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A new three-noded thermomechanical beam finite element is derived for the analysis of laminated beams. The mechanical part is based on a refined model. The representation of the transverse shear strain by cosine function allows avoiding shear correction factors. This kinematics accounts for the interlaminar continuity conditions at the interfaces between the layers, and the boundary conditions at the upper and lower surfaces of the beam. A conforming FE approach is carried out using Lagrange and Hermite interpolations. Concerning the thermal part, a layerwise approach through the thickness is used. Moreover, the continuity of the transverse component of the thermal flux is constrained between the layers. It presents the advantage of reducing the number of temperature unknowns, and improve the results at the interface between two adjacent layers.

Mechanical, thermal and thermomechanical tests are presented in order to evaluate the capability of this new finite element to give accurate results with respect to elasticity or finite element reference solutions. Both convergence velocity and accuracy are discussed.

Introduction

Composite and sandwich structures are widely used in industrial field due to their excellent mechanical properties. In this context, they can be submitted to severe conditions which imply to take into account thermal effects. In fact, they can play an important role on the behaviour of structures in services, which leads to evaluate precisely their influence on stresses, particularly at the interface of layers.

The aim of this paper is to construct a finite element for analyzing laminated beams including thermomechanical effects in elasticity for small displacements.

From the literature, various theories developed in mechanics for composite or sandwich structures were extended to include thermal effects. They can be classified as

• the equivalent single layer (ESL): the number of unknowns are independent of the number of layers, but the shear stress continuity at the interfaces of layer are often violated. We can distinguish the classical laminate theory [START_REF] Tanigawa | Transient thermal stress analysis of a laminated composite beam[END_REF], the first order shear deformation theory, and higher order theories [START_REF] Reddy | Mechanics of Laminated Composite Plates-Theory and Analysis[END_REF], which analyse thermal stresses for beams and plates. • the discrete layer theory or layer-wise approach (DLT): this theory aims at overcoming the restriction of the ESL about the discontinuity of in-plane displacement at the interface layers. In this framework, Kapuria used a zigzag theory for displacements with continuity of shear stresses in the thickness for beams [START_REF] Kapuria | An efficient higher order zigzag theory for composite and sandwich beams subjected to thermal loading[END_REF] and plates [START_REF] Kapuria | An efficient higher order zigzag theory for laminated plates subjected to thermal loading[END_REF]. See also [START_REF] Ali | A new theory for accurate thermal/mechanical flexural analysis of symmetric laminated plates[END_REF]. It should be noted that Reddy [START_REF] Reddy | A generalisation of two-dimensional theories of laminated composite plates[END_REF] has already shown the efficiency of this approach in the framework of mechanics.

Unfortunately, the cost increases with the number of plies.

Carrera [START_REF] Carrera | An assessment of mixed and classical theories for the thermal stress analysis of orthotropic multilayered plates[END_REF][START_REF] Carrera | Closed-form solutions to assess multilayeredplate theories for various thermal stress problems[END_REF] has presented various ESL and DL theories with mixed and displacement-based approaches for assumed distribution of temperatures (uniform, linear, localized).

For an overview about this subject, see for example [START_REF] Reddy | Mechanics of Laminated Composite Plates-Theory and Analysis[END_REF][START_REF] Tauchert | Thermally induced flexure, buckling and vibration of plates[END_REF][START_REF] Noor | Computational models for high-temperature multilayered composite plates and shells[END_REF]. Thus, we propose a new thermomechanical finite element for rectangular laminated beam analysis, so as to have a low cost tool simple to use and efficient. In fact, for the mechanical part, our approach is associated to ESL theory. This element is fully free of shear locking and is based on a refined shear deformation theory [START_REF] Touratier | A generalization of shear deformation theories for axisymmetric multilayered shells[END_REF] avoiding the use of shear correction factors for laminates. It has only the three usual independent generalized displacements: 2 displacements and 1 rotation. The element is C 0 -continuous except for the transverse displacement associated with bending which is C 1 . For the thermal part, the layerwise approach is carried out with a quadratic variation of the temperatures through the thickness. Moreover, interface conditions between two adjacent layers are prescribed, which leads to only one temperature unknown per layer as in [START_REF] Blanc | A constrained discrete layer model for heat conduction in laminated composites[END_REF].

Finally, all the interface and boundary conditions are exactly satisfied both for displacements, stresses, temperatures, and heat flux. So, this approach takes into account physical meaning. It should be noted that this finite element has already shown its capability in the framework of mechanics [START_REF] Ganapathi | A c 1 finite element including transverse shear and torsion warping for rectangular sandwich beams[END_REF].

In this article, first, we describe the mechanical formulations. Then, the thermal part is developed. Finally, the thermomechanical coupling can be described, the thermal problem being solved. For each of these analyses, the associated finite element is given. These three parts are illustrated by numerical cases which have been performed upon various laminated beams. A parametric study is given to show the effects of divers parameters such as length-to-thickness ratio, and number of degrees of freedom. The accuracy of computations are also evaluated by comparisons with an exact three-dimensional theory for laminates in bending [START_REF] Pagano | Exact solutions for rectangular bidirectional composites and sandwich plates[END_REF][START_REF] Ali | A new theory for accurate thermal/mechanical flexural analysis of symmetric laminated plates[END_REF], and also two-dimensional finite element computations using a commercial code. 

Resolution of the mechanical problem

The governing equations for mechanics

Let us consider a beam occupying the domain

B = [0, L] × [-h/2 z h/2]×[-b/2 x 2 b/2] in a cartesian coordinate (x 1 , x 2 , z).
The beam has a rectangular uniform cross section of height h, width b and is assumed to be straight. The beam is made of k layers of different linearly elastic materials. Each layer may be assumed to be transversely isotropic in the beam axes. The x 1 axis is taken along the central line of the beam whereas x 2 and z are the two axes of symmetry of the cross section intersecting at the centroïd, see Fig. 1. As shown in this figure, the x 2 axis is along the width of the beam. This work is based upon a displacement approach for geometrically linear elastic beams.

Constitutive relation

Using matrix notations, the one dimensional constitutive equations of an orthotropic material are given by 

where we denote: the stress tensor [ ]; the strain tensor [ ].

Furthermore, in Eq. ( 1), the constitutive unidimensional laws are given by the elastic stiffness tensor

[ C].
Taking into account of the classic assumption 22 = 33 = 0 (transverse normal stresses are negligible), the longitudinal modulus is expressed from the three dimensional constitutive law by

C11 = C 11 -2C 2 12 /(C 23 + C 33 ), (2) 
where C ij are orthotropic three-dimensional elastic moduli. We also have C55 = C 55 .

The weak form of the boundary value problem

Using the above matrix notations and for admissible virtual displacement u * ∈ U * , the variational principle is given by Find u ∈ U (space of admissible displacements) such that

- B [ * ( u * )] T [ ( u)] dB + B [u * ] T [f ] dB + jB F [u * ] T [F ] djB = 0 ∀ u * ∈ U * (3) 
where f and F are the prescribed body and surface forces applied on jB F . * ( u * ) is the virtual strain. Eq. ( 3) is a classical starting point for finite element approximations.

The displacement field for laminated beams

In this particular case based on various works on beams, plates and shells, Refs. [START_REF] Touratier | A generalization of shear deformation theories for axisymmetric multilayered shells[END_REF][START_REF] Touratier | An efficient standard plate theory[END_REF][START_REF] Touratier | A refined theory of laminated shallow shells[END_REF], the displacement field is assumed to be of the following form (with w ,1 = jw/jx 1 ):

⎧ ⎪ ⎨ ⎪ ⎩ u 1 (x 1 , x 2 , z) = u(x 1 ) -zw(x 1 ) ,1 +( f (z) + g (k) (z))( 3 (x 1 ) + w(x 1 ) ,1 ), u 3 (x 1 , x 2 , z) = w(x 1 ), (4)
where in the classic manner w is bending deflection following the z direction. u is associated with the uniform extension of the cross section of the beam along the central line. And, 3 is the shear bending rotation around the z axis.

In the context of the sinus model with continuity, we have

f (z) = f (z) - h b 55 f ,3 (z) and f (z) = h sin z h ( 5 
)
and this function will represent the transverse shear strain distribution due to bending by its derivative. The coefficient b 55 and the function of the kth layer g (k) are given in Appendix A. From Eq. ( 5), classical beam models can be deduced

• Navier Bernouilli f (z) = 0 and g (k) (z) = 0.

• Timoshenko f (z) = z and g (k) (z) = 0.

• Sinus model

f (z) = h sin z h and g (k) (z) = 0.
Hence, it is obvious that lateral boundary conditions are satisfied in bending and it is not necessary to introduce transverse shear correction factors. It should be noted that it satisfies not only the lateral boundary conditions, but also the interface continuity conditions between layers. And, the procedure is given in Appendix A. Matrix notations can be easily defined using a generalized displacement vector as

[u] T = [F u (z)][E u ] with [E u ] T = u . . . w w ,1 . . . 3 (6) 
and where [F u (z)] is depending on the normal coordinate z. Its expression is given below

[F u (z)] = 1 0 -z + f (z) f (z) 0 1 0 0 . ( 7 
)
From Eq. (A.5) and Eq. (A.2), the strains for the symmetric laminated beam element are 11 = u ,1zw ,11 + f (z) + g (k) (z) (w ,11 + 3,1 ),

13 = f + g (k) (w ,1 + 3 ). ( 8 
)
These expression can be described using a matrix notation

[ ] = [F s (z)][E s ]
with

[E s ] T = u ,1 . . . w ,1 w ,11 . . . 3 3,1 (9) 
and where [F s (z)] is depending on the normal coordinate z. Its expression is given below

[F s (z)] = 1 0 -z + f (z) + g (k) (z) 0 f (z) + g (k) (z) 0 f,3 + g (k) ,3 0 f,3 + g (k) ,3 0 . ( 10 
)

Matrix expression for the weak form

From the weak form of the boundary value problem Eq. (3), and using Eqs. ( 9) and ( 10), an integration throughout the cross-section is performed in order to obtain an unidimensional formulation. Therefore, first left term of Eq. ( 3) can be written under the following form:

B [ * ( u * )] T [ ( u)] dB = L 0 [E * s ] T [k][E s ] dx 1 with [k] = [F s (z)] T [ C][F s (z)] d , (11) 
where [ C] is the constitutive unidimensional law given in Section 2.1.1, and represents the cross-section

[-h/2 z h/2]× [-b/2 x 2 b/2].
In Eq. ( 11), the matrix [k] is the integration throughout the cross-section of the material characteristics of the beam.

The finite element approximation for the mechanical part

This section is dedicated to the finite element approximation of the generalized displacement, see matrix [E s ] and [E * s ], Eq. ( 9). It is briefly described, and the reader can obtain detailed description in [START_REF] Ganapathi | A c 1 finite element including transverse shear and torsion warping for rectangular sandwich beams[END_REF].

The geometric approximation

Given the displacement field constructed above for sandwich beams, a corresponding finite element is developed to analyze the behaviour of laminated beam structures under combined loads. Let us consider the eth element L h e of the mesh L h e . This element has three nodes, denoted by (g j ) j =1,2,3 , see Fig. 2. A point with coordinate x 1 on the central line of the beam is such that: where Nl j ( ) are Serendipity linear interpolation functions and x e 1 (g j ) are Cartesian coordinates (measured along the x 1 axis) of the node g j of the element L h e . is an isoparametric or reduced coordinate and its variation domain is [-1, 1].

x 1 ( ) = 2 j =1 Nl j ( )x e 1 (g j ) (12) 

Interpolation for the bending-traction beam element

The finite element approximations of the assumed displacement field components are hereafter symbolically written as

u h i (x 1 , x 2 , z)
where the superscript h refers to the mesh L h e . From the kinematics (see Eq. (A.6)), the transverse displacement w h must be C 1 -continuous; whereas the rotation h 3 and the extension displacement u h can be only C 0 -continuous. Therefore, the generalized displacement w h are interpolated by the Hermite cubic functions Nh j ( ).

According to the transverse shear locking phenomena, the other shear bending generalized displacements, rotation h 3 , are interpolated by Serendipity quadratic functions denoted Nq j ( ). This choice allows having the same order of interpolation for both w h ,1 and h 3 in the corresponding transverse shear strain components due to bending, and permits avoiding transverse shear locking using the field compatibility approach, see [START_REF] Polit | A new eight-node quadrilateral shearbending plate finite element[END_REF].

Finally, traction u h is interpolated by Serendipity quadratic functions.

Elementary stiffness matrix

In the previous section, all the finite element mechanical approximations were defined and elementary rigidity [K e uu ] matrix can be deduced from Eq. [START_REF] Touratier | A generalization of shear deformation theories for axisymmetric multilayered shells[END_REF]. It has the following expression:

[K e uu ] = L e [B] T [k][B] dL e , (13) 
where [B] is deduced expressing the generalized displacement vectors, see Eq. ( 9), from the elementary vector of degrees of freedom (dof) denoted [q e ] by

[E s ] = [B][q e ]. (14) 
The matrix [B] contains only the interpolation functions, their derivatives and the jacobian components.

The same technique can be used defining the elementary mechanical load vector, denoted [B e u ], but it is not detailed here.

Results and discussions

The aim of the present investigation is to study the efficiency of this new element for analyzing the flexural behaviour of the sandwich/laminated beam. The problem considered here, for 

(w m = 100w(L/2, 0)E T h 3 /(q 0 L 4 )) with respect to aspect ratio S-three layers (0 • /90 • /0 • ).
evaluating the performance of the element in bending, are given below as

Flexural analysis

Problem 1. Simply supported composite cross-ply beam (0 • , 90 • , 0 • ) and (0 • , 90 • ) subjected to sinusoidal load q = q 0 sin( x 1 /L), Ref. [START_REF] Pagano | Exact solutions for rectangular bidirectional composites and sandwich plates[END_REF]. The material properties used here are

E L = 172.4 GPa, E T = 6.895 GPa, G LT = 3.448 GPa, G T T = 1.379 GPa, LT = T T = 0.25,
where L refer to fiber direction, T refer to normal direction and all layers are equal in thickness.

Before proceeding to the detailed analysis, numerical computations are carried out for the rank of the element (spurious mode), convergence properties and the effect of aspect ratio (shear locking).

This element has a proper rank without any spurious energy modes when exact integration is applied to obtain all the stiffness matrices (see [START_REF] Ganapathi | A c 1 finite element including transverse shear and torsion warping for rectangular sandwich beams[END_REF]). There is also no need to use shear correction factors here, as the transverse strain is represented by a cosine function. Further, based on progressive mesh refinement, eight element idealization is found to be adequate to model the laminated beam for a bending analysis (see Table 1).

The normalized displacement obtained at the middle of the simply supported composite beam, as mentioned in Problem 1 using the present element by considering various values for aspect ratio, is shown in Fig. 3 along with the exact solution [START_REF] Pagano | Exact solutions for rectangular bidirectional composites and sandwich plates[END_REF], and they are found to be in excellent agreement. It is also inferred from Fig. 3 that the present element is free from shear locking phenomenon as the element is developed using a field compatibility approach. The numerical results for the normalized in-plane and inter-laminar shear stresses for (0 

• /90 • /0 • ) (S = L/ h = 4 and S = 10) and (0 • /90 • ) (S = 4) are presented in

Heat conduction problem

Thermal constitutive relation

The physical problem considered here involves the twodimensional linear heat conduction with thermal conductivity components 1 , 3 in the x 1 , z directions, respectively. The constitutive relation is given by the Fourier law

[Q] = q 1 q 3 = [ ¯ ][grad( )], (15) 
where

[ ¯ ] = 1 0 0 3 and [grad( )] = ,x 1
,z q i , (i = 1, 3) is the heat flux components with respect to the coordinate system x 1 , z respectively. ,x 1 , ,z stand for the derivative of with respect to x 1 and z, respectively. It is assumed that the layers have a orthotropic symmetry. We also consider thermal conductivities as constant. However, this is not a limitation. The approach can be generalized in order to include complete conductivity matrix, interface thermal resistance, or temperature dependent coefficients.

The governing equation

For admissible virtual temperature * ∈ * , the variational principle is given by Find ∈ such that:

-

B [grad( * )] T [Q( )] dB + B * r d dB + jB h * h d djB = 0 ∀ * ∈ * , ( 16 
)
where r d and h d are the prescribed volume heat source and surface heat flux applied on jB h respectively. is the space of admissible temperatures. Again, Eq. ( 16) is the starting point for thermal finite element approximations.

Resolution of thermal problem for the laminated beam

Quadratic layerwise model

The laminate being subdivided into N discrete layers, continuous temperature field is written in the following form:

(x 1 , x 2 , z) = N k=1 (k) (x 1 , x 2 , z) ]z k ,z k+1 [ , (17) 
where

]z k ,z k+1 [ = 1 if z ∈]z k , z k+1 [, 0 if not.
Temperature variations are independent of the (0, x 2 ) direction. Then, this direction is not kept in the following notations.

The temperature variation in the x 1 direction depends on the 1D discretization. For the z direction, the layerwise technique is used.

A quadratic variation of the temperature along the thickness is considered. Introducing the non-dimensionalized thickness coordinate in the z direction, denoted , for the (k)th layer, we have

(z) = 2 [z -(z k + z k+1 )/2] z k+1 -z k .
In the layerwise approach, the temperature per layer may be written as for ∈ [-1, 1]

(k) (x 1 , ) = 1 2 ( -1) (k) Bottom (x 1 ) + 1 2 ( + 1) (k) Top (x 1 ) + (1 -2 ) (k) Middle (x 1 ), ( 18 
)
where

(k) Bottom , (k) Top , (k)
Middle are the temperatures at the bottom, top, and middle, of the (k)th layer respectively, see Fig. 7.

Therefore, some matrices can be introduced in order to prepare the one-dimensional weak form for the heat conduction problem. For the (k)th layer, we can define with

(k) (x 1 , ) = [Z( )][Cst] ⎡ ⎢ ⎣ (k) Bottom (x 1 ) (k) Middle (x 1 ) (k) Top (x 1 ) ⎤ ⎥ ⎦ (19) 
[Z( )] = [1 2 ] and [Cst] = ⎡ ⎣ 0 1 0 -1 2 0 1 2 1 2 -1 1 2 ⎤ ⎦ .
For the gradient matrix, we can write an expression in the same way, i.e.:

[grad( (k) (x 1 , ))] = [Z g ( )][Cst g ][Der (k) ] (20) 
with

[Z g ( )] = 0 0 1 2 d dz d dz 0 0 0 and [Cst g ] = ⎡ ⎢ ⎢ ⎢ ⎣ -1 2 0 0 0 1 2 0 1 0 -2 0 1 0 0 0 0 1 0 0 0 -1 2 0 0 0 1 2 0 1 2 0 -1 0 1 2 ⎤ ⎥ ⎥ ⎥ ⎦ [Der (k) ] = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ (k) Bottom (x 1 ) (k) Bottom (x 1 ) ,1 (k) Middle (x 1 ) (k) Middle (x 1 ) ,1 (k) Top (x 1 ) (k) Top (x 1 ) ,1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , where d dz = 2 z k+1 -z k .
The indices Top, Middle, and Bottom are substituted by t, m, and b respectively, for the sake of simplicity.

The continuity of the temperature fields at the layer interfaces is automatically satisfied

(k+1) b (x 1 ) = (k) t (x 1 ).
In the following, the notations (k) b and (k) m are chosen. Then, the unknowns of the thermal conduction problem are the temperatures denoted (k) b and (k) m for k = 1, . . . , N as indicated in Fig. 8. Thus, for a laminate comprising N layers, such a model taking a quadratic approximation through the thickness of each layer requires 2N + 1 independent temperatures when using only one subdivision per layer. It is possible to subdivise more any layer to improve accuracy of the computation, as it will be shown in the numerical examples.

Continuity of the heat flux

In the above approach, the continuity of the temperatures at the layer interfaces is automatically satisfied, which is not the case for the heat flux in the z direction. To respect physical meaning, this continuity at the interfaces is imposed as in [START_REF] Blanc | A constrained discrete layer model for heat conduction in laminated composites[END_REF], which allow to reduce the number of independent unknowns. So, resulting conditions at interfaces between layers (k) and (k + 1) are stated as follows:

[-

(k) 3 (k) ,z ] z=z k+1 = [- (k+1) 3 (k+1) ,z ] z=z k+1 , k = 1, . . . , N -1. ( 21 
)
Conditions on the temperatures may be deduced in the form

4 (k) (k) m + 4 (k+1) (k+1) m = (k+1) (3 (k+1) b + (k+2) b ) + (k) ( (k) b + 3 (k+1) b ), k = 1, . . . , N -1 (22) with (k) = (k) 3 z k+1 -z k .
These continuity conditions furnish a system of N -1 equations, allowing to eliminate the unknowns: (2) b , . . . , (N) b . Then, we have only N + 2 unknowns (1) b , (1) m , (2) m , . . . , (N) m , (N+1) b

. Now, boundary conditions on top and bottom faces of the laminates must be taken into account. If temperatures are prescribed, then the temperatures (1) b and

(N+1) b are known. Similarly, a normal heat flux on top and bottom of the laminate may be prescribed as:

- (1) (-3 [START_REF] Tanigawa | Transient thermal stress analysis of a laminated composite beam[END_REF] b + 4 (1) m -

(2) b ) = qinf 3 , (23) 
-(N) ( (N) b -4 (N) m + 3 (N+1) b ) = qsup 3 , (24) 
which allows to deduce (1) b and

(N+1) b

. Combination of these boundary conditions are possible as well.

Finally, taking into account the interface continuity conditions of the heat flux between the layers (cf. Eq. ( 22)), and the top and bottom boundary conditions (cf. Eqs. ( 23) and ( 24)), it implies only N unknowns, i.e. one independent temperature per layer. It should be noted that the quadratic variation of temperature allows us to write the continuity conditions with a non constant heat flux across the thickness.

Remark.

To impose these conditions of continuity in the framework of the Finite Element, a usual technique of condensation is carried out.

Matrices expressions for the weak form

From the weak form of the boundary value problem Eq. ( 16), and using Eqs. ( 20) and ( 15), an integration throughout the cross-section is performed in order to obtain the unidimensional formulation. The first term of Eq. ( 16) can be written under the following form for one layer

B [grad( * )] T [Q( )] dB = L 0 [Der (k) * ] T [k (k) ][Der (k) ] dx 1 (25) with [k (k) ] = z k+1 z k [Z g (z)] T [Cst g ] T [ ¯ ][Cst g ][Z g (z)] d (k) .
In Eq. ( 25), the matrix [k (k) ] is the integration throughout the cross-section of one layer (k) of the thermal characteristics of the beam.

FE approximation for the thermal part 3.3.4.1. Interpolation for the thermal layerwise beam element

As seen in the mechanical part (Section 2.3), a finite element corresponding to the temperature field is developed to analyze the behaviour of laminated beam structures under thermal loads. The element with three nodes is used. The generalized temperature is interpolated by Lagrange quadratic functions. Thus, in 1D, it can be written as

( ) = 3 j =1 Nq j ( ) j . ( 26 
)
Eq. ( 26) is used to define the discretization of the matrix [Der (k) ].

The vector of degrees of freedom of the three nodes element L h e for the (k)th layer is then (see Fig. 9)

[q (k) T e ] T = [ (k) 1b (k) 2b (k) 3b | (k) 1m (k) 2m (k) 3m | (k) 1t (k) 2t (k) 3t ] (27) 
with indices T e for temperature. Then, in the layerwise approach, the generalized temperatures for the (k)th layer are approximated by the following matrix expressions:

ξ g1 g 2 g3 θb θm θt (k) (k) (k) θb θm θt (k) (k) (k) θb θm θt (k) (k) (k)
[Der (k) ] = [N T ][q (k) T e ] (28) 
with

[N T ] = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ Nq 1 ( ) Nq 2 ( ) Nq 3 ( ) 0 0 0 0 0 0 Nq 1 ( ) ,1 Nq 2 ( ) ,1 Nq 3 ( ) ,1 0 0 0 0 0 0 0 0 0 Nq 1 ( ) Nq 2 ( ) Nq 3 ( ) 0 0 0 0 0 0 Nq 1 ( ) ,1 Nq 2 ( ) ,1 Nq 3 ( ) ,1 0 0 0 0 0 0 0 0 0 Nq 1 ( ) Nq 2 ( ) Nq 3 ( ) 0 0 0 0 0 0 Nq 1 ( ) ,1 Nq 2 ( ) ,1 Nq 3 ( ) ,1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
and

Nq i ( ) ,1 = Nq i ( ) , d dz , i = 1, 2, 3.

Elementary conduction matrix

For one layer (k), the conduction elementary matrix denoted [K e (k) ] is deduced from Eqs. ( 25) and ( 28)

[K e (k) ] = L e [N T ] T [k (k) ][N T ] dL e . ( 29 
)
The same technique can be used defining the elementary thermal load vector, denoted [B e ], but it is not detailed here.

Numerical examples: problem of heat conduction in a sandwich media

In this section, several cases are presented to evaluate the efficiency of our thermal approach. These examples cover a wide range of temperature distribution, with continuity of the component q 3 , and discontinuity of the component q 1 , at the interface between the layers. In the following, we denote "cont" if we constrain the continuity of the component q 3 of the heat flux, and "wtcont" if not.

Problem 1

A rectangular symmetric sandwich media is considered (see [START_REF] Blanc | A constrained discrete layer model for heat conduction in laminated composites[END_REF]). It is represented in Fig. 10.

The sandwich is composed by an isotropic core of thickness h-2e, and isotropic skins of equal thickness e =0.2h. We have L/ h = 2. k skin = 0.5 W/(Km) and k core = 50.5 W/(Km) are the conductivity coefficients. The boundary conditions are given on Fig. 11. The structure is submitted at its top edge to a simply sinusoidal temperature loading given by ¯ t (x 1 )= c sin( x 1 /L) with c = 1, while zero temperature is prescribed on the three other edges.

Temperature distributions along the thickness at station x 1 = L/2 are identical for exact solution, layerwise approach with and without continuity of the heat flux q 3 . Similarly, the distributions of the components q 3 and q 1 of the heat flux along the thickness are compared with the exact solution in Tables 2 and3. In theses tables, -/-/-indicates the number of numerical subdivisions in each layer. The mesh is composed of eight elements.

Results are in good agreement with the exact solution, even when using only one subdivision in each layer (see Figs. 12 and13).

It should be noted that the constrained continuity of the heat flux improves results at the interfaces between the layers, which is very interesting. Moreover, the error on q 3 max is less than 1% for all the cases, especially with the constrained approach, which allows to save computational cost.

The layerwise technique allows us to add numerical layers through the thickness, i.e. subdivise the three layers. The fourth, fifth, sixth columns of Tables 2 and3 show the results obtained with three different subdivisions: 1/2/1, 2/3/2, and 4/6/4 lay- ers, respectively. The convergence to the exact solution is very pronounced, especially for the heat flux q 3 .

It should be noted that the mesh has a very low influence on the temperatures and the component q 3 of the heat flux. On the other hand, the convergence of the maximal component q 1 of the heat flux is illustrated on Fig. 14. The error on q 1 max with a N = 9 mesh is less than 1%.

Problem 2

A three-layer sandwich beam with graphite-epoxy faces and a soft core with thickness e = 0.1h is considered (Cf. [START_REF] Kapuria | An efficient higher order zigzag theory for composite and sandwich beams subjected to thermal loading[END_REF]). The orientation of all the plies is: k = 0, k = 1, 2, 3. The thermal material properties used here are

• for the Face L = 1.5 W m -1 K -1 , T = 0.5 W m -1 K -1 • for the core 1 = 3 = 3.0 W m -1 K -1
Two thermal load cases are considered:

• constrained temperature on the top and the bottom surfaces of the beam such as: (x 1 , ±h/2) = max sin( x 1 /L) • constrained opposite temperature on the top and the bottom surfaces of the beam such as:

(x 1 , h/2)=-(x 1 , -h/2)= max sin( x 1 /L)
The N = 8 mesh is used. The distributions of the temperature across the thickness are depicted in Fig. 15 for the two thermal load cases. Again, the results are close to the exact solution of the heat conduction problem with only one subdivision per layer. However, distribution of heat flux q 3 (Fig. 16 left) is different from the reference (see Fig. 16 right). Again, as in Section 3.4.1, the thickness is subdivided into more than three layers. A 2/6/2 subdivision is depicted in Fig. 16 (right) and shows a very good result. To illustrate the convergence of this subdivision, an indicator is 

error(N core ) = 100 * |q 3 (x 1 = L/2, z = 0, N core ) -q ref 3 | |q ref 3 |
where N core is the number of numerical layers of the core.

It is represented in Fig. 17. Few sublayers are necessary to improve results to the reference.

Finally, these different examples show the efficiency of the layerwise approach with constrained continuity of the component q 3 of heat flux. So, physical meaning is kept. The number of unknowns remains low. Moreover, we have the possibility to improve precision with additional numerical layers across the thickness.

Thermomechanical coupling

In this section, we describe a thermomechanical coupling finite element. First, we solve the heat conduction problem. Then, we use the thermal results (temperatures), as a load for the mechanical part.

Temperature and displacement fields of Sections 2.1 and 3 are used.

Thermomechanical constitutive law

As in Section 2.2, the classic assumption 11 = 33 = 0 implies the following form of the constitutive law with thermomechanical coupling:

[ ] = [ C]([ ] -[¯ ]( -0 )) with [¯ ] = ¯ 1 0 , (30) 
where ¯ 1 can be expressed in term of thermal expansion coefficient 1 , orthotropic three dimensional elastic moduli, and the orientation of the principal material axes. 0 is the temperature at which stresses and strains do not exist.

FE approximation for the coupling 4.2.1. Matrix expression for the weak form

From the weak form of the boundary value problem Eq. (3), and using Eqs. (30) and ( 9), an integration throughout the cross-section is performed in order to obtain an unidimensional formulation. Therefore, first left term of Eq. ( 3) which takes into account the thermomechanical coupling in the constitutive law, can be written under the following form:

L 0 [E * s ] T [C (k) ][Cst] ⎡ ⎢ ⎢ ⎣ (k) Bottom (x 1 ) (k) Middle (x 1 ) (k) Top (x 1 ) ⎤ ⎥ ⎥ ⎦ dx 1 - L 0 [E * s ] T [C (k) 0 ] 0 dx 1 with [C (k) ] = z k+1 z k [F s (z)] T [ C][¯ ][Z( )] d (k)
and In Eq. (31), the matrices [C (k) ] and [C

[C (k) 0 ] = z k+1 z k [F s (z)] T [ C][¯ ] d (k) . ( 31 
(k) 0
] are the integration throughout the cross-section of one layer (k) of the thermomechanical characteristics of the beam.

Interpolation for the thermomechanical coupling: elementary coupling matrix

In Section 3.3.4, we have defined the interpolation of the temperature field, i.e.:

⎡ ⎢ ⎢ ⎣ (k) Bottom (x 1 ) (k) Middle (x 1 ) (k) Top (x 1 ) ⎤ ⎥ ⎥ ⎦ = [N ][q (k) T e ] (32) 
with

[N ] = Nq 1 ( ) Nq 2 ( ) Nq 3 ( ) 0 0 0 0 0 0 0 0 0 Nq 1 ( ) Nq 2 ( ) Nq 3 ( ) 0 0 0 0 0 0 0 0 0 Nq 1 ( ) Nq 2 ( ) Nq 3 ( ) .
In the previous section, all the finite element mechanical approximations were defined and elementary thermomechanical coupling [F e thmeca (k) ] vector for one layer can be deduced from Eq. (31). It has the following expression:

[F e thmeca (k) ] = L e [B] T [C (k) ][Cst][N ] dL e [q (k) T e ] - L e [B] T [C (k) 0 ] 0 dL e . ( 33 
)
It should be noted that the [q (k) T e ] vector comes from the thermal calculus. 

Numerical results

Problem 1

The three-layer sandwich beam with graphite-epoxy faces and a soft core of Section 3.4.2 is considered. The mechanical material properties used here are

• for the face:

Y L = 131.1 GPa, Y T = 6.9 GPa, G LT = 3.588 GPa, G T T =2.3322 GPa, LT =0.32, T T =0.49, L =0.0225× 10 -6 K -1 , T = 22.5 × 10 -6 K -1 , • for the core:

E 1 =0.2208 MPa, E 2 =0.2001 MPa, E 3 =2760 MPa, G 12 = 16.56 MPa, G 23 =455.4 MPa, G 13 =545.1 MPa, 12 =0.99, 13 = 3 × 10 -5 , 23 = 3 × 10 -5 , 1 = 3 = 30.6 × 10 -6 K -1 .
The second thermal load case is considered, i.e., the constrained opposite temperature on the top and the bottom surfaces of the beam. It corresponds to a thermal bending problem. A thermomechanical analysis for this highly inhomogeneous simply-supported beam is carried out with a N = 16 mesh. The transverse shear stress is obtained by integration of the equilibrium equation. The reference solution is given by ANSYS software with a very refined mesh.

The results ( ū1 , ū3 , ¯ 11 , ¯ 13 ) are nondimensionalised, using

ū1 = 100u 1 T Sh max , ū3 = 100u 3 T S 2 h max , ¯ 11 = 11 T E T max , ¯ 13 = S 13 T E T max . ( 34 
)
The results are in good agreement with the reference calculation for the displacement ū1 , and the stresses ¯ 11 and ¯ 13 . The errors for the maximal values of stresses are less than 1%. On the other end, the transverse displacement ū3 is not correct due to our kinematics (Figs. 18 and19).

Problem 2 (Cf. [7])

In order to see the capability of the refined model, the accuracy of the present theory is assessed by comparison with the exact 2D thermo-elasticity solution [START_REF] Bhaskar | Thermoelastic solutions for orthotropic and anisotropic composite laminates[END_REF]. We focus on stresses which are the quantities of interest in the field of design.

A temperature field is applied to the beam, as follows A cross-ply laminated case (0 • /90 • /0 • ) is considered. A N =16 mesh is used. The transverse stress is obtained by the integration of the equilibrium equations. As in Ref. [START_REF] Carrera | An assessment of mixed and classical theories for the thermal stress analysis of orthotropic multilayered plates[END_REF], we define the dimensionless quantities:

(x 1 , z) = max 2 2z h sin x 1 L . ( 35 
¯ 11 = 11 L E T max 2 , ¯ 13 = 13 L E T max 2 . ( 36 
)
First, we show the convergence of the finite element for the stresses ¯ 11 and the transverse shear one ¯ 13 in Table 4. For S = 50, the results obtained are in good agreement with the exact values with few elements. Only four elements (24 dofs) drive to an error which is less than 3.5%. For the axial stress, the results are excellent with only two elements. Then, we study the influence of the length to thickness ratio in Table 5. It permits to evaluate the performance of the element from moderately thick (S = 20) to very thin beam (S = 100). It should be noted that the results about the stress ¯ 11 are in good agreement with respect to the exact solution. The error is less than 1% whenever the value of S. Good results are obtained for the transverse stress (error of 4% for S = 20, and less than 1% for S > 20).

Fig. 20 shows the comparison of transverse stress through the thickness for S = 20, and proves again the validity of our element. The transverse stress is obtained by the integration of the equilibrium equation. The stress ¯ 11 through the thickness is also excellent (see Fig. 21).

Conclusion

A new three-node multilayered beam finite element has been presented to analyse the thermomechanical behaviour of sandwich and laminated beams. It is based on a refined kinematic model for the mechanical part, avoiding the use of transverse shear correction factors, and on the layerwise approach for the thermal part. It should be noted that all the interface and bound- ary conditions are exactly satisfied both for the mechanical part (displacements, transverse shear stresses), and for the thermal part (temperatures, transverse heat flux). So, this approach has a strong physical meaning. It also has the advantage of reducing the number of thermal unknowns which makes this finite element simple and efficient for a low cost.

Several numerical evaluations have proved that this finite element has very good properties in the field of finite elements. Convergence velocity is high not only for displacements or temperatures but also for stresses and heat flux. Furthermore, accurate results are obtained and have been compared to exact solutions for mechanical, thermal and thermomechanical problems. In particular, we can stress the emphasis on the good results at the interface between two adjacent layers for transverse heat flux and transverse shear stress. Moreover, the distribution of the stresses across the thickness are correctly described.
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 1 Fig. 1. The laminated beam and co-ordinate system.
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 2 Fig. 2. Description of the laminated beam finite element.
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 3 Fig.3. Variation of the non-dimensional maximum displacement (w m = 100w(L/2, 0)E T h 3 /(q 0 L 4 )) with respect to aspect ratio S-three layers (0 • /90 • /0 • ).
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 4 Fig. 4. Distribution of ¯ 11 along the thickness-S = 4 (left)-S = 10 (right); three layers (0 • /90 • /0 • ).
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 5 Fig. 5. Distribution of ¯ 13 along the thickness-S = 4 (left)-S = 10 (right); three layers (0 • /90 • /0 • ).
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 4 Figs.[START_REF] Kapuria | An efficient higher order zigzag theory for laminated plates subjected to thermal loading[END_REF], 5 and 6, respectively, for further comparison. It is seen from these figures that the new element performs quite well for moderately thick beams as well as thin beam. It should be
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 6 Fig. 6. Distribution of ¯ 13 (left) and ¯ 11 (right) along the thickness-S = 4-two layers (0 • /90 • ).
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 17 Fig. 7. Unknown temperatures in the (k)th layer.
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 8 Fig. 8. Description of unknown temperatures along the thickness.
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 9 Fig. 9. Description of the laminated beam finite element.
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 111 Fig. 10. Rectangular sandwich media.
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 12 Fig. 12. Temperatures across the thickness at x 1 = L/2.
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 13 Fig.[START_REF] Ganapathi | A c 1 finite element including transverse shear and torsion warping for rectangular sandwich beams[END_REF]. Distribution of heat flux q 3 and q 1 along the thickness at x 1 = L/2 (left) and x 1 = L (right).
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 15 Fig. 15. Distribution of temperature across the thickness for load case 1 (left)-2 (right).
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 216 Fig.[START_REF] Touratier | A refined theory of laminated shallow shells[END_REF]. Distribution of heat flux q 3 along the thickness with and without continuity (left), and with sub-layers and exact solution (right).
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 171819 Fig. 17. Error versus number of layers N core .

)

  It corresponds to a cylindrical bending. The beam is simply supported. The mechanical properties of the lamina areE T E L = 25, G LT E T = 0.5, G T T E T = 0.2, LT = T T = 0.25,
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 21 Fig. 20. ¯ 13 (0, z) for S = 20.

Table of

 of 

		principal notation
	[ ]		stress tensor
	[ ]		strain tensor
			temperature
	[K e uu ] [K e (k) ]		elementary stiffness matrix elementary conduction matrix for the layer
			(k)
	[F e thmeca	(k) ]	elementary thermomechanical coupling vec-
			tor for the layer (k)
	N		number of elements
	sin		sinus model without continuity of the shear
			stress
	sin-c		sinus model with continuity of the shear
			stress

Table 1 ¯

 1 [START_REF] Ganapathi | A c 1 finite element including transverse shear and torsion warping for rectangular sandwich beams[END_REF] (0, 0), w m for different number of dofs (sin-c): mesh convergence study-S = 20

	N	Number dof	w m =	100w(L/2,0)E T h 3 q 0 L 4	¯ 13 (0, 0) = 13 /q 0			
				Error	Direct	Error	Equil. Eq	Error
	1	6	0.6177	< 0.1%	9.3497	7%	5.8090	33%
	2	12	0.6174	< 0.1%	9.1163	4%	7.9540	9%
	4	24	0.6173	< 0.1%	9.1002	4%	8.5406	2%
	8	48	0.6173	< 0.1%	9.0995	4%	8.6908	< 1%
	16	96	0.6173	< 0.1%	9.0995	4%	8.7286	< 1%
	Exact		0.6172		8.7490			

Table 4 ¯

 4 [START_REF] Ganapathi | A c 1 finite element including transverse shear and torsion warping for rectangular sandwich beams[END_REF] (0, ±h/6), ¯ 11 (L/2, ±h/6) for different number of dofs (sin-c): mesh convergence study-S = 50

	N	Number dof	¯ 11 (L/2, ±h/6)	Error	¯ 13 (0, ±h/6) Equil. Eq	Error
	2	1 2	±374.04	< 1%	0.491			17%
	4	2 4	±374.07	< 1%	0.574			3.5%
	8	4 8	±374.08	< 1%	0.596			< 1%
	10	60	±374.08	< 1%	0.598			< 1%
	12	72	±374.08	< 1%	0.599			< 1%
	Exact		±371.40		0.595			
	Table 5								
	¯ 13 (0, ±h/6), ¯ 11 (L/2, ±h/6) for different values of S						
	S	¯ 11 (L/2, ±h/6)				¯ 13 (0, ±h/6)			
		sin-c	sin	exact	error	sin-c	sin	exact	error
	20	±374.0	±374.1	±371.5	< 1%	1.509	1.504	1.441	4%
	50	±374.1	±374.1	±371.4	< 1%	0.600	0.600	0.595	< 1%
	100	±374.1	±374.1	±371.4	< 1%	0.300	0.300	0.299	< 1%

The lamination scheme for the beam is such that layers are parallel to the x 1 -x 2 plane, see Fig. 1.

In this case, both free traction conditions on plane z = ±h/2 and interface continuity conditions must be satisfied. The bending part in the x 1 -z plane has therefore to be modified relative to Eq. ( 4).

To reach objectives about continuity and boundary conditions, we assume that the transverse shear stress (k) 13 (where we denote k = 1, 2, 3 the layers from the bottom to the top of the beam) takes the following form:

still assuming both normal transverse strain

33 and stress

negligible, which in particular involves u b3 3 (k) = w for the x 1 -z plane bending part. For small displacements, the transverse shear strain associated with the bending in the x 1 -z plane is then defined as

From the orthotropic constitutive law, we also find

So, between Eqs. (A.2) and (A.3), we have

Taking into account of Eq. (A.1), this latest becomes

Integrating this equation with respect to the z coordinate gives the shear-bending part of the displacement field associated with the bending in the x 1 -z plane

where we have introduced the following notations:

In Eq. (A.7), coefficients d (k) are determined such that the component u b3 1 (k) of the displacement is continuous at the interface of adjacent layers and the coefficient b 55 allows the component u b3 1 (k) to disappear at the midplane. Finally, coefficients a (k) 55 in Eq. (A.7) are computed from the requirement that the transverse shear stress (k) 13 is continuous at the interface of adjacent layers and disappears at the top and bottom surfaces of the beam (faces z = ±h/2, see Fig. 1).

We then obtain for a sandwich composite beam the following coefficients appearing in Eq. (A.6) due to symmetries of the problem:

13 b 55 ,

d (1) = d (2) z (2) a [START_REF] Tanigawa | Transient thermal stress analysis of a laminated composite beam[END_REF] 55

Remark. Note that this approach for multilayered structures has been successfully used for shells [START_REF] Béakou | A rectangular finite element for analysing composite multilayered shallow shells in statics, vibration and buckling[END_REF] with angle-ply and cross-ply schemes.

Finally, the displacement field for symmetric sandwich beams made of transversely isotropic materials is given by the field shown by Eq. (A.6), in which we add the longitudinal displacement due to traction represented by the function u(x 1 ), as in Eq. ( 4).

Of course, all displacement and stress conditions are exactly satisfied for shear-bending.