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Refined sine finite element for laminates

A refined sine finite element with transverse normal stress for thermoelastic

analysis of laminated composite in cylindrical bending

P. Vidala,∗, O. Polita

aLEME - EA 4416 - Université Paris Ouest
50 rue de Sèvres - 92410 Ville d’Avray - France

Abstract

An unidimensional three-node composite finite element including the transverse normal effect is

presented in the framework of the thermoelastic coupling. The kinematics is based on a sinus

distribution with layer refinement and a second order expansion for the deflection. The calculation

of the transverse normal stress comes from a weak formulation and takes into account the physical

considerations. Numerical results for displacements and stresses are provided for very thick and

thin structures in cylindrical bending. They are compared with exact elasticity solution and the

results are promising.

Keywords: composite structures, transverse normal stress, finite element analysis, refined sine

model.

1. INTRODUCTION

Composite and sandwich structures are widely used in the industrial field due to their excellent

mechanical properties, especially their high specific stiffness and strength. In this context, they

can be subjected to severe thermal conditions (through heating or cooling). For composite design,

accurate knowledge of displacements and stresses is required. So, it is important to take into ac-

count effects of the transverse shear deformation due to the low ratio of transverse shear modulus

to axial modulus, or failure due to delamination ... In fact, they can play an important role on the

behavior of structures in services, which leads to evaluate precisely their influence on local stress

fields in each layer, particularly on the interface between layers.
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The aim of this paper is to develop a finite element including the transverse normal deformation,

so as to obtain accurate predictions for the behavior of laminated composite structures subjected

to thermal loading. This analysis is limited to the elasticity area in relation to small displacements.

In this context, it is necessary to take into account the transverse normal effect, in particular for

thermal loads and thick structures.

According to published research, various theories in mechanics for composite or sandwich structures

(beams and plates for the present scope) have been developed. Then, they have been extended to

thermomechanical problems. The following classification is associated with the dependancy on the

number of unknowns with respect to the number of layers:

• the Equivalent Single Layer approach (ESL): the number of unknowns is independent of the

number of layers, but continuity of transverse shear and normal stresses is often violated at

layer interfaces. The first work for one-layer isotropic plates was proposed in [1]. Then, we

can distinguish the classical laminate theory [2, 3] (it is based on the Euler-Bernoulli hypoth-

esis and leads to inaccurate results for composites and moderately thick beams, because both

transverse shear and normal strains are neglected), the first order shear deformation theory

([4]), and higher order theories.

In this family, some studies take into account transverse normal deformation. In the frame-

work of thermomechanical problems, different approaches have been developed including

mixed formulations [5] and displacement-based ones [6, 7, 8, 9].

• the Layerwise approach (LW): The number of dofs depends on the number of layers. This

theory aims at overcoming the ESL shortcoming of allowing discontinuity of out-of-plane

stresses on the interface layers. It was introduced in [10, 11]. For the thermomechanical

analysis, readers can refer to [9] for displacement and [12, 13] for mixed approach.

In this framework, refined models have been developed in order to improve the accuracy of ESL

models while avoiding the computational burden of the LW approach. Based on physical consider-

ations and after some algebraic transformations, the number of unknowns becomes independent of

the number of layers. [14] has extended the work of [15] for symmetric laminated composites with

arbitrary orientation and a quadratic variation of the transverse stresses in each layer. A family of

models, denoted zig-zag models, was employed in [16], then in [17, 18, 19]. More recently, it was
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also modified and improved by some authors [12, 20] with different order of kinematics assump-

tions, taking into account the transverse normal strain.

Another way to improve the accuracy of the results consists in the sublaminates strategy, which

is proposed in [21] and [22]. The number of subdivisions of the laminate thickness determines the

accuracy of the approach. It allows to localize the layer refinement without increasing the order

of approximation. Nevertheless, the computational cost increases with the number of numerical

layers. For recent studies, the reader can also refer to [12, 23, 24].

This above literature deals with only some aspects of the broad research activity about models

for layered structures and corresponding finite element formulations. An extensive assessment of

different approaches has been made in [25, 26, 27, 28, 29].

In this work, an unidimensional three-node composite finite element is built for the thermome-

chanical coupling in cylindrical bending. This study aims at developing a low cost tool, efficient and

simple to use. In fact, our approach is associated with the ESL theory. This element is totally free

of shear locking and is based on a refined shear deformation theory [30] avoiding the use of shear

correction factors for laminates. It is based on the sinus model [31] with the capability to include

the transverse normal effect. In this work, the new important feature holds on an independent

assumption introduced for the transverse normal stress. Then, a weak relation between the trans-

verse normal strain deduced from the previous assumption and the derivative of the deflection is

imposed in a least-square sense as in [5] for a {1,2}-order theory and [32, 33] for a {3,2}-order one.

The transverse displacement is written under a second order expansion which avoids the Poisson

locking mechanism (see [34]). For the in-plane displacement, the double superposition hypothesis

from [35] is used: three local functions are added to the sinus model. Finally, the problem can be

written under a displacement-based formulation, and this process yields to only eight independent

generalized displacements. It should be noted that all interface and boundary conditions are ex-

actly satisfied for displacements, transverse shear and normal stresses. Therefore, this approach

takes into account physical meaning.

As far as the interpolation of this finite element is concerned, our element is C0-continuous except
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for the transverse displacement associated with bending which is C1.

We now outline the remainder of this article. First the thermo-mechanical formulation for

the present model is described. Then, the associated finite element is given. It is illustrated

by numerical tests which have been performed upon various laminated structures in cylindrical

bending. A parametric study is given to show the effects of different parameters such as length-to-

thickness ratio and number of degrees of freedom. The accuracy of computations is also evaluated

by comparison with an exact three-dimensional theory for laminates in bending [36, 37]. We put

the emphasis on the direct calculation of the transverse shear and normal stresses. The results

of our model is then compared with the approach consisting in calculating transverse shear and

normal stresses from the equilibrium equations.

2. RESOLUTION OF THE THERMOMECHANICAL PROBLEM

2.1. The governing equations for thermomechanics

Let us consider a plate occupying the domain B = [0, L] × [−h
2 ≤ z ≤ h

2 ] × [− b
2 ≤ x2 ≤ b

2 ]

in a Cartesian coordinate (x1, x2, z). The plate has an uniform cross section of height h, width

b and is assumed to be straight. The structure is made of NC layers of different linearly elastic

materials. Each layer may be assumed to be orthotropic in the plate axes. The plane (x1, x2) is

the middle surface of the plate, and z is the transverse axis, see Fig. 1. This work is based upon

a displacement approach for geometrically linear elastic plates.

x1

z L

h

x2

Figure 1: The laminated plate and co-ordinate system

The present study is limited to the cylindrical bending case. In the following, the x2 direction

is omitted.
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2.1.1. Constitutive relation

Each layer of the laminate is assumed to be orthotropic. As precised previously, we suppose

that ε
(k)
22 = γ

(k)
12 = γ

(k)
23 = 0. Using matrix notation, the thermoelastic stress-strain law of the kth

layer can be written under a ”mixed” form such as




σ
(k)
11

ε
(k)
33

σ
(k)
13


 =




C̄
(k)
11 R̄

(k)
13 0

−R̄
(k)
13 S̄

(k)
33 0

0 0 C
(k)
55




︸ ︷︷ ︸
[C̄]




ε
(k)
11

σ
(k)
33

γ
(k)
13


 −




α
(k)
11 C̄

(k)
11 + α

(k)
22 C̄

(k)
12

−R̄
(k)
13 α

(k)
11 − R̄

(k)
23 α

(k)
22 − α

(k)
33

0




︸ ︷︷ ︸
[C̄∆T ]

∆T (x1, z) (1)

with C̄
(k)
ij = C

(k)
ij − C

(k)
i3 C

(k)
j3

C
(k)
33

, R̄
(k)
ij =

C
(k)
ij

C
(k)
33

, S̄
(k)
33 =

1

C
(k)
33

.

In this expression, ∆T is the temperature rise, the Cij are the three-dimensional stiffness coefficients

and αij are the thermal expansion coefficients obtained after a transformation from the material

axes to the Cartesian coordinate system.

The expression of ∆T (x1, z) can be splitted into two parts such as ∆T (x1, z) = G∆T (z)F∆T (x1).

2.1.2. The weak form of the boundary value problem

Using the above matrix notation and for admissible virtual displacement �u∗ ∈ U∗, the varia-

tional principle is this:

find �u in the space U of admissible displacements such that

−
∫
B

[ε(�u∗)]T [σ(�u)] dB +
∫
B

[u∗]T [f ]dB +
∫

∂BF

[u∗]T [F ] d∂B = 0

∀�u∗ ∈ U∗
(2)

where [f ] and [F ] are the prescribed body and surface forces applied on ∂BF . ε(�u∗) is the virtual

strain.

Eq. (2) is a classical starting point for finite element approximations.

2.2. The displacement field for the laminated structure in cylindrical bending

Based on the sinus function (see [30, 38]), a model which takes into account the transverse

normal deformation is presented in this section. This refined sinus model includes a 2nd order

expansion for the transverse displacement.

It is based on both
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• various works on beams, plates and shells, cf. references [38, 31, 30, 39, 40] concerning the

refined theory,

• the so-called 1,2-3 double-superposition theory developed by Li and Liu [35],

• the particular treatment of the transverse normal stress developed in [32, 5].

It also follows works about local-global approach applied to thermomechanical analysis in [41].

This refined model (see [42, 43]) takes into account the continuity conditions between layers of the

laminate for both displacements, transverse shear stress and transverse normal stress, and the free

conditions on the upper and lower surfaces.

The kinematics of the model is assumed to be of the following particular form (with w′ =

∂w/∂x1): 


u1(x1, z) = u(x1) + z v1(x1) + z2v2(x1) + f(z)(ω3(x1) + w0(x1)′)

+
NC∑
k=1

(
ū

(k)
loc (x1, z) + û

(k)
loc (x1, z)

)
(H(z − zk) − H(z − zk+1))

u3(x1, z) = w0(x1) + zw1(x1) + z2w2(x1)

(3)

where H is the Heaviside function defined by


H(z − zk) = 1 if z ≥ zk

H(z − zk) = 0 if not
(4)

In the classic approach, w0 is the bending deflection following the z direction, while u is associ-

ated with the membrane displacement of a point of the middle surface, and ω3 is the shear bending

rotation around the x2 axis.

The local functions ū
(k)
loc and û

(k)
loc based on the Legendre polynomial can be written as




ū
(k)
loc (x1, z) = ζku

k
31(x1) + (−1

2
+

3ζ2
k

2
)uk

32(x1)

û
(k)
loc (x1, z) = (−3ζk

2
+

5ζ3
k

2
)uk

33(x1)

(5)

where we have introduced the nondimensional coordinate ζk = akz − bk, with ak =
2

zk+1 − zk
and

bk =
zk+1 + zk

zk+1 − zk
. The coordinate system is precised on Fig. 2.
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In the context of the sinus model, we have f(z) = h
π sin πz

h and the derivative of this function will

represent the transverse shear strain distribution due to bending.

Hence, it is not necessary to introduce transverse shear correction factors.

+1

layer (k)

layer (1)

...
...

layer (NC)

−1

zNC+1

zNC

zk+1

zk

z2

x1

z1z

ζk

Figure 2: transverse coordinate of laminated plate

At this stage, 3 × NC + 7 generalized displacements are included in Eq. (3)-Eq. (5).

The following part is dedicated to the obtention of relations between kinematic unknowns from:

• lateral boundary conditions,

• interlaminar continuity conditions (in-plane displacement, transverse shear stress).

2.2.1. Continuity conditions and free conditions

From the displacement field Eq. (3), continuity conditions on the displacements and the inter-

laminar stress must be imposed:

• displacement continuity conditions at the interface layer k as in [44]:

ū
(k)
loc (x1, zk) = ū

(k−1)
loc (x1, zk) k = 2, . . . , NC (6)

û
(k)
loc (x1, zk) = û

(k−1)
loc (x1, zk) k = 2, . . . , NC (7)

• transverse shear stress continuity between two adjacent layers:

σ
(k)
13 (x1, z

+
k ) = σ

(k−1)
13 (x1, z

−
k ) k = 2, . . . , NC (8)
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• free conditions of the transverse shear stress on the upper and lower surfaces

σ
(1)
13 (x1, z = −h

2
) = 0 and σ

(NC)
13 (x1, z =

h

2
) = 0 (9)

Finally, the number of generalized displacements is reduced to 8, which is independent of the

number of layers. The remaining unknowns are u, w0, ω3, v1, v2, w1, w2 and u1
31.

2.3. Expression of the strains and stresses

From Eq. (1), it is necessary to have the expressions of ε11, γ13 and γ33.

2.3.1. Expression of the strains

The in-plane and transverse shear strain can be deduced from the expression of the displace-

ments (Eq. (3)) and the physical considerations given in Eq. (6), Eq. (7), Eq. (8) and Eq.

(9):

ε11 = u,1 + z v1,1 + (z2 + Sα(z)) v2,1 + (f(z) + Sβ(z)) (w0,11 + ω3,1)

+ Sδ(z)u1
31,1 + Sλ(z)w1,11 + Sµ(z)w2,11 + Sη(z) (w0,11 + v1,1)

γ13 =
(
f(z),3 + Sβ(z),3

)
(w0,1 + ω3) + Sδ(z),3u

1
31 +

(
1 + Sη(z),3

)
(w0,1 + v1)

+
(
2 z + Sα(z),3

)
v2 +

(
z + Sλ(z),3

)
w1,1 +

(
z2 + Sµ(z),3

)
w2,1

(10)

The expressions of the continuity functions S×(z) are given in Appendix A.

2.3.2. Expression of the transverse normal stress / strain

This section is dedicated to the deduced expression of the transverse normal strain from a

particular form of the transverse normal stress. The process is based on some works developed in

[32, 5] which introduce an independent polynomial expansion for the transverse normal stress.

In each layer (k), the transverse normal stress σ
(k)
33 is approximated by a quadratic expansion

through the thickness as follows

σ
(k)
33 (x1, ζk) =

2∑
i=0

σ33i
(k)(x1)ζi

k (11)

The number of unknowns σ33i
(k) in σ

(k)
33 , k = 1, ..., NC is reduced by imposing:

• the continuity of the transverse normal stress and its derivative at the layer interfaces,
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• the free conditions on the top and bottom of the surface,

(At this stage, the number of unknowns is equal to NC)

• the conditions on the derivative of the transverse normal stress on the upper and lower sur-

faces for NC > 3.

Note that the number of remaining unknowns including in σ
(k)
33 must be greater than two so

as to avoid a too more constrained problem.

Then, a weak relation is verified between the transverse normal strain and the derivative of the

transverse displacement. It allows us to express the remaining unknowns in σ
(k)
33 with respect to

the generalized unknowns of the present model that is :

minimizing
∫ h/2

−h/2

(
ε
(k)
33 − u3,z

)2
dz (12)

where the expression of ε
(k)
33 is given in Eq. (1).

This problem can be written under the form of a linear system. It allows us to deduce the

expression of σ
(k)
33 with respect to the generalized unknowns and their derivatives u′, w′′

0 , ω′
3, v′1,

v′2, w1, w2, w′′
1 , w′′

2 and u1
31

′. This expression is given in Appendix B.

2.4. Matrix expression for the weak form

From the weak form of the boundary value problem Eq. (2), and using Eq. (C.1), Eq. (C.2)

and Eq. (B.4), an integration throughout the cross-section is performed analytically in order to

obtain an unidimensional formulation. Therefore, the first left term of Eq. (2) can be written

under the following form:

∫
B

[ε(�u∗)]T [σ(�u)] dB =
∫ L

0
[E∗

s ]T [k] [Es] dx1 −
∫ L

0
[E∗

s ]T [f∆T ] dx1 (13)

where the matrix [k] can be expressed as

[k] =
∫

Ω
[Fs(z)]T




C̄
(k)
11 0 0

0 S̄
(k)
33 0

0 0 C
(k)
55


 [Fs(z)] dΩ

9



and Ω represents the cross-section.

In Eq. (13), the matrix [k] and the vector [f∆T ] are the integration throughout the cross-section

of the material characteristics. The interest of the Legendre polynomials choice can be emphasized

in the calculation of the matrices [k] owing to their properties of orthogonality. The vector [f∆T ]

can be considered as a thermomechanical load and is not detailed here for brevity reason.

2.5. The finite element approximation

This section is dedicated to the finite element approximation of the generalized displacement,

see matrices [Es], [E∗
s ], [Eu], and [E∗

u] (Eq. (C.1) and Eq. (A.3)). It is briefly described, and the

reader can obtain a detailed description in [31, 42].

2.5.1. The geometric approximation

Given the displacement field constructed above for laminated structures, a corresponding finite

element is developed in order to analyze the behaviour of these structures under combined loads.

Let us consider the eth element Le
h of the mesh ∪Le

h. This element has three nodes, denoted by

(gj)j=1,2,3, see Fig. 3. The coordinate x1 of a point on the middle surface is approximated by

x1(ξ) =
2∑

j=1

Nlj(ξ) x1
e(gj) (14)

where Nlj(ξ) are Lagrange linear interpolation functions and x1
e(gj) are Cartesian coordinates

(measured along the x1 axis) of the node gj of the element Le
h. ξ is an isoparametric or reduced

coordinate and its variation domain is [−1, 1].

u uu
w0w0
w0,1w0,1

ω3

ω3ω3

u1
31

u1
31u1

31

g1 g3 g2

w1w1
w1,1w1,1
w2w2
w2,1w2,1

v1

v1v1
v2

v2

v2

Figure 3: Description of the unidimensional laminated finite element d.o.f.

2.5.2. Interpolation for the bending-traction 1D element

The finite element approximations of the assumed displacement field components are hereafter

symbolically written as ui
h(x1, z) where the superscript h refers to the mesh ∪Le

h.
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From the kinematics (see Eq. (3)), the generalized unknowns related to the transverse displace-

ment (wh
i )i=0,2 must be C1–continuous ; whereas the rotation ω3

h, the extension displacement uh,

vh
1 , vh

2 and u1
31 can be only C0–continuous. Therefore, the generalized displacements (wh

i )i=0,2 are

interpolated by the Hermite cubic functions Nhj(ξ).

According to the transverse shear locking phenomena, the other shear bending generalized

displacement, rotation ω3
h, is interpolated by Lagrange quadratic functions denoted Nqj(ξ). This

choice allows the same order of interpolation for both wh
0 ,1 and ω3

h in the corresponding transverse

shear strain components due to bending, thus avoiding transverse shear locking according to the

field compatibility approach [45].

Finally, traction uh, vh
1 , vh

2 and u1
31 are interpolated by Lagrange quadratic functions.

2.5.3. Elementary matrices

In the previous section, all the finite element mechanical approximations were defined, and the

elementary stiffness [Ke
uu] matrix can be deduced from Eq. (13). It has the following expression:

[Ke
uu] =

∫
Le

[B]T [k] [B] dLe (15)

where [B] is deduced from the relation between the generalized displacement vectors, see Eq. (C.1),

and the elementary vector of degrees of freedom (d.o.f.) denoted [qe], i.e.:

[Es] = [B] [qe] (16)

The matrix [B] contains only the derivatives of the interpolation functions and the Jacobian com-

ponents.

The same technique can be used to define the elementary thermomechanical load vector, denoted

[Be
∆T ], but it is not detailed here.

3. Numerical results

In this section, the accuracy of the present theory is assessed on numerical tests performed

upon various symmetric and unsymmetric laminated composite plates in cylindrical bending for a

wide range of length-to-thickness ratios (from very thick to very thin structure). The results are

compared with the exact 2D thermo-elasticity solution [37]. A special attention is also pointed

toward the estimation of the transverse normal stress which has to be taken into account in this
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coupled analysis. Note that the distribution of the transverse normal and shear stresses through

the thickness is given from two approaches:

• a direct approach by using the constitutive relation for σ13 or the quadratic expansion for

σ33 (Eq. (11)),

• a post-processing computation using the integration of the equilibrium equation (denoted

Equil. Eq).

The problem is described as follows:

geometry: composite cross-ply plate, slenderness from S=2 to S=100; half of the structure is

meshed. All layers have the same thickness.

boundary conditions: simply supported plate subjected to a temperature field as follows:

∆T (x1, z) = Tmax
2z
h

sin(
πx1

L
) (17)

It corresponds to a cylindrical bending.

material properties:

EL = 172.4 GPa , ET = 6.895 GPa , GLT = 3.448 GPa ,

GTT = 1.379 GPa , νLT = νTT = 0.25

where L refers to the fiber direction, T refers to the transverse direction.

αT

αL
= 1125

where αL, αT are the thermal expansion coefficients in the fiber and normal direction respec-

tively.

mesh: N=8

results: As in reference [13], we define the dimensionless quantities:

ū =
u1

αLTmaxL
w̄ =

hu3

αLTmaxL2

σ̄11 =
σ11

αLET Tmax
σ̄13 =

σ13

αLET Tmax

(18)

The exact results have been obtained from [36] and [37].
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3.0.4. Properties of the finite element

Before proceeding to the detailed analysis, numerical computations are carried out for the rank

of the element (spurious mode), convergence properties and the effect of aspect ratio (shear locking

phenomenon).

The test is about simply supported moderately thick symmetric composite plates (0◦/90◦/0◦/90◦/0◦),

as described above.

This element has a proper rank without any spurious energy modes when exact integration is

applied to obtain the stiffness matrix (see [31]). In this purpose, a scheme with three integration

points is used. There is also no need to use shear correction factors here, as the transverse strain

is represented by a cosine function.

As far as the convergence property is concerned, Fig. 4 shows the evolution of the errors on the

transverse displacement and the transverse shear stress with respect to the mesh size. It concerns

moderatly thick symmetric (5 layers) and unsymmetric (4 layers) lay-out. A very high convergence

velocity can be emphasized whatever the stacking sequences. Based on progressive mesh refinement,

a N=8 mesh is adequate to model the moderately thick laminated plate for a thermomechanical

bending analysis. Moreover, the results obtained with coarse meshes are in good agreement with

the reference values. The maximum error rate does not exceed 4%. Note also that this model gives

very good results for the transverse shear stress calculated with the constitutive relation.

10
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Figure 4: Error on w̄(L/2, h/2) and σ̄13(0, 0) wrt the mesh size: mesh convergence study - 4/5 layers - S=10

Considering various values for aspect ratio, the normalized displacement obtained at the middle

of the simply supported (0◦/90◦/0◦/90◦/0◦) composite plate is shown in Fig. 5 along with the exact
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solution [37]. They are found to be in excellent agreement. It is also inferred from Fig. 5 that the

present element is free from shear locking phenomenon as the element is developed using a field

compatibility approach.

10
0

10
2

10
4

10
6

−5

0

5

10

15

20

25

 L/h

 w
m

 

 

present
exact

Figure 5: variation of the non-dimensional displacement (wm = u3(L/2, 0)/(hαLTmaxS2)) with respect to aspect

ratio S - five layers (0◦/90◦/0◦/90◦/0◦); mesh N=8

3.1. Symmetric lay-out

A symmetric stacking sequence is considered to assess this finite element, namely five layers

(0◦/90◦/0◦/90◦/0◦)). The numerical results for the in-plane and transverse displacements, and

for the in-plane and transverse shear stresses are given in Tab. 1 and Tab. 2. The slenderness

ratio varies from S=2 to S=100. The very thick case S=2 is only given to show the limitation of

the present theory. The transverse displacement is evaluated at the middle and at the top of the

structure to show the non-constant variation through the thickness.

For the very severe case S=2, the error rate remains lower than 13 % for the stresses and 3 % for

the displacements. Note that the deflection is very well estimated for all cases. The model has the

capability to take into account the nonconstant variation through the thickness.

For S ≥ 4, the results perform quite very well for thick as well as very thin plates. The maximum

error rate is less than 1 %, except for the transverse shear stress where the error is more important

for S=4 (5 %). Nevertheless, by considering the maximum value of the transverse shear stress

located at (0, −3h
10 ), the error rate becomes less than 1 %.

For further comparison, Fig. 6 and Fig. 7 show the distribution of the in-plane, transverse

14



displacements and the in-plane, transverse shear stresses for S=4. Note that the evolution of these

quantities along the thickness are similar for S=10. It is not given here. These quantities are quite

close to the reference solution.

The transverse normal stress is presented in Fig. 8 only for the thick and very thick case where

it plays the most important role. This quantity is directly calculated from the present theory

or is issued from the equilibrium equation. The results are satisfactory, and particularly those

obtained by the direct method. The free conditions on the upper and lower surfaces are fulfilled.

No additional computational cost at the post-processing level is necessary.

S ū(0, h/2) w̄(L/2, 0) w̄(L/2, h/2)

error exact error exact error exact

2 -15.6840 3 % -15.2025 -21.7200 0.3 % -21.6489 63.2250 2 % 64.6768

4 -9.9253 0.3 % -9.8951 -1.4749 0.1 % -1.4724 20.3167 0.2 % 20.3776

10 -7.9768 < 0.1 % -7.9797 3.8466 < 0.1 % 3.8465 7.3523 < 0.1 % 7.3524

50 -7.5983 < 0.1 % -7.5984 4.7880 < 0.1 % 4.7881 4.9284 < 0.1 % 4.9284

100 -7.5863 < 0.1 % -7.5864 4.8173 < 0.1 % 4.8173 4.8524 < 0.1 % 4.8524

Table 1: ū(0, h/2) and w̄(L/2, 0) / w̄(L/2, h/2) for different values of S - 5 layers (0◦/90◦/0◦/90◦/0◦)

σ̄13(0, 0) σ̄11(L/2, −h/2)

S direct error exact direct error exact

2 -62.8550 13 % -72.8215 -931.85 4 % -889.98

4 -31.0370 5 % -32.7109 -476.97 1 % -472.09

10 -12.4240 < 1 % -12.4115 -323.06 < 1 % -321.27

50 -2.4863 1 % -2.4540 -293.16 < 1 % -291.26

100 -1.2431 1 % -1.2265 -292.21 < 1 % -290.31

Table 2: σ̄13(0, 0) and σ̄11(L/2,−h/2) for different values of S - 5 layers (0◦/90◦/0◦/90◦/0◦)

3.2. Non-symmetrical lay-out

In this section, the results of a non-symmetrical four-layer laminated structure are presented.

They are summarized in Tab. 3 and Tab. 4. For the very thick case, the error rate does not exceed

10 % for the stresses and 4 % for the displacements. The present theory can be used for a wide

range of length-to-thickness ratios. For S ≥ 4, the results are in good agreement with the exact

solution. The error rate remains less than 1 % for the displacements and the in-plane stress. Note

that the error rate associated to the local values of σ̄13 remain equal to 5 % for the thin case. But

these results are local and it is more pertinent to complete these results with the distribution of this

quantity through the thickness (See Fig. 9 left). The results perform quite well with respect to the
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Figure 6: distribution of σ̄13 (left) and σ̄11 (right) along the thickness - S=4 - 5 layers
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exact solution. The same remarks can be made for the distribution of the in-plane displacement,

the deflection (Fig. 10), and the in-plane stress (Fig. 9) for the thick case. Given that the results

related to the moderatly thick case (S=10) have the same behavior as the thick case (S=4), they

are not shown here as previously.

The estimation of the transverse normal stress given in Fig. 11 is also quite satisfactory for S=2

and S=4.

We notice that this test implies a complex behavior of the mechanical quantities through the

thickness. A non-symmetric evolution is observed. The results obtained in the present approach

proves the good efficiency of the model.
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Figure 8: distribution of σ̄33 along the thickness - S=2 / 4 - 5 layers

ū(0, h/2) w̄(L/2, 0) w̄(L/2, h/2)

S error exact error exact error exact

2 -158.4100 2 % -155.0235 20.0745 0.04 % 20.0651 111.6550 4 % 106.9738

4 -73.0850 0.2 % -72.8903 20.2873 0.04 % 20.2787 42.3050 1 % 41.8741

10 -38.3320 0.1 % -38.3736 15.9000 0.02 % 15.9037 19.3520 < 0.1 % 19.3483

50 -31.0320 < 0.1 % -31.0341 14.6492 < 0.01 % 14.6495 14.7868 < 0.1 % 14.7872

100 -30.7980 < 0.1 % -30.7984 14.6070 < 0.01 % 14.6074 14.6420 < 0.1 % 14.6418

Table 3: ū(0, h/2) and w̄(L/2, 0), w̄(L/2, h/2) for different values of S - 4 layers (0◦/90◦/0◦/90◦)

4. Conclusion

In this article, a refined finite element has been presented and evaluated through different

benchmarks under thermomechanical loading. Special attention is pointed towards the transverse

normal stress effect which plays an important role for thick structures and coupled problems. It

is a unidimensional three-node multilayered finite element for static analysis with a parabolic dis-

tribution of the transverse displacement. Based on the sinus equivalent single layer model, a third

order kinematic per layer is added, improving the bending description for thick structures. More-

over, an independent expression of the transverse normal stress is chosen. The transverse normal

strain through the thickness is deduced by a weak formulation. This process based on a mixed

approach allows us to formulate a classical displacement-based theory. It should be noted that

all the interface and boundary conditions are exactly satisfied. So, this approach has a strong

physical meaning and it allows us to get a number of unknowns independent of the number of
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maximum of σ̄13 σ̄11(L/2, −h/2)

S direct error exact error exact

2 -186.710 10 % -208.734 -1742.70 3 % -1677.31

4 -134.880 0.3 % -134.452 -1213.70 1 % -1198.85

10 -61.9450 4 % -59.0764 -950.79 < 1 % -945.74

50 -12.7440 5 % -12.0437 -890.42 < 1 % -886.57

100 -6.3781 5 % -6.0255 -888.46 < 1 % -884.63

Table 4: maximum of σ̄13 and σ̄11(L/2,−h/2) for different values of S - 4 layers (0◦/90◦/0◦/90◦)
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Figure 9: distribution of σ̄13 (left) and σ̄11 (right) along the thickness - S=4 - 4 layers

layers. Finally, there is no need for transverse shear correction factors.

Several numerical evaluations have proved that this model has very good properties in the field

of finite elements. Convergence velocity is high and accurate results are obtained for very thick

and thin cases. So, this finite element can be considered as a good compromise between accurate

results and computational cost when compared to layerwise approach or plane elasticity model in

commercial softwares. This approach allows to calculate the transverse shear and normal stresses

directly with a satisfactory accuracy. The inclusion of the transverse normal stress is particularly

important for thick structures and coupled thermo-mechanical problems.
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Appendix A. Relation between the generalized displacements

Using the notations introduced in Eq. (3) and Eq. (5), the conditions Eq. (6)-Eq. (9) can be

written under the following form:

[A]{v} = {b}u1
31(x1) + {c}(ω3(x1) + w0(x1)′) + {d}(v1(x1) + w0(x1)′)

+{e}v2(x1) + {f}w1(x1)′ + {g}w2(x1)′
(A.1)

where [A] is a (3 ∗ NC − 1) × (3 ∗ NC − 1) matrix,

{v}T = {u1
32 u1

33 . . . uj
31 uj

32 uj
33 . . . uNC

31 uNC
32 uNC

33 }T , and {b}, {c}, {d}, {e}, {f}, {g} are vectors

with (3 ∗ NC − 1) components.
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From the resolution of this linear system, relations between uj
31(j �= 1), uj

32, uj
33, j = 1, . . . , NC

and u1
31 can be deduced. This relation can be written under the following form:

uj
3i(x1) = βj

i (ω3(x1) + w0(x1)′) + ηj
i (v1(x1) + w0(x1)′) + αj

iv2(x1)

+δj
i u

1
31(x1) + λj

iw1(x1)′ + µj
iw2(x1)′, j = 1, . . . , NC

i = 1, 2, 3

with δ1
1 = 1, α1

1 = β1
1 = η1

1 = λ1
1 = µ1

1 = 0

(A.2)

where αj
i , βj

i , δj
i , λj

i , µj
i , and ηj

i (i = 1, 2, 3) are the coefficients deduced from Eq. (A.1).

Finally, the 8 unknowns become u, w0, ω3, v1, v2, w1, w2 and u1
31.

At this stage, the matrix notation can be easily defined using a generalized displacement vector as

[u]T = [Fu(z)] [Eu]

with [Eu]T =
[

u
... w0 w0,1

... ω3
... u1

31

... v1
... v2

... w1 w1,1
... w2 w2,1

]
(A.3)

and [Fu(z)] depends on the normal coordinate z according to

[Fu(z)] =


 1 0 Fu13(z) Fu14(z) Fu15(z) Fu16(z) Fu17(z) 0 Fu19(z) 0 Fu111(z)

0 1 0 0 0 0 0 z 0 z2 0




(A.4)

where
Fu13(z) = f(z) + Sβ(z) + Sη(z)

Fu14(z) = f(z) + Sβ(z)

Fu15(z) = Sδ(z)

Fu16(z) = z + Sη(z)

Fu17(z) = z2 + Sα(z)

Fu19(z) = Sλ(z)

Fu111(z) = Sµ(z)

and

S×(z) =
NC∑
k=1

(
ζk ×k

1 +(−1
2

+
3ζ2

k

2
) ×k

2 +(−3ζk

2
+

5ζ3
k

2
) ×k

3

)
∆H(k, k + 1)
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with × = {α, β, δ, η, λ, µ} and ∆H(k, k + 1) = H(z − zk) − H(z − zk+1)

Appendix B. Expression of the transverse normal stress

The following conditions are imposed for σ
(k)
33 , k = 1, ..., NC:




σ
(k−1)
33 (x1, ζk−1 = 1) = σ

(k)
33 (x1, ζk = −1)

σ
(k−1)
33,z (x1, ζk−1 = 1) = σ

(k)
33,z(x1, ζk = −1)

(B.1)




σ
(1)
33 (x1, ζ1 = −1) = 0

σ
(NC)
33 (x1, ζNC = 1) = 0

(B.2)

for NC > 3, 


σ
(1)
33,z(x1, ζ1 = −1) = 0

σ
(NC)
33,z (x1, ζNC = 1) = 0

(B.3)

Using Eq. (B.1), Eq. (B.2), Eq. (B.3), and Eq. (12), the problem can be written under the

form of a linear system. It allows us to deduce the expression of σ
(k)
33 with respect to the generalized

unknowns and their derivatives u′, w′′
0 , ω′

3, v′1, v′2, w1, w2, w′′
1 , w′′

2 and u1
31

′ as

σ
(k)
33 (x1, ζk) = Φu(ζk)u′(x1) + Φv1(ζk)v′1(x1) + Φv2(ζk)v′2(x1) + Φω3(ζk)ω′

3(x1)

+Φu1
31

(ζk)u1
31

′(x1) + Φw0(ζk)w′′
0(x1) + Φw1(ζk)w1(x1) + Φw2(ζk)w2(x1)

+Φw′′
1
(ζk)w′′

1(x1) + Φw′′
2
(ζk)w′′

2(x1) + Φ∆T (ζk)F∆T (x1)

(B.4)

Φ×(ζk) are the continuity functions. Φ∆T (ζk) is associated to the thermal term.

In this formulation, note that the transverse normal strain can be discontinuous at the interface

between two adjacent layers (see Eq. (1) and Eq. (B.4)).

Appendix C. Matrix expression for the stress σ
(k)
33 and the strains ε11, γ13

The expressions Eq. (10) and Eq. (B.4) can be described using a matrix notation:




ε
(k)
11

σ
(k)
33

γ
(k)
13


 = [Fs(z)] [Es] +




0

Φ∆T (ζk)F∆T (x1)

0


 with

[Es]
T = [u,1

... w0,1 w0,11
... ω3 ω3,1

... u1
31 u1

31,1

... v1 v1,1
...

v2 v2,1
... w1 w1,1 w1,11

... w2 w2,1 w2,11]
(C.1)
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and [Fs(z)] depends on the normal coordinate z as

[Fs(z)] =

2
6664

1 0 f(z) + Sβ(z) + Sη(z) 0
`
f(z) + Sβ(z)

´ · · ·
Φu(ζk) 0 Φw0 (ζk) 0 Φω3(ζk) · · ·
0 1 +

“
f(z),3 + Sβ(z)

,3
+ Sη(z),3

”
0

“
f(z),3 + Sβ(z)

,3

”
0 · · ·

0 Sδ(z) 0 z + Sη(z) 0 z2 + Sα(z) · · ·
0 Φu1

31
(ζk) 0 Φv1 (ζk) 0 Φv2 (ζk) · · ·

Sδ(z),3 0 1 + Sη(z),3 0 2z + Sα(z),3 0 · · ·
0 0 Sλ(z) 0 0 Sµ(z)

Φw1 (ζk) 0 Φw′′
1
(ζk) Φw2 (ζk) 0 Φw′′

2
(ζk)

0 z + Sλ(z),3 0 0 z2 + Sµ(z),3 0

3
7775

(C.2)
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