are
Kskin = 0.5 W/(Km) and Kcore = 50.5 W/(Km).
mesh: N, is the number of elements over B,. One numerical layer
per physical layer is used. For the separated variable

material



approach, it corresponds to the number of elements per
layer over B,.
number of dofs: Ndofy, = 2N, + 1(= 33 for N, = 16) and Ndof,, =
4x«NC+1=13
results: The temperature is made non-dimensional as 6 = (,ﬁ
The results are compared with exact solution [23] and
LayerWise model with a 2" order expansion in each layer
with and without continuity conditions [5].

First, a convergence study is performed, see Table 1. Two cou-
ples are built to obtain the solution. It can be seen that the con-
vergence rate is very high for both temperature and transverse
heat flux. Only a Ny, =4 mesh for the whole beam is sufficient
to obtain the converged value. The heat flux g, is more sensitive
to the refinement, and a N, = 16 mesh is needed. It will be used
hereafter.

Temperature and heat flux distributions along the thickness at
x =L/2 and x = L are shown in Figs. 3 and 4. The temperature vari-
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Fig. 2. Rectangular sandwich media.
Table 1
Convergence study - Problem 1.
Ny 0(L/2,0.8h) q:1(L/2,h/2) qs(L,h)
2 3.936E-02 2.705 —2.486
4 3.956E-02 2.454 —2.484
8 3.957E-02 2.371 —2.484
16 3.957E-02 2.349 —2.484
32 3.957E-02 2.344 —2.484
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Fig. 3. Distribution of temperature across the thickness at x = L/2 - Problem 1.

ation is rather important in the top skin of the sandwich. The
results of the present approach are in excellent agreement with
the reference (exact) solution and are more accurate than the
LayerWise models for the transverse heat flux q;. Numerical results
for the heat flux g, and g; given in Table 2 and Table 3 prove it. In
theses tables, -/-/- indicates the number of numerical subdivisions
in each layer. The maximum error rate of the present approach is
less than 1%. We also notice that these results (with only one
numerical layer per physical layer) are similar to the LW2 approach
with 4/6/4 numerical layers. The continuity of the transverse heat
flux is also fulfilled without any constraints. Thus, the introduction
of the variables separation does not decrease the accuracy of the
results and the choice of the 4th order expansion in the thickness
direction is a key issue. Moreover, the comparison of the number of
dofs given in Table 2 and Table 3 shows the very interesting ratio
between cost and accuracy of the present approach.

4.1.2. Problem 2
The second thermal problem is described as follows:

geometry: A three-layer sandwich beam with graphite-epoxy faces
and a soft core with thickness e = 0.1h is considered (Cf. [10]).
S=%t=10.

boundary conditions:constrained opposite temperature on the top
and the bottom surfaces of the beam such as: 6(x,h/2) =
—0(x,—h/2) = Opgx sin(mx/L)

material properties: The orientation of all the plies is y, =0,k =
1,2,3. for the face: /; = 1.5 Wm™'K™!, /2y = 0.5 Wm™! K™

where L refers to the fiber direction, T refers to the transverse
direction.

for the core: 4; = /3 =3.0 Wm™' K!

mesh: Ny = 16, one numerical layer per physical layer is used.
results: The results are compared with exact solution [23] and
LayerWise model with a 2™ order expansion in each layer with
and without continuity conditions [5].

The solution is obtained with four couples. The couples (T%,T')
are represented in Fig. 5. The first couple allows to ensure the pre-
scribed temperature on the structure and T, is parabolic along x
while T, is equal to —1 at the bottom and +1 at the top. It must
be denoted that the variation across the thickness is linear per
layer. The second one is a global correction. Then, the third and
fourth ones bring a local correction near the edge of the beam.
The distribution of the associated z-functions through the thick-
ness becomes more complex. The resulting distribution of the tem-
perature across the thickness are the same as the reference
solution (see Fig. 6). Again, it should be noticed that the distribu-
tion of the transverse heat flux is very accurate with only one
numerical layer per physical layer for the present model with a
fourth-order z-expansion. The continuity of the transverse heat
flux is satisfied whereas it must be constrained for the LW2 model
(Fig. 7 right). Moreover, in this later, 2/6/2 numerical layers (620
dofs) are needed to be close to the reference solution. Thus, the
importance of the z-expansion order is highlighted.

4.2. Thermo-mechanical analysis

4.2.1. Sandwich beam
The thermo-mechanical analysis of the sandwich beam
described in Section 4.1.2 is performed. It is detailed below:
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Fig. 4. Distribution of heat flux q; and g5 across the thickness at x = L (left) and x = L/2 (right) - Problem 1.

Table 2
heat flux g, across the thickness - Ny = 16 - Problem 1.
z Present LW2-c Lw2 Exact
111 111 4/6/4
1st layer 0 0.00 0.000 0.000 0
0.1 0.010 0.010 0.010 0.010
0.2~ 0.021 0.020 0.021 0.021
2nd layer 0.2* 2.081 2.050 2.081 2.072
0.5 2.349 2.348 2.349 2.340
0.8~ 3.149 3.182 3.149 3.137
3rd layer 0.8* 0.031 0.032 0.031 0.031
0.9 0.405 0.404 0.405 0.403
1 0.788 0.788 0.788 0.785
d.o.f. 33+13 62 868 -

Table 3
heat flux g4 across the thickness - N, = 16 - Problem 1.
z Present LW2-c Lw2 Exact
1/11 111 2/3/2 4/6/4
1st layer 0 —0.064 —0.066 —0.064 —0.064 —0.065
0.1 —0.065 —0.064 —0.065 —0.065 —0.066
0.2” —0.067 —0.063 —0.067 —0.067 —0.068
2nd layer 0.2* —0.067 —0.063 —0.064 —0.066 —0.068
0.5 —1.089 -1.198 —1.094 —1.087 —1.089
0.8~ —2.357 -2.333 —2.340 -2.354 -2.356
3rd layer 0.8* —2.357 —2.333 —2.352 —2.356 —2.356
0.9 —2.391 —2.400 —2.386 —2.390 -2.390
1 —2.484 —2.467 —2.479 —2.483 —2.483
d.of. 33+13 62 434 868 -

geometry: thick sandwich beam with S =5

boundary conditions: simply-supported beam

material properties: for the face

Y, =131.1 GPa,Yr = 6.9 GPa, G;r = 3.588 GPa, Gy = 2.3322 GPa,
vir = 0.32, vy = 0.49, oy = 0.0225 10 K™™', 07 =22.510°° K,
for the core

E; =0.2208 MPa,E; = 0.2001 MPa, E3 = 2760 MPa, G, = 16.56 MPa,
Gy3 =455.4MPa, Gi3 = 545.1 MPa, V12 =0.99,v;3=310"",
V53=3107>, oty =03 =30.6 10 ° K’

mesh: half of the beam is meshed using N, FE along x-direction.
Nf,N. are the number of elements in the face and in the core,

respectively. For the present method, they are related to the 1D
mesh over B,, while it is associated to the number of 2D elements
along z-direction for the 2D FEM analysis from ansys.

results: The results (i, w, 611, G13) are nondimensionalised using:

~ _ 100u; i, 100u
TShomae W = 1S howa! . The results are

compared with 2D FEM analysis using ansys with plane stress
assumptions. The eight-node element PLANE77 is used for the
thermal part and PLANE183 for the mechanical analysis.

So13
o ErOmax

G — _%n G —
01 = o 013 =

First, a convergence study is carried out for both ansys modeling
and the present approach. For the 2D FEM analysis, the results are
summarized in Table 4 varying N, with a fixed value of Ny and N,
and varying Ny and N, for a fixed value of N,. A very refined mesh is
needed to obtain satisfactory results. The convergence of the trans-
verse displacement and the in-plane stress wrt N, is greater than
those of the in-plane displacement at the end of the beam. A
N, = 512 mesh can be retained. The transverse shear stress is more
sensitive to the thickness refinement. Ny = N, = 32 drives to a con-
verged value. Moreover, the location of the maximum of 3 is
close to the top or bottom surface, which implies to have a refined
description through the thickness with a suitable mesh.

The same study is performed for the variables separation
approach. It is shown in Table 5. The same comments can be made.
From this table, it can be inferred that a N, = 128 mesh with
Nf =4,N. =4 can be used. So, the convergence rate is higher for
the present approach.

As already proposed in [24], an alternative thickness refinement
consists in discretizing the z-functions using 4 elements in the face
with smaller size near the top surface and the layer interface,
namely & / L [LL/-h- The associated numerical results are denoted
Ny = 4 (sr)in Table 5. 14 couples are built to obtain the mechanical
response. The maximum error rate is less than 2% when compared
to 2D FEM results from ansys. For further comparison, the distribu-
tion of the displacements and the stresses through the thickness
are also shown in Figs. 8 and 9. The results are in very good agree-
ment with the reference solution. A zig-zag effect occurs for the
axial displacement and the transverse displacement is non-linear.
The distribution of the transverse shear stress in the face is rather
complex. The maximum value is located near the free top/bottom
surface, which makes difficult to recover the free boundary condi-
tions. Nevertheless, it is nearly satisfied with the present model by
using suitable numerical layers. It should be noted that the 2D FE
results need also a high refinement.

From a computational point of view, the 2D ansys model implies
about 300.000 dofs with a bandwidth of the linear system equal to
586, whereas only Ndof, = 514/Ndof, = 98 dofs are involved in the
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Fig. 5. Distribution of the x-functions T} and z-functions T} - Problem 2.
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Fig. 6. Distribution of temperature across the thickness at x = L/2 - Problem 2.

x and z problems of the variables separation approach with a band-
width of 6. Moreover, as shown previously, the refinement of the
description of the solution through the thickness is needed. For
that, it is also necessary to refine the mesh in the x-direction in
the 2D FEM to ensure a correct size ratio of the elements. Thus,
the refinement in one direction has an influence on the other direc-
tion. That is not the case in the present work where the size of

0.5

04

03

02

»—x present

2nd order LW (2/6/2)
—— reference

1 1

L
-3.01 -3.005 -3

q3

Fig. 7. Distribution of heat flux q; along the thickness with and without continuity (right), and with sub-layers (left) - Problem 2.

#10°

L L L L
-2995 -299 -2985 -2.98 -2.3975

Couple 1 Couple 2
0.5 p 0.5 P
N 0 0
-0.5 -0.5
- 0 1 - 0 1
Couple 3 Couple 4
0.5 P 0.5 P
w0 0
-0.5 -0.5
-1 0 1 -1 0 1
T, T,
Table 4
Convergence study (2D FEM Ansys).
Elmax Wmax 61lmax 613”1!1)( (2)
Convergence wrt Ny with Ny = N. = 4
Ny =32 0.196 0.5331 0.0319 0.159 (-0.475)
=64 0.202 0.5331 0.0318 0.176 (-0.475)
Ny =128 0.223 0.5331 0.0318 0.181 (-0.475)
Ny =256 0.237 0.5331 0.0318 0.181 (-0.475)
Ny =512 0.245 0.5331 0.0318 0.180 (-0.475)
Ny = 1024 0.249 0.5331 0.0318 0.180 (-0.475)
Convergence wrt Ny, Nc with Ny =512
Nf=Nc=4 0.245 0.5331 0.0318 0.180 (-0.475)
Ny =N, =8 0.248 0.5331 0.0321 0.189 (-0.487)
Ny =Nc =16 0.246 0.5331 0.0322 0.178 (-0.487)
Nf = Nc =32 0.246 0.5331 0.0322 0.176 (-0.485)
Ny =N; =48 0.246 0.5331 0.0322 0.176 (-0.485)

elements of the two problems (x and z functions) is independent.
So, all these features make this approach very efficient.

4.2.2. A symmetric four-layer beam

In this section, a symmetric laminated composite beam taken

from [10] is considered:

geometry: Composite cross-ply beam
S =5,10. Each layer has the same thickness (h/4).
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Table 5
Convergence study - variable separation approach.

ﬁmax Wmax a'llrnux 613max (Z)

Convergence wrt Ny with Ny = N = 1

Ny =16 0.195 0.5334 0.0323 0.102 (-0.465)
Ny =32 0.203 0.5336 0.0323 0.130 (-0.470)
Ny =64 0.197 0.5336 0.0322 0.147 (-0.475)
Ny =128 0.187 0.5335 0.0322 0.154 (-0.475)
Ny =256 0.185 0.5335 0.0322 0.156 (-0.480)
Convergence wrt Ny, N. with Ny = 128

Ny=1,Nc=1 0.187 0.5335 0.0322 0.154 (-0.475)
Ny =2,Nc =2 0.251 0.5328 0.0321 0.166 (-0.480)
Nf=4,Nc =4 0.251 0.5325 0.0319 0.167 (-0.475)
Ny =4 (sr),Nc=4 0.241 0.5332 0.0322 0.171 (-0.484)

boundary conditions: Two thermal loads are prescribed:

TC1:0(x,h/2) = —0(x,—h/2) = Opex sin(mx/L)
TC2: zero temperature 6(x,z) atx=0and x =L
0(x,h/2) = —0(x, —h/2) = Opex Sin(mx/L)
Mechanical BC: simply-supported beam.
material  properties:

GPa,Grr =2.87GPa, vir =0.28, vy =0.33,

0.5 T

E, — 181 GPa,E; = 10.3 GPa,

Gir =717

o, =0.0210°° K,
o0r=22510°K™", 2, =1.5Wm 'K, ir = 0.5 Wm 'K .
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mesh: half of the beam is meshed.
results: The results (ii,w, 611, 613) are made nondimensional as in
Section 4.2.1. The results are compared with 2D FEM analysis using

ANsys with plane stress assumptions and converged mesh from the
previ