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Spin models are the prime example of simplified many-
body Hamiltonians used to model complex, real-world
strongly correlated materials1. However, despite their
simplified character, their dynamics often cannot be sim-
ulated exactly on classical computers as soon as the num-
ber of particles exceeds a few tens. For this reason, the
quantum simulation2 of spin Hamiltonians using the tools
of atomic and molecular physics has become very active
over the last years, using ultracold atoms3 or molecules4 in
optical lattices, or trapped ions5. All of these approaches
have their own assets, but also limitations. Here, we re-
port on a novel platform for the study of spin systems, us-
ing individual atoms trapped in two-dimensional arrays of
optical microtraps with arbitrary geometries, where fill-
ing fractions range from 60 to 100% with exact knowl-
edge of the initial configuration. When excited to Rydberg
D-states, the atoms undergo strong interactions whose
anisotropic character opens exciting prospects for simu-
lating exotic matter6. We illustrate the versatility of our
system by studying the dynamics of an Ising-like spin-1/2
system in a transverse field with up to thirty spins, for
a variety of geometries in one and two dimensions, and
for a wide range of interaction strengths. For geometries
where the anisotropy is expected to have small effects we
find an excellent agreement with ab-initio simulations of
the spin-1/2 system, while for strongly anisotropic situa-
tions the multilevel structure of the D-states has a mea-
surable influence7,8. Our findings establish arrays of sin-
gle Rydberg atoms as a versatile platform for the study of
quantum magnetism.

Rydberg atoms have recently attracted a lot of interest for
quantum information processing9 and quantum simulation10.
In this work, we use a system of individual Rydberg atoms
to realize highly-tunable artificial quantum Ising magnets. By
shining on the atoms lasers that are resonant with the transi-
tion between the ground state |g〉 and a chosen Rydberg state
|r〉, we implement the Ising-like Hamiltonian

H =
∑
i

~Ω

2
σix +

∑
i<j

Vijn
inj , (1)

which acts on the pseudo-spin states |↓〉i and |↑〉i correspond-
ing to states |g〉 and |r〉 of atom i, respectively. Here, Ω is the
Rabi frequency of the laser coupling, the σiα (α = x, y, z) are
the Pauli matrices acting on atom i, and ni = (1 + σiz)/2
is the number of Rydberg excitations (0 or 1) on site i.

FIG. 1|: Experimental platform. a: An array of microtraps is cre-
ated by imprinting an appropriate phase on a dipole-trap beam. Site-
resolved fluorescence of the atoms, at 780 nm, is imaged on a camera
using a dichroic mirror (DM). Rydberg excitation beams at 795 and
475 nm are shone onto the atoms. The inset shows the measured light
intensity for an array ofNt = 19 traps. b: Sketch of an experimental
sequence. During loading, the camera images are analyzed continu-
ously to extract the number of loaded traps. As soon as a triggering
criterion is met, the loading is stopped and an image of the initial
configuration is acquired. After Rydberg excitation, a final image is
acquired, revealing the atoms excited to Rydberg states (red disks).

The term Vij arises from the van der Waals interaction be-
tween atoms i and j when they are both in |r〉, and scales
as C6(θ)|ri − rj |−6 with the separation between the atoms.
Moreover, for |r〉 = |nD3/2,mj = 3/2〉, the interaction
strength is anisotropic7,11, varying by ∼ 3 when the angle
θ between the interatomic axis and the quantization axis ẑ
changes from 0 to π/2.

Our setup (Fig. 1a) has been described in refs. 12,13. We
trap cold (T ' 30 µK) single 87Rb atoms in optical traps with
a 1 µm waist. Using a spatial light modulator (SLM), we cre-
ate arbitrary, two-dimensional arrays containing 1 6 Nt 6 50
traps, separated by distances a > 3 µm. The atomic fluores-
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cence at 780 nm is imaged onto a camera. We observe, in the
single-atom regime12, that the level of fluorescence for each
trap alternates randomly between two levels, corresponding
to the presence of 0 or 1 atom. The analysis of these Nt fluo-
rescence traces allows us to record, with a time resolution of
50 ms, the current number N of single atoms in the array.

As illustrated in Figure 1b, as soon as N exceeds a pre-
defined threshold, we trigger the following experimental se-
quence. First, the loading of the array is stopped, and a fluo-
rescence image is acquired to record the initial configuration
of the atoms, i.e. which traps are filled. After initializing all
the atoms in |g〉 = |5S1/2, F = 2,mF = 2〉 by optical pump-
ing, a two-photon Rydberg excitation pulse of duration τ is
shone onto the atoms; the Rabi frequency (Ω ' 2π× 1 MHz)
is uniform to within 10 % over the array. We then acquire a
new image, of the final configuration. Atoms excited to |r〉
have quickly escaped the trapping region, and thus we ob-
serve only the atoms that were in |g〉 after excitation. The
atoms gone in between the initial and final images are thus
assigned to Rydberg states (red dots in Figure 1b). This de-
tection method has a high efficiency: it only gives a small
number of ‘false positives’, as an atom also has a probability
ε ' (3 ± 1)% to be lost, independently of its internal state
(Methods).

We first test our system in the conceptually simple situa-
tion of fully Rydberg-blockaded ensembles containing up to
N = 15 atoms. Figure 2a shows, for various arrays, the prob-
ability that all N atoms are in |g〉 at the end of the sequence.
We observe high-contrast coherent oscillations, with a fre-
quency enhanced by a factor

√
N with respect to the single-

atom case (Fig. 2b). This characteristic collective oscillation
is the hallmark of Rydberg blockade14−16, where multiple ex-
citations are inhibited within a blockaded volume (which, due
to the anisotropy, is close to an ellipsoid, with a major radius
Rb defined by ~Ω = |C6(0)|/R6

b, and a small ‘flattening’
31/6 ' 1.2). This observation is a first step towards the cre-
ation of long-lived |W 〉 states in the ground state9.

The fully blockaded regime remains easy to describe the-
oretically as the blockade naturally truncates the size of the
Hilbert space. In contrast, a more challenging regime corre-
sponds to the Rydberg blockade being effective only between
nearest neighbors, such that for long enough excitation times,
the number of excitations becomes ∼ N/2. It is therefore de-
sirable to be able to vary the ratio α = Rb/a of the blockade
radius to the distance a between sites: for very small or large
values of α, the dynamics is simple and the system can eas-
ily be compared to numerics, while, for intermediate values of
α, the dynamics is challenging to calculate and experimental
quantum simulation becomes relevant. Our setup is particu-
larly adapted to this goal, as we can vary easily both a (recon-
figuring the SLM) and Rb (changing the principal quantum
number n, we tune C6 which scales approximately as n11).

This versatility is illustrated in Fig. 3, where we use a fully
loaded ring-shaped array of N = 8 traps, thus realizing a
small spin chain with periodic boundary conditions (PBC). By
varying both a and n, we tune the system all the way from in-

FIG. 2|: Collective oscillations in the full Rydberg blockade
regime. a: Probability P0 for allN atoms to be in |g〉 after an excita-
tion pulse of area Ωτ . Red points: fully loaded arrays, n = 82; blue
points: partially loaded triangular arrays of Nt = 19 traps, n = 100
(error bars show the quantum projection noise for ∼ 100 repetitions
of the experiment). Solid lines are fits by damped sines of frequency
ΩN . b: Collective oscillation frequency ΩN/Ω versus N (error bars
—sometimes smaller than the symbol size— are statistical). The
solid line is the expected

√
N enhancement.

dependent atoms (α� 1), where each atom undergoes a Rabi
oscillation at frequency Ω, resulting in a Rydberg fraction fR

(defined as the average number of Rydberg excitations divided
byN ) periodically reaching' 1 (Fig. 3a), to a fully blockaded
array (α� 1, Fig. 3c) characterized by collective oscillations
at frequency

√
NΩ and a maximum fR = 1/N . In between

(Fig. 3b, where α ' 1.5), the evolution of fR(τ) shows os-
cillations resulting from the beating of the incommensurate
eigen-frequencies of the many-body Hamiltonian (1). Our
system allows us to detect the state of each atom, and thus to
measure correlation functions. Figure 3d shows the dynamics
of the Rydberg-Rydberg pair correlation function

g(2)(k) =
1

Nt

∑
i

〈nini+k〉
〈ni〉〈ni+k〉

. (2)

The averaging over all traps does not wash out correlations
despite the fact that the system is not fully invariant by trans-
lation (Methods). We observe a strong suppression of g(2)(k)
for k = 1 and k = 7, i.e. a clear signature of nearest-neighbor
blockade. For some times (see e.g. Ωτ = 3.1), we observe an
antiferromagnetic-like staggered correlation function, while
the average density is uniform (Methods).

The solid lines in all panels of Figure 3 are obtained by
solving the Schrödinger equation governed by (1) using the in-
dependently measured experimental parameters, and then in-
cluding the effects of the finite detection errors ε (Methods).
One observes an overall agreement with the data, although
some small discrepancies can clearly be noticed, especially
at longer times. We attribute them to the Zeeman structure of
RydbergD-states, which is not taken into account in our mod-
eling by a spin-1/2: for θ 6= 0, the van der Waals interaction
couples |r〉 to other Zeeman states, leading to a slow increase
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FIG. 3|: Tuning interactions in an 8-spin chain with PBC. a: In-
dependent atoms (Rb < a). The Rydberg fraction fR oscillates be-
tween ' 0 and ' 1, with the single-atom Rabi frequency Ω. b:
Strongly correlated regime (Rb ' 1.5a). The Rydberg fraction
shows an oscillatory behavior involving several frequencies. c: Fully
blockaded regime: fR oscillates at

√
NΩ, and reaches a maximum of

1/N (dashed line). d: The Rydberg-Rydberg pair correlation func-
tion, for the parameters of b, is shown for increasing values of Ωτ . In
all plots, the solid lines are obtained by numerically solving the time-
dependent Schödinger equation, and then including detection errors
(ε = 3%). Error bars (often smaller than symbol size) denote s.e.m.
The shaded ellipsoids illustrate the (anisotropic) blockade volume.

in the number of excitations (Methods).

We now study two systems containing a larger number of
atoms. We first consider a one-dimensional spin chain with
PBC comprising Nt = 30 traps and partially loaded with
N = 20 ± 1.5 atoms (Fig. 4a; we have checked that the
67% filling fraction does not change qualitatively the physics
as compared to a perfect filling, see Methods). Its ‘race-
track’ shape was chosen to optimize homogeneity of the Rabi
frequency over the array. We chose parameters such that
α ' 4.3(1). The Rydberg fraction fR(τ) shows initial os-
cillations before reaching a steady state (Fig. 4b) due to the
dephasing of the many incommensurate eigenfrequencies of
(1) for this large value of N . The pair correlation function
(shown in Fig. 4c for Ωτ ' 2.0) is strongly suppressed for
k < α, as expected from blockade physics, before oscillating
towards the asymptotic value g(2)(k � α) = 117,18. A sim-
ilar liquid-like correlation function has been observed in two
dimensions19. The solid lines in Fig. 4b,c give the result of a
full numerical simulation, without any adjustable parameters.
Here the agreement with the spin-1/2 model is excellent, as
many atom pairs are aligned along the quantization axis, thus
making the effects of the anisotropy small. We included the
finite value of ε, which has a strong effect on the pair correla-
tions for k < α as g(2)(k) increases from 0 to 2ε/fR (Meth-

FIG. 4|: Ising dynamics in large spin ensembles. a: Racetrack-
shaped array with Nt = 30 traps, loaded with N = 20 ± 1.5
atoms. The blockade radius Rb is about 4.3a (shaded ellipsoid).
b: Time evolution of the Rydberg fraction fR. c: Rydberg pair cor-
relation function g(2)(k) for Ωτ ' 2.0, showing a strong depletion
for k < Rb, and contrasted oscillations around the asymptotic value
1. Error bars (most of the time smaller than symbol size) denote the
s.e.m. Solid lines are the simulation results without any adjustable
parameters. d: Square array of 7×7 traps loaded withN = 28±1.6
atoms. The blockade radius is about 2.6a. e: Evolution of fR. f:
Rydberg-Rydberg correlation function g(2)(k, l) for Ωτ = 5.3.

ods).
As a final setting, we use a Nt = 7 × 7 two-dimensional

square array (Fig. 4d), loaded with N = 28 ± 1.6 atoms
(57% filling), for α = 2.6. The dynamics of fR now ap-
pears monotonous, without the initial oscillations seen above
for smaller systems (Fig. 4e). This suggests that already with
N ∼ 30 atoms, the behavior of the system is close to the
many-body one observed in large ensembles20 with a fast ini-
tial rise of the Rydberg fraction, before it saturates. The sim-
ulation captures well the initial rise of fR, but does not re-
produce the slow increase observed at long times, which we
attribute again to multilevel effects (that are indeed expected
to be strong in this array where the internuclear axes of many
pairs lie at a large θ). Figure 4f shows the two-dimensional
Rydberg-Rydberg correlation function

g(2)(k, l) =
1

Nt

∑
i,j

〈ni,jni+k,j+l〉
〈ni,j〉〈ni+k,j+l〉

(3)

where ni,j refers to the site with coordinates (ia, ja). Al-
though the system has open boundaries and thus does not
show translational invariance, the averaging over the traps in
Eq. (3) does not wash out correlations as Rb is small com-
pared to the system size. We observe a clear depletion of the
correlation function close to the origin due to blockade. The
anisotropy of the interaction is visible, as the depletion re-
gion is elliptical, with a flattening close to 1.2. The full time
evolution of the correlation function is shown in the online
Methods.

The wide tunability of geometry and interactions demon-
strated here opens fascinating perspectives for investigating
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the physics of spin systems with tens of particles. Our
platform, especially when combined with quasi-deterministic
loading of optical tweezers as demonstrated recently21,22, will
be ideally suited for studying the transition from few- to
many-body physics23, thermalization in strongly interacting
closed quantum systems24, or the dynamical emergence of
entanglement following a quantum quench25. Using resonant
dipole-dipole interactions between different Rydberg states26,
one can also implement XY Hamiltonians with long-range
couplings27. Finally, exploiting the Zeeman structure of Ryd-
berg states holds the promise of implementing more complex
Hamiltonians, to explore for instance the physics of higher
spins28, or realize topological insulators29.
Online Content: Methods, along with any additional Ex-
tended Data display items, are available in the online version
of the paper; references unique to these sections appear only
in the online paper.
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Methods

Loading of trap arrays

In the single-atom loading regime of optical microtraps, the probability to have a given trap filled with a single atom is
p ' 1/2. Therefore, when we monitor the number of loaded traps in view of triggering the experiment, N fluctuates in time
around a mean value Nt/2, with fluctuations ∼

√
Nt.

When the number of traps is small, we can impose, as the triggering criterion, to wait until all traps are filled. The average
triggering time TN then increases exponentially with N , as can be seen in Extended Data Figure 1a. We used this ‘full-loading
mode’ for the data of Fig. 1 (1 6 N 6 9) and Fig. 3 (N = 8) of main text. This exponential scaling sets a practical limit of
N ∼ 9 for fully loaded arrays. Already for N = 9, the experimental duty cycle exceeds one minute.

Due to this, for larger Nt we use partially-loaded arrays. We set the triggering threshold in the tail of the binomial distribution
of N , i.e. close to Nt/2 +

√
Nt. This allows us to keep a fast repetition rate for the experiment, on the order of 1 s−1, enabling

fast data collection. Extended Data Figure 1b shows the distribution of loaded traps for the ‘racetrack’ array with Nt = 30
(respectively, for the Nt = 7 × 7 square array), where we set the triggering condition to N = 20 (resp. N = 30). Using
this triggering procedure, we thus end up with a narrow distribution of atom numbers N = 20 ± 1.5 (resp. N = 28 ± 1.6),
corresponding to a filling fraction of 67% (resp. 57%), significantly above the average Nt/2. These strongly subpoissonian
distributions of atom numbers are such that the variation in N from experiment to experiment has a negligible effect on the
physics studied in Fig. 4 of main text; however, as for each experiment the initial configuration image is saved, one can if needed
post-select experiments where an exact number of atoms was involved (this is how the data in Fig. 2 of main text for N > 10
were obtained).

Recently, several experiments21,22 demonstrated quasi-deterministic loading of single atoms in optical tweezers, reaching
p ∼ 90% using modified light-assisted collisions that lead to the loss of only one of the colliding atoms instead of both. A
preliminary implementation of these ideas on our setup gave p ∼ 80% for a single trap. In future work, by using such loading
in combination with the real-time triggering based on the measured number of loaded traps, it seems realistic to reach, even in
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Extended Data Figure 1|: Full and partial loading of arrays. a: Average triggering time TN when the triggering criterion is set to
N = Nt: achieving full loading requires an exponentially long time, limiting in practice the method to Nt 6 9. The triggering times can
vary substantially depending on the density of the magneto-optical trap used to load the array, and the data points shown here correspond to
typical conditions used for the data of main text. b: Distribution of the number of loaded traps in the partially loaded regime for the 30-trap
‘racetrack’ and the 49-trap square array (blue dots). The shaded distributions correspond to what would be observed with random triggering.

large arrays, filling fractions in excess of 0.9, i.e. approaching those obtained in quantum gas microscope experiments using
Mott insulators.

Experimental parameters

Extended Data Table I summarizes the various values of the parameters of the arrays of traps and of the Rydberg states used
for the data presented in the main text, and the resulting values of the dimensionless parameter α. It illustrates the wide tunability
offered by the system.

Finite detection errors

Our way to detect that a given atom has been excited to a Rydberg state relies on the fact that we do not detect fluorescence
from the corresponding trap in the final configuration image. There is however a small probability ε to lose an atom during the
sequence, even if it was in the ground state, thus incorrectly inferring its excitation to a Rydberg state11. These ‘false positive’
detection events affect the measured populations of the N -atom system. One can show that, if Pq is the observed probability to
have q Rydberg excitations, and P̃p the actual probability to have p Rydberg excitations,

Pq =

q∑
p=0

(
N − p
q − p

)
εq−p(1− ε)N−qP̃p. (4)

Trap array parameters Rydberg state parameters
Figure Spacing a Nt N n Calculated C6/h Ω/(2π) Rb α

(µm) (GHzµm6) (MHz) (µm)

2a (full) 3.0 1–9 Nt 82 −8.9× 103 1.5 14 4.5

2a (partial) 3.2 19 10–15 100 −8.0× 104 1.1 20 6.4

3a 6.3 8 8 54 −6.7 1.6 4.0 0.63

3b 6.3 8 8 61 −7.6× 102 1.3 9.1 1.4

3c 3.8 8 8 100 −8.0× 104 0.95 21 5.5

4a,b,c 3.1 30 20± 1.5 79 −6.0× 103 1.0 13.5 4.3

4d,e,f 3.5 49 28± 1.6 61 −7.6× 102 1.4 9.1 2.6

Extended Data Table I|: Experimental parameters used for the data presented in the main text. Wide tuning of α = Rb/a, over one
order of magnitude, is achieved by a combination of changes in a and n (while Ω is kept almost constant).
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Extended Data Figure 2|: Effect of detection errors. a: Experimental determination of ε. From the data of the full blockade experiments
(Fig. 2 of main text), we plot the probability P0 to recapture allN atoms for τ = 0. The solid line is a fit to the expected dependence (1−ε)N ,
giving ε = 3% (the shaded area corresponds to 2% < ε < 4%). b: Calculated probabilities to observe 0,1 or 2 excitations assuming a perfect
blockade and ε = 3%, for atom numbers N = 3, 9, 15.

In principle, one can invert the above linear system relating the observed and actual probabilities30, to correct the experimental
data for the detection errors. Here we have chosen on the contrary to show the uncorrected populations, and to include detection
errors on the theoretical curves instead.

In order to determine the experimental value of ε, we use the initial datapoints (τ = 0) of the data of Fig.2 of main text. Since
no Rydberg pulse is sent, we have P̃0 = 1, and from (4) the observed probability P0(τ = 0) reads (1 − ε)N . Extended Data
Figure 2a shows the variation of P0(0) as a function of N , together with a fit which allows us to extract ε = (3± 1)%, the value
we use for the theoretical curves in the main text (see below).

Extended Data Figure 2b shows the effect of this finite value of ε on the probabilities P0, P1 and P2 in the full blockade
regime, for atom numbers N = 3, 9, 15, clearly illustrating that the ‘false positive’ detection events (i) yield non-zero (and
increasing with N ) double excitation probabilities (that oscillate in phase with P1) (ii) multiply the amplitude of P0 by a factor
(1− ε)N and (iii) reduce the contrast of the P1 oscillations. Globally, the experimental data (see Extended Data Figure 3) shows
these features, superimposed with other imperfections such as damping, not related to the finite value of ε.

Finally, let us mention the effect of the detection errors on the correlation functions. In the fully blockaded region k < α,
one ideally expects a vanishing g(2) for ε = 0. However, to lowest order in ε, this value is increased substantially (see e.g. Fig.
4c of main text) to 2ε/fR where fR is the Rydberg fraction. Indeed, g(2)(k = 1) is given by an average of quantities of the
form 〈nini+1〉/(〈ni〉〈ni+1〉). For ε = 0, the numerator vanishes due to blockade; the only possibility to have a non-zero value
comes from detection errors. To lowest order in ε, the probability to get a nonzero value for nini+1 is that either atom i is in |r〉
(probability fR) and atom i+ 1 is lost (probability ε), or vice-versa. This results in a value 2εfR for the numerator, while for the
denominator we can use the zeroth-order values 〈ni〉 = 〈ni+1〉 = fR, thus giving g2(1) ' 2ε/fR, which experimentally can be
as large as 0.5.

Supplementary experimental data

Full Rydberg blockade.— Extended Data Figure 3 shows additional data in the full blockade regime (Fig. 2 of main text). In
Extended Data Figure 3a, the arrays of 1 to 9 traps are fully loaded, while in Extended Data Figure 3b, the 19-trap triangular
array is partially loaded with 10 to 15 atoms. In both panels, the left column shows the time evolution of the probability P0

to recapture all atoms at the end of the sequence, the middle column shows P1, and the right column shows P2. The points in
Fig. 2a of main text corresponding to N = 8 and N = 9 in partially loaded arrays were taken in a similar configuration as for
N = 10 to 15, but the array contained only Nt = 17 traps. The curves (not shown here) do not show any noticeable difference
with other sets of data.

• We recognize the effects of the finite detection errors ε 6= 0 on the amplitude and contrast of the collective oscillations
discussed in section above;

• In addition, the oscillations exhibit some damping, which seems to increase with N . To quantify this, we fit the data by
the function

P (τ) = ae−γτ
(
cos2(ΩNτ/2) + b

)
+ c, (5)

where a, b, c, γ and ΩN are adjustable parameters (solid lines). This functional form was chosen to account in a simple way
for the asymmetry in the damping. Extended Data Figure 3c shows the damping rates γ, extracted from the probabilities
P0 as a function ofN . We observe an initial increase in the damping rates, which then saturates aboveN = 5. An increase
with N of the damping rate was observed in other similar blockade experiments14−16.
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Extended Data Figure 3|: Full dataset for the Rydberg blockade data. a: Fully loaded arrays of 1 to 9 traps (n = 82). b: partially loaded
array of Nt = 19 traps, containing from N = 10 to N = 15 atoms (n = 100). The column on the left shows the probability P0 to recapture
all atoms, the center column the probability P1 to lose just one atom out ofN , and the column on the right the probability P2 to lose two atoms
out of N . The solid lines are fits by (5). c: Damping rate γ extracted from the P0 data as a function of the number of atoms in the array.

Extended Data Figure 4|: Homogeneous excitation in the 8-atom ring. a: For Ωτ = 3.1, we observe strongly contrasted oscillations in
the pair correlation function g2(k). b: The average density of Rydberg excitations, however, is approximately the same on every site. The
horizontal dashed line indicates the mean over all sites.

• In addition, we observe that P2 slowly increases over time for some specific values ofN (see in particularN = 4, 6, 9, 13),
corresponding to particular geometries.

We do not have a full understanding of these last two observations, but they may originate from the breaking of the blockade
due to the Zeeman structure of the Rydberg states nD3/2 (see discussion below).
8-atom ring.— Extended Data Figure 4 shows that, within statistical fluctuations, the density of excitations on the 8-atom ring
is homogeneous (this remains true at all times), and that the antiferromagnetic-like or crystal-like features obtained for some
times, e.g. for Ωτ = 3.1, can only be observed in the correlation functions. This illustrates the interest of our setup in which
spin chains with PBC can be realized easily. On the contrary, in a 1D chain with open boundary conditions, ‘pinning’ of the
excitations at specific sites would occur due to edge effects.
Racetrack-shaped array.— Extended Data Figure 5a shows the full evolution of the time correlation function for the data of
Fig. 4abc of the main text (Rb = 4.3a). Extended Data Figure 5b corresponds to the same settings except for the fact that one
now has Rb = 2.4a.
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Extended Data Figure 5|: Full time evolution of the correlation functions for the 30-trap, racetrack-shaped chain. a: Same as for
Figure 3a,b,c of main text. The right panel is the time evolution of the pair correlation function, clearly showing that, for times longer than
a few Ω−1, the pair correlation function does not evolve significantly anymore. The vertical dashed line indicates the value of the blockade
radius. b: The principal quantum number is now n = 57, and the Rabi frequency Ω = 2π×1.7 MHz, such thatRb = 2.4a. The central panel
shows the time evolution of the Rydberg fraction, and the right panel the time evolution of the pair correlation function. For both a and b, fR
approaches, at long times, the close-packing limit a/Rb of hard rods of length Rb (dashed horizontal lines).

Extended Data Figure 6|: Full time evolution of the correlation function for the 7× 7 square array. One observes the blockaded region
around (k, l) = (0, 0), with a slight flattening reflecting the anisotropy of the interaction. After a few Ω−1, the correlation function does not
evolve any more.

Square array of 7 × 7 traps.— Figure 6 shows the full time evolution of the two-dimensional Rydberg-Rydberg correlation
function g(2)(k, l) for the 7× 7 square lattice of Fig. 4def. Note that the two-dimensional pair correlation function is calculated
using (3), which implies that, due to the finite size of the array, the number of terms included in the sum decreases when k, l
increase. The normalization takes this variation into account.

Anisotropy of the interaction

For a pair of atoms in a nD3/2 Rydberg state with the internuclear axis not aligned with the quantization axis, the rigorous
description of the van der Waals interaction requires to include all various Zeeman sublevels; the interaction then takes the form
of a 16 × 16 matrix. To keep the description of a system of N atoms tractable, one can, in the blockade regime, define an
effective, anisotropic van der Waals potential7 reducing the previous matrix to a single scalar. For nD3/2 states, the anisotropy
reported in refs. 7,11 is well reproduced by the simple expression

Veff(r, θ) =
C6(0)

r6

(
1

3
+

2

3
cos4 θ

)
(6)
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with θ the angle between the quantization axis and the internuclear axis, giving a reduction by a factor of three in interaction
strength when θ goes from 0 to π/2.

Due to the anisotropy in (6), the shape of the blockade volume centered on a Rydberg atom is also anisotropic. However, due
to the r6-scaling of the interaction, the surface r(θ) defined by Veff(r, θ) = ~Ω is quite well approximated by a prolate spheroid
with an aspect ratio of 31/6 ' 1.2. In the figures of the main text, the shaded regions depicting the blockade volume have the
polar equation r(θ) = Rb

(
1
3 + 2

3 cos4 θ
)1/6

.

Numerical simulation of the dynamics

Our theoretical description of the system is based on the mapping of its dynamics into a pseudo-spin 1/2 model with
anisotropic long range interactions. We therefore neglect the rich Zeeman structure of the nD3/2 states. The numerical cal-
culations rest on the solution of the Schrödinger equation for the Hamiltonian of Eq. (1) of the main text in a reduced Hilbert
space H. We first write the wave function |ψ〉 of the system with N atoms in terms of states with fixed number of Rydberg ex-
citations and ground state atoms, which correspond to the eigenstates of the Hamiltonian with vanishing Rabi frequency Ω17,31.
Then the truncation procedure is based on two complementary steps: first we define the maximum number of Rydberg excita-
tions Nmax

r that we include in our basis, second we eliminate those states which display excitations closer than a fixed distance
R0. Both Nmax

r and R0 are adjusted to ensure the convergence of the dynamics. For small samples (Fig. 3 of the main text)
we performed simulations including all 256 basis states, whereas for the racetrack configurations we typically set R0 smaller
than the lattice constant but include up to Nmath

r = 10 excitations at most, reducing the dimension of H from 220 ' 106 to∑Nmax
r

q=0

(
20
q

)
' 6 × 105. For the 7 × 7 square array with 30 atoms, we set R0 = 1.3a (much smaller than the blockade radius

Rb = 2.6a), thus reducing the dimension of H to ' 3 × 106 (the full Hilbert space is of dimension 230 ' 109, and using only
the truncation criterion on the number of excitations would reduce it to about 5 × 107, still intractably large). The Schrödinger
equation within the truncated Hilbert space is then solved with standard split-step method for the two non-commuting parts of
the Hamiltonian of Eq. (1) of the main text. All these calculations were repeated for several realizations of the loading of the
arrays (50 realizations for the squared 7×7 configurations and 200 realizations for the case with fewer traps), taking into account
the anisotropic interparticle interaction of Eq. (6). The comparison with experimental data of the average fraction of excitations
fR =

∑N
q=0 qPq/N is done by including the “false positive” detection events as described by Eq. (4).

The calculation of the g(2)(k) correlation function in Fig.3d and Fig.4c of the main text follows the definition of Eq. (7).
However, contrarily to the calculation of the average fraction of the excitations it is not possible to derive an analytical formula
for g(2)(k) to properly take into account the detection efficiency of Rydberg excitations (unless k < α as described in section
S.1.3.). Therefore we implement a standard Monte Carlo algorithm to perform the average of the correlation function over
randomly generated configurations which are weighted in g(2)(k) with the initial (quantum) probability extracted from the
real time dynamics of the Schrödinger equation. For example the state |ri rj〉 which contains Nr = 2 Rydberg excitations and
amplitude ci j(t) can wrongly be dectected as the state |ri rj rq〉 with probability p = ε (1−ε)N−2. If the latter state is generated
from our sampling algorithm then its weight in the correlation function corresponds to |ci j(t)|2. Finally we average over several
hundreds randomly generated configurations to obtain well converged results for the correlation function.

Effect of partial loading of large arrays on the observed dynamics

Using the simulations described above, we explore to which extent the partial loading of our larger arrays may change the
observed dynamics as compared to the ideal case of full loading.

Extended Data Figure 7 shows, for the ‘racetrack’ array of Fig. 4abc of main text, the results of simulations for the experi-
mentally relevant case of partial loading (solid lines, filling fraction η ' 0.67) and for the ideal, full loading case (thin dashed
lines):

• Extended Data Figure 7a shows the time evolution of the Rydberg fraction fR. The dynamics is qualitatively similar in the
two situations, with initial oscillations that rapidly get damped due to the dephasing of the many incommensurate eigen-
energies of the Hamiltonian. Quantitatively, the initial oscillations are faster in the fully loaded case: this is expected, as
each blockade volume contains 1/η as many atoms, and thus, due to the scaling of the collective Rabi frequency with the
number of atoms in a blockade volume, we expect an enhancement of the oscillation frequency by ∼ η−1/2 ' 1.2, close
to what we observe. In the same way, the asymptotic Rydberg fraction when τ → ∞ is reduced by a factor close to the
expected factor η.
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Extended Data Figure 7|: Full versus partial loading for the dynamics and correlations in the case of Fig 4a,b,c of main text. a: Rydberg
fraction as a function of time for the partially loaded (solid line) or fully loaded (thin dashed line) 30-trap array. b: Pair correlation function
g(2)(k) for Ωτ ' 2.0, for the partially loaded (solid line) or fully loaded (thin dashed line) 30-trap array. In both cases, the effect of detection
errors (ε = 3%) is included.

• Extended Data Figure 7b shows the pair correlation function g(2)(k) for Ωτ ' 2.0. Here again, the changes are moderate,
although the oscillations of the correlation function for k > α would be slightly more contrasted for the fully loaded array.

Simulations for the other large array settings give similar results, allowing us to safely conclude that the partial loading of
our largest arrays does not affect significantly the observed dynamics. This conclusion would be different for other types of
experiments, for instance the transport of a spin excitation in the case of resonant-dipole-dipole interactions.

Approximative translational invariance

For the one-dimensional configurations of the main text (8-atom ring of Fig.3b and racetrack-shaped array of 30 traps of
Fig.4a of main text) we plot the spatially averaged pair correlation function

g(2)(k) =
1

Nt

∑
i

〈nini+k〉
〈ni〉〈ni+k〉

, (7)

where the subscripts label sites. For a system invariant by translation, all terms in the sum are identical, and the averaging over
i simply improves the signal to noise ratio. However, our systems are not translationally invariant, in particular because of the
anisotropy of the interaction, and a natural question to address is whether the averaging reduces the contrast of the correlation
functions. To answer this question, we have calculated the dynamics of the pair correlation function for the 8-atom ring, taking

Extended Data Figure 8|: Assessing the validity of the approximation of translational invariance in the 8-atom ring. Calculated pair
correlation function g(2)(k) as a function of the excitation time, for the 8-atom ring. a: simulation using the experimentally relevant anisotropic
interaction, which breaks translational invariance. b: simulation with the same parameters as in a, except that the angular dependence is
neglected (we replace (6) by its value for θ = 0), thus reestablishing translational invariance. One observes that the contrast in a is reduced, as
expected, but only in a marginal way.
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or not into account the anisotropy of the interaction (Extended Data Figure 8). One observes that the contrast reduction due to
averaging is very small, thereby validating our choice to perform it for the data shown in the main text.

Effective loss mechanism arising from anisotropic interactions of D states

The agreement between our measurements and the results of the simulations is not perfect for the largest excitation times, in
particular for some settings (e.g. for some configurations in the full blockade regime, for the 8-atom ring in the partial blockade
regime, and for the 7× 7 square array), where we observe a gradual increase in the number of measured Rydberg excitations.

These effects could be qualitatively reproduced if the detection errors ε would increase in time. However, the main reason for
these losses is due to the fact that the microtraps are switched off during the excitation (to avoid inhomogeneous light-shifts),
and as they are off for a fixed amount of time (3 µs), independent of τ , we do not, at first sight, expect ε to increase in time. One
could imagine however that the presence of the Rydberg excitation lasers may induce extra loss (due to off-resonant scattering for
instance), and in this case one would end up having an ε increasing with τ . We have experimentally ruled out this possibility by
measuring the recapture probability when shining the Rydberg excitation lasers, detuned from the Rydberg line by ∼ 100 MHz,
for the full 3 µs, without measuring any detrimental effect.

A second possible reason would be the motion of the atoms. Due to their finite temperature, the atoms move during free flight
with a velocity v ∼ 50 nm/µs. Now, strictly speaking, the terms corresponding to the laser coupling in Eqn. (1) of main text
are not Ωσix, but Ωeik·ri(t)σi+ + h.c., where k is the sum of the wavevectors of the excitation lasers at 795 and 475 nm, and
ri(t) the position of atom i. Thus, because of the motion, the phase factors of the couplings become time-dependent, which e.g.
yields a dephasing of the spin wave corresponding to |W 〉 states. However, a numerical simulation of this effect shows that the
induced dephasing rates are negligible for our parameters.

We thus believe that the cause for the observed extra losses lies in the interplay between the large number of interacting
Zeeman sublevels when two atoms are excited to nD3/2 states: for θ 6= 0 all 16 pair state Zeeman sublevels are coupled
together by the van der Waals interaction. For a large number of atoms, this may lead to an effective loss rate from the targeted
|r〉 states into a quasi-continuum comprising all other (weakly interacting) Zeeman states, and hence to a gradual increase of
population of the Rydberg manifold. Qualitatively, this interpretation is corroborated by the fact that the observed increase in
the number of observed excitations depends quite strongly on the array geometry: for instance, the data of the racetrack-shaped
array, for which a majority of interacting atom pairs are almost aligned along the quantization axis z, are well reproduced by the
simulations even at long times, unlike in the case of the 8-atom ring or the 7× 7 square array, for which many interacting pairs
have their internuclear axes strongly inclined with respect to z.

Achieving a quantitative understanding of these observed imperfections, using approaches similar to the ones of refs. 7,8,32, is
a challenging task. However, it is an important step in view of future applications of Rydberg blockade for quantum simulation,
and will thus be the subject of future work.
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