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An Efficient Finite Shell Element for the Static
Response of Piezoelectric Laminates

PHILIPPE VIDAL,* MICHELE D’OTTAVIO, MEHDI BEN THAIER AND OLIVIER POLIT

Laboratoire d’Energétique, Mécanique et Electromagnétisme, Université Paris Ouest Nanterre La Défense,
50 rue de Sevres, 92410 Ville d’Avray, France

ABSTRACT: This study presents a novel finite element (FE) for shell structures including
piezoelectric actuators and sensors. Based on a conventional 8-node shell formulation and the
classical displacement-based variational formulation, the present element has an enriched
description of the transverse kinematics in order to consistently retain the full three-dimen-
sional (3D) piezoelectric coupling. Furthermore, a layer-wise description of the electric degrees
of freedom permits to account for embedded piezoelectric actuators and sensors. The robust-
ness of the FE is enhanced by referring to an established technique that avoids transverse shear
locking and membrane locking. Numerical results are given which validate the present imple-
mentation and highlight the efficiency and accuracy of the proposed formulation.
Additionally, some new reference solutions for the static behavior of piezoelectric shells are
provided by means of 3D FE computations with a commercial software.

Key Words: multilayered shell element, piezoelectric actuators and sensors, refined model,
three-dimensional constitutive law, reference solutions.

INTRODUCTION

N the last decades, numerous industrial domains are

being attracted toward high-performance structures
whose functionality is extended beyond the passive
load-bearing capability (Gibson, 2010). Structural
health monitoring, active vibration damping, and energy
harvesting are only some examples of possible appli-
cations of a multifunctional structural component.
Piezoelectric materials permit to convert mechanical
and electrical energy at frequency ranges that are most
interesting for technical applications such as vibration
damping and rapid shape adaptation (Chopra, 2002).
Due to the complex manufacturing of such structural
devices, a reliable numerical analysis tool is necessary
to capture all the relevant phenomena that guide the
design process. Furthermore, if optimization processes
and runtime control algorithms are addressed, the
numerical simulation tool should be as robust and effi-
cient as possible.

In this framework, several reduced structural models
have been proposed which account for the presence of
piezoelectric actuators and sensors. The mathematical
representation of the piezoelectric coupling must
account for the mode of actuation and the electrical
boundary conditions (Rogacheva, 1994). Basically, two
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actuation modes can be considered in thin shell structure
applications the longitudinal extension mode (31-mode),
in which the polarization vector and the actuating elec-
tric field are parallel and act in the layer’s thickness
direction, and the shear actuation (15-mode), in which
the polarization vector and the actuating electric field
are perpendicular (Benjeddou et al., 2000). We shall limit
the scope of this contribution to the most common lon-
gitudinal extension mode. Thin piezoelectric actuators
working in 31-mode can be modeled in a first approxi-
mation by assuming a constant electric field along the
thickness direction. However, the constant electric field
assumption prevents an electric field to be induced by
the mechanical deformation, which is the direct piezo-
electric effect exploited in sensor applications. Note that
the induced field increases the apparent stiffness of the
plate by means of an additional ‘electric stiffness’ term.
In order to correctly represent this effect, an at least
quadratic approximation for the thickness distribution
of the electric potential should be employed (Bisegna
and Maceri, 1996; D’Ottavio and Polit, 2009).

The inclusion of piezoelectric sensors/actuators in the
load path of the host structure naturally leads to a multi-
functional composite component. An exhaustive review
with assessment of some typical models for piezoelec-
tric laminates has been provided by Saravanos and
Heyliger (1999). As pointed out in numerous works,
e.g., by Gopinathan et al. (2000); Ballhause et al.
(2005); Carrera and Brischetto (2007), the piezoelectric
coupling and the presence of electrical and mechanical



interfaces sharpens the limits of classical, low-order
reduced models such as Classical Lamination Theory
(CLT) and First-order Shear Deformation Theory
(FSDT). To accurately capture the local response, a
so-called layer-wise description of the laminate is neces-
sary, whose computational cost, however, depends on
the number of layers. Equivalent single layer descrip-
tions, in which the number of unknowns is independent
of the number of layers, prove useful for a global
response analysis (Robbins Jr and Chopra, 2006;
Carrera et al., 2007). The possibility to impose indepen-
dent electrical boundary conditions at each piezoelectric
layer in the stack requires a layer-wise description of the
electrical field variables. For instance, Mitchell and
Reddy (1995) formulated a ‘hybrid’ model in which an
equivalent single layer kinematics has been employed
with a layer-wise assumption for the electric potential.
In general, different choices can be made for the electri-
cal variables, which should ensure both a consistent rep-
resentation of piezoelectric coupling and computational
efficiency (Sze et al., 2004). As far as the in-plane distri-
bution of the electrical field variables is concerned, the
satisfaction of the equipotentiality condition across an
electrode has been shown to be of primary relevance
(Chevallier et al., 2008). It is finally mentioned that, as
an alternative to coupled electromechanical models,
dedicated purely mechanical finite elements (FEs) have
been proposed by, e.g., Pablo et al. (2009) by including
the piezoelectric effects into an equivalent mechanical
stiffness and corresponding loading.

The above considerations on the modeling issues
of composite structures with embedded piezoelectric
materials are next employed to propose a literature
review of FE formulations for piezoelectric shells. The
review is limited to papers appeared after 2000, for pre-
vious developments we refer to the exhaustive survey
of Benjeddou (2000). Only general shell formulations
will be considered, which means that ‘flat’ elements
like those developed for plates and axisymmetric shells
will not be mentioned.

Several two-dimensional (2D) conventional shell ele-
ments have been formulated for the analysis of composite
structures with embedded piezoelectric materials.
Most of them employ the classical FSDT kinematics,
like the 4-node eclements by Lammering (1991),
Lammering and Mesecke-Rischmann (2003), Zemcik
et al. (2007), Zouari et al. (2009) and the 9-node elements
by Balamurugan and Narayanan (2001, 2008) and
Marinkovich et al. (2006). A third-order theory has
been employed in the 8-node elements presented by
Kulkarni and Bajoria (2003) and Varelis and Saravanos
(2006). All aforementioned elements neglected the thick-
ness change of the shell and employed, hence, the reduced
2D constitutive law. Six parameters per node have been
used by Kulikov and Plotnikova (2008) for a ‘geometri-
cally exact’ 4-node shell element and by Lee et al. (2003)

for a 9-node isoparametric shell element. These elements
retained the full 3D constitutive law, which is an impor-
tant feature for a consistent representation of complex
physical interactions like multi-field coupling (Cho
and Oh, 2003). However, the linear approximation for
the transverse deflection used within the six parameters
shell formulation is known to suffer the so-called Poisson
locking (as detailed out by Carrera and Brischetto,
2008). In order to consistently resolve the coupling
between membrane and stretching energy contributions,
Kulikov and Plotnikova (2008) modified the 3D consti-
tutive law and Lee et al. (2003) enriched the transverse
strain distribution by referring to the Enhanced Assumed
Strain (EAS) technique. While the aforementioned ele-
ments are based on equivalent single-layer descriptions,
Kogl and Bucalem (2005) employed a layer-wise FSDT
mechanics. Their 4- and 9-node elements presented the
extension to piezoelectric shell elements of the Mixed
Interpolation of Tensorial Components (MITC) tech-
nique for contrasting transverse shear locking. A hierar-
chic discrete-layer kinematics based on piece-wise linear
approximations has been proposed by Heyliger et al.
(1996) and Saravanos (1997) in conjunction with an
8-node shell element. The accuracy of this description
could be improved upon increasing the number of numer-
ical layers which subdivide the physical plies of the
laminate. This formulation permitted the direct use of
the full 3D constitutive law. Very often the electrostatic
potential has been taken to vary linearly over the thick-
ness of the piezoelectric plies (Balamurugan and
Narayanan, 2001; Lee et al.,, 2003; Kulkarni and
Bajoria, 2003; Marinkovich et al., 2006; Zemcik et al.,
2007; Kulikov and Plotnikova, 2008). Kogl and
Bucalem (2005) and Balamurugan and Narayanan
(2008) retained the induced electric field by a layer-wise
quadratic assumption for the electrostatic potential.
Additionally, in view of the fulfillment of the equipoten-
tiality condition across the electrodes, Balamurugan
and Narayanan (2008) took the electric potential to be
constant at the top and bottom of each piezoelectric
ply. Heyliger et al. (1996) employed the hierarchic dis-
crete-layer description for the electric potential variables
as well, which permits to enhance the distribution of
the electric field over the thickness by introducing ficti-
tious numerical layers. Linear and refined approxima-
tions for the distributions of electrical field variables
along the thickness have been compared by Lammering
and Mesecke-Rischmann (2003).

Three-dimensional (3D) continuum-based piezoelec-
tric shell elements have been proposed by Sze et al.
(2000); Zheng et al. (2004); Tan and Vu-Quoc (2005);
Yao and Lu (2005); Klinkel and Wagner (2006, 2008).
This element type offers the possibility to easily imple-
ment the 3D constitutive law. Poisson locking has been
circumvented by resorting to either the EAS technique
(Zheng et al., 2004; Klinkel and Wagner, 2006, 2008) or



a hybrid stress formulation (Sze et al., 2000). The equi-
potentiality condition on surface electrodes has been sat-
isfied either by an element-wise constant interpolation
for the electric potential (as in, e.g., Zheng et al., 2004),
or by introducing an ‘electric node’ concept (Yao and
Lu, 2005). Most element formulations retained a linear
distribution of the electrostatic potential along the thick-
ness direction. In this case, a stack of several elements
is necessary to capture the induced electric field. 3D shell
elements with a direct representation of the induced
electric field employed a bilinear assumption for the
electric field (Klinkel and Wagner, 2006, 2008), or a
quadratic distribution for the electric potential (Yao
and Lu, 2005). All aforementioned 3D shell elements
resorted to the Assumed Natural Strain (ANS) tech-
nique to alleviate transverse shear locking.

This study proposes a conventional, 8-node shell ele-
ment which fully retains the 3D constitutive law upon
introduction of a quadratic assumption along the thick-
ness of the transverse deflection. The classical FSDT
kinematics, described by the three displacement compo-
nents of the reference surface and the two rotations of
the transverse fiber, is thus enriched by a thickness
stretch described by adding the transverse displacements
at the top and bottom faces of the laminate as indepen-
dent variables. Therefore, all the seven nodal degrees of
freedom (dof) of the proposed kinematics have a clear
physical meaning. Based on the previous experience of
Polit and Bruant (2006) and in order to limit computa-
tional cost, the electrostatic potential is taken to be
constant across the element domain and to vary linearly
over the thickness of each piezoelectric layer. Hence, the
equipotentiality condition on surface electrodes can be
readily satisfied and, when necessary, the bending
induced electric field can be accounted for by subdivid-
ing the piezoelectric physical ply into several numerical
layers. As a result, the number of electric potential dof
per element depends on the number of piezoelectric layers
in the composite stack and on the electrical boundary
conditions. Finally, the element robustness has been
enhanced by efficiently tackling the well-known locking
phenomena. For this, the modified interpolation scheme
proposed by Polit et al. (1994) is implemented, which is
directly derived from the field consistency paradigm
and avoids transverse shear locking and spurious zero-
energy modes. By using the same methodology, the
membrane locking can be alleviated as well.

This article is organized as follows: Next Section
describes the geometry of the shell-like solid and the refer-
ence frames that are subsequently used to introduce the 2D
model assumptions (section ‘Description of the model’) and
the FE approximations (section ‘The FE approximations’).
The resulting element is validated in section ‘Numerical
results’ by referring to well-known linear static prob-
lems of piezoelectric and composite shell structures.
Finally, the conclusion summarizes the main findings.

DESCRIPTION OF THE SHELL

This preliminary section is dedicated to the geometric
description of the shell-like solid and to the different
reference frames that will be used for constructing the
finite shell element.

Description of the Geometry

Let us consider a shell C=Q x [—4, 4] where / is the
constant thickness of the shell and € the middle surface.
The description of the geometry of the shell is based on
the Cartesian coordinates of the nodes and on the FE
approximation over the elementary domain. For this, an
8-node quadrilateral FE will be used. Figure 1 illustrates
the employed FE approximation and shows the different
reference frames that will be used to describe the geom-
etry and the mechanics of the shell-like body. These
different bases are precised in Table 1. The global coor-

dinates of any arbitrary point in the elementary domain

Figure 1. Description of the geometry of the 8-node shell element.

Table 1. Reference frames used for the description of
the shell.

(€1,€2,€3) Direct orthonormal Cartesian basis, (G)

(X4, X2, X3) Global Cartesian coordinates

Direct orthonormal local basis, plane tangent to €, (L)
Local curvilinear coordinates on Q

a:,d,,d3) Reduced local basis, plane tangent to ©, (R)

&m0 Reduced curvilinear coordinates on Q




can be expressed in terms of the reduced (curvilinear)
coordinates &, n and the rectilinear normal coordinate z:

Xi1(6,n,2) g X
OEn.2) = | XaEn.2) | =) Ny | X
X3(6,n,2) =l X; |,
8 131
+z Y Ny | n (1)
i=1 133

i

where z is related to the unit axis & through a scalar
coefficient, and N, (& n) are the classical Serendipity
interpolation functions.

The thickness of the shell is described in terms of the
unit vector 73 = [231 132 133]T normal to the middle surface
Q. We prescribe i3 = as, i.e., the normal direction of the
local curvilinear reference frame on Q coincides with
the normal direction of the local tangent plane to Q
(Figure 1). The covariant in-plane base vectors a, are
usually obtained from the map @ introduced in
Equation (1) to define the shell mid-surface Q:

Gy = D&, 1), fora=£n )

and the normal vector 73 = aj is finally obtained from
the perpendicularity condition:

- - L_il AN 672

I3 =ad3 = —=——=— 3)
llay A az|

The construction of the local base vectors 7; and 7, fol-

lows the procedure suggested by Zienkiewicz and Taylor

(2000).
The Change of Bases

The displacement field vector and the scalar electro-
static potential are expressed with respect to the global
reference frame ¢; as:

3

]}(XlsXZsX:%t) ZZHiG(XISXZsX:h[)Ei (4)
i=1

(X1, X2, X3, 1)

where the superscript G indicates that the components
are taken in the global reference frame. The displace-
ment vector [u]=[u; u» u3]” is expressed in the local
orthonormal basis (L) by:

. o I tip 113
[u"] = [Tr6] [u®] with [Tr6] = | ta1 12 123
131 I3 133

l1~51 Z]‘gz l‘]~§3
=|h-e h-é h-e (5)
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In the same way, the following expression can be
obtained:

[u°] =[Tqrl [u"]  with [Ter] = [Tr6]™!
11 Iy 131
=[Twil'= |t tn 13 (6)

13 i 133

The displacement vector [1%] defined in the reduced local
basis is constructed as:

B o ' ap ay  az
[u"] =[Tre] [u®]  with [Trel=|ann an an
aiz  axy A
ay-e, ay-e, a-e;
=|d-e a-& a-é (7

as-ey ay-e; ai-e;
Furthermore, the inverse relation holds:

[u] = [Ter] [u"] with [Teg] = [Tral™' (8)
Similar relations can be established between the local
orthonormal L and reduced R reference frames by
substituting G by L.

DESCRIPTION OF THE MODEL

The reduced 2D shell model is constructed starting
from the classical generalized displacement-based varia-
tional formulation. The assumptions for the shell kine-
matics and the through-thickness distribution of the
electrostatic potential are precised. A matrix notation
is employed which facilitates the subsequent introduc-
tion of the FE approximations.

The Weak Form of the Boundary Value Problem

The classical piezoelectric variational formulation of
Tiersten (1969) is employed in which the primary field
variables are the ‘generalized displacements’, i.e. the dis-
placement field and the electrostatic potential. Using a
matrix notation and for admissible virtual generalized

displacements " and ¢~ (virtual quantities are denoted
by an asterisk), the variational principle is given by:

/Wﬂmﬂwz—ﬁ#w%ﬂ&wwmc
C C
Lx1T) Lx1T)
+/C[u 1 [f]dC+fBCF[u 1'[F]dac
+£wﬂwﬂw%ﬂwme

- / q¢*dC — Q¢* daC 9)
c o



where [f] is the body force vector, [F] the surface force
vector applied on 0Cp, ¢ the volume charge density, Q
the surface charge density supplied on 0C,, and p is the
mass density. Finally, e“"(u*") and E'(¢") are the virtual
strain and virtual electric field that satisfy the compati-
bility gradient equations, while c* and D are the conju-
gated fluxes (stress and dielectric displacement,
respectively) obtained from the constitutive equations.
Note that the variational formulation is written in the
local reference frame because the constitutive relation is
described in this coordinate system (see the next section).

In the remainder of this article, we will refer only to
static problems, for which the left-hand side term is set
to zero. Furthermore, body forces and volume charge
densities will be discarded ([ f]=[0]; ¢ =0).

The Constitutive Equation

The 3D constitutive equation for a linear piezoelectric
material is given by the following set of coupled equa-
tions (ANSI/IEEE Std 176-1987, 1987):

[0"] = [Clle"] — [e]"[E"] (10a)
[D*] = [e]le"] + [e] [E"] (10b)

where we denote by [C] the matrix of elastic stiffness
coefficients taken at constant electric field, by [e] the
matrix of piezoelectric stress coefficients and by [e] the
matrix of electric permittivity coefficients taken at con-
stant strain. The explicit form of these matrices is given
in appendix for an orthotropic piezoelectric layer work-
ing in 31-mode. Equation (10a) expresses the piezoelec-
tric converse effect for actuator applications, whereas
Equation (10b) represents the piezoelectric direct effect
which is exploited in sensor applications. Note that the
constitutive law is expressed in the local reference frame.

The Displacement and Strain Fields

The shell kinematics is based on the classical
Reissner—Mindlin plate model, which is however
enlarged by a quadratic thickness stretch displacement.
An equivalent single-layer approach is employed for
describing the kinematics of the composite cross-section.
The displacement field can be expressed by:

1 (x1,x2,2) = V9 (x1, x2) + zB5(x1, x2)

+ wh(x1, X2, 2) (11)

where the classical Reissner—Mindlin kinematics reads:

7O = VG1 e+ VG2 e+ VG3 é3 (12a)
Bl =051 — 68 1 (12b)

The displacements v“; are taken in the global frame with
respect to the Cartesian ¢; directions, while 8%, (e =1, 2)
are the positive rotations about the local axes 7, of the
transverse fiber initially normal to the shell mid-surface.
The additional term w% acts on the local direction
normal to the shell surface. This stretching term is con-
structed as a Lagrange quadratic expansion of the local
thickness coordinate z as follows:

IZG . ;3 = ({}'G + V_)VALI) . ?3 :fm(z) Wm(X], XZ)
+/5(2) wp(x1, x2) + fi(2) wi(x1,x2)  (12¢)

where w,,, w,, and w, are the displacements along 73 at the
shell middle, bottom, and top surfaces, respectively, and

4 Y
S =1-22 o= (h 1)
1 2
fi(2) = 77 (hz+ 1) (12d)

Note that w,, = v - 73 and that this refinement needs only
two additionally unknown functions (w, and w,) with
respect to the classical Reissner—Mindlin kinematics.
For further convenience we introduce the following
notation:

w=u"13=wo+zw +2>w (13)

By virtue of this quadratic approximation, the full 3D
constitutive equation can be directly employed with the
present kinematics without Poisson locking problems
(see also Carrera and Brischetto, 2008).

The compatible strain field is obtained from the linear
strain-displacement relations, which in the global refer-
ence frame read:

95" = 5 (u° ; + u“)) (14)

N =

where i, j= X, X5, and X3. The components of the strain
tensor can be calculated with respect to the three bases
G, L, and R:

el =@ @)=yl @7)

=efi@gRa)=e"dod) (15)

It must be noted that covariant and contravariant com-
ponents are the same when expressed with respect to an
orthonormal basis, for example ¢; and 7:. This is not the
case when the strain components are expressed in the
local reduced reference frame ;. Therefore, we can
express the strain tensor in the reduced basis in either
covariant or contravariant components.



In this study, the strain components are first calcu-
lated from the FE approximations with respect to the
reduced local basis vectors. This allows us to carry out
the special treatment to correct the membrane and trans-
verse shear locking described in Section ‘Correction
of the transverse shear and membrane locking’. The
strains are subsequently expressed in the local orthonor-
mal reference frame through the opportune basis trans-
formations (Section ‘Strain components in the local
basis’). As already mentioned, the local reference frame
is the correct one in which the constitutive law should be
expressed.

Based on the above considerations, and for further con-
venience, we express the local strain from Equations (11)
and (15) by separating the contributions that are con-
stant, linear, and quadratic in the thickness coordinate z:

[eF] = [¢"°] + z["'] + 2[¢"*] (16)
Additionally, the following expression can be deduced
by rearranging the thickness assumption in the matrix
[F.z)] and by separating the contributions of the

in-plane strains ¢,, the transverse shear strains y and
the transverse stretch ess:

[l
5= ]
[Ega]

The Electric Potential and the Electric Field Vector

= [Fe(2)][e.] (17)

A layer-wise linear approximation is used to describe
the through-thickness behavior of the scalar electrostatic
potential ¢(x1, x,, z). There are two main advantages of
this layer-wise description:

e independent electrical boundary conditions can be
applied to each piezoelectric ply;

e a refinement of the description of the electric field
variable is easily obtained by subdividing the physical
piezoelectric ply into several numerical layers.

As pointed out in the literature review, the latter point is
particularly important when dealing with problems
involving a bending-induced electric field along the
shell thickness (see, e.g., Klinkel and Wagner, 2006;
Polit and Bruant, 2006).

For a layer (k) with a thickness ¢® and a reduced
normal coordinate £ € [—1, 1], we have a linear variation
using two potential values (¢>§,/f)),, 5’;},) located at the
bottom and top of each layer:

1
¢ (x1,x2,2(0) =5 (1 = O (x1, x2)

+5 (1+c>¢t">(x1,xz) (18)

The expression in the local reference frame with

z € [zg;)[,zﬁff;,] is obtained by considering the relation

between the coordinates:

1 1
2) = 5 @+ Zlop) + 5 2 (19)

The matrix notation introduced in Equation (17) is
employed for the electric potential as well:

(k) ) ¢bit(x1,xz)
(¢ (x1, x2, 2(0)] = [Fy" (2)] 40 (20)

top( 1, X 2)

The electric field vector [EX0] = [EL® pL®) ELOTT
obtained from the gradient relation:

sy
—[E" (1, x0, 20 = | ¢© :[IﬁEI()(Z)][Ef,;k)] (21a)
¢

where E 9] contains the derivatives of the approxima-
tion for ¢>(k) given in Equation (18):

bm(xls X2)
¢bo,(X1, X2) 4
(k)
k) ¢bm(’cla X2) 2
[EQ] =

X
EZ,);(Yl,xz)

(21b)

¢top(xl ) XZ),I

k
| Plop(x1.X2) |

More details about the expressions of the matrices
Fk)(z) and [Iﬂ‘)(z)] have been reported by Polit and
Bruant (2006).

The Reduced 2D Problem

Taking into account the constitutive law in Equation
(10), the variational principle expressed by Equation (9)
reads (inertia terms, body forces, and volume charge
densities are discarded):

[l @t et wtn - e @)

— [E" @) (lelle" ()] + [e] [EL(¢)])} dc=w, (22
where W%, represents the external virtual work done by
the prescribed surface traction [F] and charge densities
[0]. The model assumptions for the kinematics

(Equation (17)) and the electric field (Equation (21a))
are further introduced by considering the quantities



specific to the layer (k). As a result, the dependency on
the thickness coordinate z explicitly appears in the gov-
erning equation (22) and the integral over the domain C
can be written as

/ (=] /h [ [CONF )Nz e a2

[ 7| [ o)) 2] ae

LT [[Foa] Tevnmemu: e
[

e el el
= (23)

C"C[

+

_|_

The integral over the thickness of the multilayered shell
is carried out by considering the separate layer contri-
butions. Since an equivalent single layer description is
employed for the kinematics, the mechanical stiffness
term is computed as the sum over the contributions of
all layers:

kl = ST = 3| [ (@I [C9meM:] @4

k k hye

The matrix [k,,] is thus square with dimensions indepen-
dent of the number of layers. On the contrary, a layer-
wise description is used for the electric field and an
assembly procedure is necessary for constructing the
dielectric matrix for the whole multilayered shell:

— (k)
[kas] = U[id]
k
Therefore, the matrix [ky,] is square with dimensions
that depend on the number of layers into which the shell

is subdivided. The piezoelectric coupling terms finally
arise from the second and third terms of Equation (23):

(6] = [ e (o) (262)

/‘1/

k0] = / [Fﬁ)(Z)]T[e(k)][Fs(z)]dz= [kfj;)]T (26b)
Ik

F““(z)

I‘Ik

[¢9] [F“‘)(z)]dz] (25)

The construction of the coupling matrix [k,,] for the
whole multilayered shell involves, hence, the summation
over the layers for the rows and the assembly procedure
for the columns, which yields a rectangular matrix whose
number of columns depends on the number of layers.
The coupling matrix [ky,] is evidently obtained as:

[kzpu] = [ku¢]T (27)

Having eliminated the dependency on the thickness
coordinate z from Equation (23), the reduced 2D prob-
lem on  finally reads:

/Q [eZ]T([kuu][eu] + [Kug ] [Egc)]) n [Eé,k)*]T
X ([ku¢] T[Eu] - [k¢¢] [E< ]) dQ=w:, (28

THE FE APPROXIMATIONS

This section introduces the FE approximations for the
mechanical and the electrical field variables as well as
the dedicated treatment to avoid locking problems. The
solution of the resulting discrete form of the coupled
electromechanical system is finally discussed in Section
‘The discrete piezoelectric system’.

The FE Approximation for the Mechanical Variables
Based on the 8-node shell element illustrated in

Figure 2, the following FE approximation can be intro-
duced for the kinematics:

=Y N &) (), + 2> NyEm (BY),
i i
+ D NoEm (), (29)
The vector of the dof of the element is thus introduced
according to [¢L.]T = [v¥1 v, vO5 65 645 w walioi g
The Strain Field
In view of the subsequent introduction of the correc-

tions of the locking problems, we first express the strain
field in the reduced local basis as:

1
eRy = z(uG, a;+u ;- a;) (30)

where i, j=1, 2, 3 stand for &, n, {, i.e., the reduced
coordinates of the FE approximation. The in-plane,

Figure 2. The 8-node shell FE.



transverse shear and transverse normal strains intro-
duced in Equation (17) can be written as:

8055 8155
(e8] =[] + [l ] = | 0 | 42| et | G100
Voé‘n Vlén

[,}/R] — [yRO] + Z[)/Rl] + 22[yR2]
0 1 2
_ 7/0773 4 V1n3 n 2 V2n3 (31b)
Ve Ve Ve
53] = [e53] + 2[e3 ] (3lo)

Note that since @3 =73 we have [eh] =[ef], i.e., the
transverse normal strain in the reduced basis coincides
with Equation (31c). In the following, the relation
between the separate strain contributions and the
assumed kinematics are explicitly reported.

as-e Ny, as-é Ny,
[BCi] = |:q

ay-e1 Ngg a3-e2 Nyg

MEMBRANE STRAIN |y’
The membrane strain term’is defined by:

G
Vo
[sjfo] = S [BMPM]| v%, (32a)
i \)G3 ;
with
[BMPM,] =

ar-e; Ngg ar-exNgg ar-e3 Ny
az-el Nnn az-ezNhn az €3 NiJI (32b)
a-e; Nyg ar-ex Ny g ar-e3 Ny

+ay-e1 Ny +ar-ex Ny +ai-es Nyy

where a, are evaluated at the integration points.

BENDING STRAIN e}fll

For the bending contribution associated to the rota-
tions 6%, (a=1, 2), the scalar product must be consid-
ered between the local base vectors 7, and the reduced
basis. We have thus:

(o8] = uer| ! | (332)

with
—al . ;2 N, - 11 N
[BF] = —52 - b N(I.’,] az l] N n (33b)
—Zi2 o) thg’: a2 l] Nq £

—51-?2]\7,,,, + th
Here, the a, are evaluated at the integration points while
t, are evaluated at the node.

CONSTANT TRANSVERSE SHEAR
STRAIN [yR?]

For the constant part of the transverse shear strain,
both the scalar products must be considered that project
the global and local bases with respect to the reduced
basis. We have:

vcl
VGZ
K] =>"IBC]| v5 (34a)
, o,
0ty |,
with
-85 Nye —a-hN, a-0 N,

In this last equation, a; are evaluated at the integra-
tion points while 7, are evaluated at the node.

NON-CONSTANT TRANSVERSE SHEAR
STRAIN [yR'] AND [y®?]

The linear and quadratic terms of the transverse shear
strain are associated to the linear and quadratic terms of
the assumption Equation (13), respectively. The expres-
sion for these contributions thus reads:

)/0(2 = Z Ny o(wy); and
Yas = Z N2 (@€ &)  (39)

TRANSVERSE NORMAL STRAIN [e5{] AND [e%]]

The constant and linear contributions of the trans-
verse normal strain can be directly obtained from
Equation (13) as:

e = Z N, (w);, and &kl = Z 2 N, (w2);  (36)



I, I

| f .

L L5 §
-71I | [2
e —

Figure 3. Point locations for the transverse shear strain evaluations.

Correction of the Transverse Shear and Membrane
Locking

In the following, the special treatment of the trans-
verse shear and membrane strains is presented, by which
the numerical locking problems are alleviated. The
methodology is based on the field consistency paradigm
and a previous implementation has already demon-
strated its efficiency for plates (Polit et al., 1994) and
shells (Polit and Touratier, 1999). In order to obtain
best performances even in presence of distorted
meshes, the field consistency is ensured in the local
reduced coordinate system.

TRANSVERSE SHEAR STRAIN
INTERPOLATIONS

Transverse shear locking is caused by the constant
part of the transverse shear strain [y°], in particular by
the polynomial inconsistency of its isoparametric defini-
tion given in Equation (34) the quadratic contributions
of the rotational dof 6%, (x=1, 2) do not match the
contributions obtained from the derivation of the local
transverse displacement of the mid-surface wy
(obtained from (vG,-)[:Lm). The procedure to avoid
transverse shear locking is thus based on the construc-
tion of a new approximation for the constant part
of the transverse shear strains and consists of the follow-
ing steps:

e The transverse shear strains are defined in the local
reduced coordinates:

Yo =Be+woe Vs =By+wo, (37)

where B:, B, are the rotations in reduced coordinates
obtained from the positive rotations 6, (x =1, 2), see
also Equation (12b).

e In order to ensure the same polynomial approxima-
tion for the rotation and the transverse displacement
in Equation (37), w is assumed to be cubic, introduc-
ing four supplementary dof at the mid-side nodes:

(Wo,s)sa (Wo,n)aa (Wo,s)% (Wo,n)s-

e A linear variation of the tangential transverse shear
strain component is assumed on each side of the
elementary domain (Figure 2). Thus, the supplemen-
tary dof introduced at the previous step can be
expressed as a linear combination of the rotation
and transverse displacement values. Therefore, a
new FE approximation is obtained for the transverse
displacement wy.

e The interpolation of the reduced transverse shear
strain components is defined in the following polyno-
mial bases, which represent the intersection sets of
monomial terms from & and #:

B(y053) = B(ﬁf) N B(WO,E) = {la év 77:5 n, 772} (383)

B 3) = B(By) N B(wo,) = {1.&, .6 0,8} (38b)

e According to the dimension of the polynomial basis,
five points are needed for each reduced transverse
shear strain. These points were chosen as indicated
in Figure 3 because this location gives the best results
in the case of distorted meshes (for more details see
Polit et al., 1994). The following FE approximation
is finally obtained for the reduced transverse shear
strains:

5
VeEn) =) CE(E e
I=1

5
V@) =Y CnsE myn (39)
J=1

This modified interpolation for the transverse shear
strain substitutes that of Equation (34).

MEMBRANE STRAIN INTERPOLATIONS
The construction of a new consistent approximation
for the membrane strain field is based on the same



arguments outlined_in the previous section. The mem-

brane strain terms 5§° in the local basis read:

0
e Ve g
0
~ & v
I:gllfo] — 0717] — m.n (40)
€%y Ve
80,];’& Vn.g

If the isoparametric approach is used, these membrane
strain interpolations refer to incomplete second-order
polynomials. Therefore, a consistent polynomial for
the interpolation of [51’7201 is chosen by adopting the fol-
lowing set of monomial Terms: {1, &, n, & n}. This poly-
nomial basis requires four points for evaluating each
membrane strain component, two in the & direction
and two in the 5 direction. Numerical plate membrane
tests with distorted meshes indicate that the best choice
is to take the reduced integration points Kj,. . ., Ky illus-
trated in Figure 4. The new interpolation of each mem-
brane strain component is thus given by:

4
eapE.1) = Y CEng(E.n)eapx  for (@ p) € (£ n}* (41)
K=1

This interpolation substitutes the isoparametric one in
Equation (32).

Strain Components in the Local Basis

The strains defined in Equations (32)—(35) being
expressed in the reduced basis, a tensorial transforma-
tion is necessary in order to express these strains in the

physical local basis. The tensorial transformation is
performed as:

[ej“] — [TT 4] [ejf“], a=0,1 (422)
[v*] =[Trrl [Y**]. @« =0,1,2 (42b)

where the second-order tensorial matrix:

T1x(1,2)
Trr(2,2)°

Tir(1,1)?

[TTrr] = Trr(2, 1)

h
K, K,
—_|_—_|____Il/\/§
R
3 L

I I

Figure 4. Point locations for the membrane strains evaluations.

The FE Approximation for the Electric Potential

We assume that the electric potential remains constant
across the element coordinates (&, n):

®(&. 1) = ¢e (44)

This choice allows us to develop a simple numerical
tool which can be used in conjunction with active
control algorithms and optimization processes. The
previous study by Polit and Bruant (2006) has demon-
strated that this approach yields good results.
Moreover, it permits to casily enforce the equipotenti-
ality condition at piezoelectric patch electrodes. Upon
introduction of Equation (44) into Equation (21b), the
in-plane derivatives of the electric potential terms
vanish and a very simple expression is obtained for
the array [Eff)]:

[ng)] = [Bconxt(p][qqﬁgk)] (45)

where [B.,n.9] contains only constant terms and
the vector of the elementary electric dof contains the

Trr(1,1) Trr(1,2)
Tir(2,1) Trr(2,2) (43a)

2 Trr(1,1) Trr(2,1) 2 Trr(1,2) Tpr(2,2)  Trr(1,1) Trr(2,2) + Trr(1,2) Trr(2,1)

is constructed from the following transformation
matrix:

-

(Tuxl = [Tael™ with [TRL]z[‘ll‘il ‘.’.l'?} (43b)
a -ty ar-b

electric potential values at the top and bottom of the
layer (k):

k
q¢£’1n)7/

(k)

€rop

[gp"] = (46)



The Discrete Piezoelectric System

The FE interpolations on € for the strains given in
Equations (33), (35), (36), (39), (41) and those for the
electric field in Equation (45) are introduced in the 2D
governing equation (28). The local orthonormal basis is
addressed by referring to the transformations given in
Equation (42). The integral over the elementary domain
is carried out by means of the Gauss quadrature scheme.
Assembling each elementary contribution in the global
reference frame, the following discrete form of the cou-
pled piezoelectric system is obtained:

|: [Kuu] [Ku¢] i| |: [qu] i| o [ [Lu] ]
[Kup 1" [Kopl ]| [49] L]
where [K,,]. [Ksgl. and [K,,] are the global stiffness,
dielectric, and piezoelectric matrices of the shell, respec-
tively. The mechanical dof (displacements and rotations)
are included in the vector [g,], while the electrical dof
(electric potentials) are in the vector [g,). The load vec-
tors [L,] and [Ly] represent the external loading from
applied forces and prescribed charges, respectively.
Essential boundary conditions (i.e., prescribed displace-
ments and electric potentials) are imposed numerically
by a penalty technique. The coupled system is then
solved by the classical static condensation procedure
for the electrical dof:

[96] = [Kpo] ™' ([Lg] — [Kig]"Tq])

which yields the following purely mechanical system
with a modified equivalent stiffness matrix:

(47)

(48a)

[ (Kl = KKl K ][]
= [L.] = [KiglKgo] ' [Ly]

NUMERICAL RESULTS

(48b)

In this section, several tests available in open literature
are presented in order to evaluate the efficiency of the
present C7CL8PZ element (laminated shell element with
seven mechanical dof per node, based on the CL8 strain

interpolations of Polit et al. (1994) and including piezo-
electric coupling). Flat plates are considered in Section
‘Piezoelectric bimorph plate’, open- and closed-cylindri-
cal shell geometries are addressed in Section ‘Closed
cylindrical rings’ and Section ‘Composite cylindrical
shell panels’, respectively. Different stacking sequences
are also included in this study in order to demonstrate
the capabilities of the present piezoelectric composite
shell element. Linear static actuator and sensor applica-
tions are discussed. For the sake of brevity, the robust-
ness of the element with respect to transverse shear and
membrane locking problems will not be assessed since
this result has been already presented by Polit et al.
(1994) and Polit and Touratier (1999).

We have chosen the case studies among those that
have been more often reported in literature. A complete
description in a unified format of the case studies is pro-
posed so that there is no need to retrieve the original
articles reported in the references. For compatibility
with the reported references, the results will be often
provided in graphical format. A new reference solution
issued from a 3D FE simulation performed with the
commercial software ANSYS is provided for those
cases for which an uncertainty exists in the graphical
evaluation of the reference results.

The results of the present element are compared with
those obtained by other piezoelectric shell finite ele-
ments. Reference will be made to the element ISOP4
of Sze et al. (2000), the ISOP9 of Lee et al. (2003), the
GEXP4 proposed by Kulikov and Plotnikova (2008) as
well as to the elements denoted S-1997 (Saravanos,
1997), BN-2001 (Balamurugan and Narayanan, 2001),
TVQ-2005 (Tan and Vu-Quoc, 2005) and BN-2008
(Balamurugan and Narayanan, 2008). All these elements
employ the electrostatic potential as electrical dof.
Table 2 summarizes the main features of these shell ele-
ments, namely the number of mechanical dof per node
as well as the through-thickness assumptions and the
FE approximations used for the electric potential.
The notation LW (layer-wise) is employed if the assump-
tion for the electric potential can be refined upon intro-
duction of numerical interfaces.

Table 2. Main features of the finite shell elements used for the numerical assessment.

Mechanical
dof per node

Shell FE

Thickness electric
approximation

In-plane electric
approximation

S-1997 (Saravanos, 1997)

ISOP4 (Sze et al., 2000)

BN-2001 (Balamurugan and Narayanan, 2001)
ISOP9 (Lee et al., 2003)

TVQ-2005 (Tan and Vu-Quoc, 2005)

GEXP4 (Kulikov and Plotnikova, 2008)
BN-2008 (Balamurugan and Narayanan, 2008)
C7CL8PZ (this study)

NOoOwo owo

LW linear Quadratic
Linear Bilinear
Linear Constant
Linear Biquadratic
Linear Bilinear
Linear Bilinear
Quadratic Constant?
LW Linear Constant

2n the BN-2008 element, the electric potential is element-wise constant at the outer surfaces of the piezoelectric layer, while a biquadratic interpolation is used for

the induced electric potential at the middle surface.



Piezoelectric Bimorph Plate

The first numerical validation concerns the bimorph
pointer illustrated in Figure 5, for which experimental
results and an analytical solution have been provided by
Tzou et al. (1990) and Tzou (1993), respectively. This
experiment has been widely used in literature to validate
the static response of piezoelectric shell elements.

Geometry: The bimorph consists of a rectangular
plate with length ¢=100mm, width »=5mm, and
thickness #=1mm (Figure 5).

Material: The bimorph consists of a stack of two
PVDF layers with opposite polarization (bimorph in
series or anti-parallel configuration, see also
Fernandes and Pouget, 2003), which have the follow-
ing properties:

E;=2GPa Vio=0 Gi,=1GPa
E,=2GPa Vi3=0 Gi3=1GPa
E;=2GPa Vo3 =0 G»;=1GPa
e31=0.046C/m> ¢35, =0.046C/m> e33=0C/m>
e1s=0C/m? e54=0C/m’

&1 =0F/m &> =0F/m £33=0.1062 nF/m

The piezoelectric coefficients and dielectric permittiv-
ities for which no values were reported in the reference
works have been set to zero.

Figure 5. Piezoelectric bimorph beam.

Boundary Conditions: The cantilevered plate has all
mechanical dof blocked on the boundary at x; =0.

The boundary conditions for the actuator and sensor
configuration are as follows:

e Actuator case: Prescribed electric potential at the
top and bottom faces of the plate: ®(z=—h/2)=
—®(z=+4h/2)=0.5V.

e Sensor case: As reported by Tan and Vu-Quoc (2005),
the tip of the plate is loaded by a vertical force
F=0.0254371 N, which corresponds to a deflection
of 0.0l m. The bottom face of the plate is grounded,
¢(z=—h/2)=0V, while the electric potential at the
top face is free.

Mesh: A regular mesh with five elements is used with
m, =35, m,, =1 as depicted in Figure 5. One numeri-
cal layer is used for each PVDF ply.

Results: For the actuator case, the plate deflection at
the mean surface u3(z=0) is reported. For the sensor
case, the electric potential at the top surface ®(z =4/2)
is given.

ACTUATOR CASE

The deflection of the bimorph under the action of an
imposed electric field is computed. The numerical results
are reported in Table 3 along with the experimental out-
put and the analytical result. The present C7TCL8PZ cle-
ment yields results similar to those found in literature.
In general, the predicted tip deflection is about 9%
larger than the experimentally measured one. This may
be explained by voltage leakage, imperfect bonding,
energy dissipation, etc. (Suleman and Venkayya, 1995).

SENSOR CASE

The electrostatic potential measured at the top surface
at various distances from the clamped edge is reported in
Table 4 and Figure 6. A good agreement is found with
results found in literature. Note that the values of the
literature have been extracted from graphical results
reported in the cited references. While the element
TVQ-2005 has a bilinear interpolation for the electric

Table 3. Nodal deflection of the bimorph piezoelectric actuator (um).

Distance from clamping (mm) 20

Experiment (Tzou et al., 1990) -

Analytical (Tzou, 1993) 0.0138
ISOP4 0.0138
BN-2001 0.0144
ISOP9 0.0137
TVQ-2005 0.0138
GEXP4 0.0138
C7CL8PZ 0.0137

40 60 80 100

- - - 0.315
0.0552 0.1242 0.2208 0.3450
0.0552 0.1242 0.2208 0.3450
0.0557 0.1240 0.2192 0.3415
0.0551 0.1241 0.2207 0.3449
0.0552 0.1242 0.2208 0.3450
0.0552 0.1242 0.2208 0.3450
0.0551 0.1241 0.2207 0.3449




potential distribution across the element, the electric
potential is constant across the C7CL8PZ and BN-
2001 elements (Table 2). For these elements, Table 4
reports two nodal values corresponding to the adjacent
elements and a piece-wise constant distribution is
obtained along the axis (Figure 6). In reality, the voltage
is averaged at the common node between adjacent ele-
ments due to conductivity.

Closed Cylindrical Rings

We consider a problem formulated by Heyliger
et al. (1996), which addresses the static response of
mechanically loaded circular rings. Two cases are
considered, a homogeneous ring made of PZT-4 and
a composite ring made of Titanium and PZT-4. A
new reference solution is additionally proposed which
has been obtained by a 3D FE model calculated by
ANSYS.

HOMOGENEOUS PZT-4 RING
Geometry

The circular ring has an inner radius of R;=0.289m
and a depth of 5=0.3048m, see the notation in
Figure 9. Two values for the ring wall thickness are
considered, a thin ring with #=0.004m and a thick
ring with #=0.04 m (Heyliger et al., 1996).

Material
The PZT-4 has the following properties (Heyliger
et al., 1996):

E,=81.3GPa vi2=0.329 G1,=130.6 GPa
E,=81.3GPa vi3=0.432 G,3=25.6GPa
E;=64.5GPa Va3 =0.432 Go3=25.6GPa
e31=—352C/m* e =-52C/m?  e33=15.08C/m?

e1s=12.72C/m?
€11 = 1306nF/m

e24=12.72C/m?

€ =13.06nF/m e33=11.51 nF/m

Boundary Conditions

The ring is unsupported and loaded at 6 ==+ 90° by a
radial line load Fy =656.17N/m. Differently from
Heyliger et al. (1996), we consider that both the inner
and outer surfaces are grounded (short-circuit condition,

Table 4. Induced electrostatic potential at the top
surface of the bimorph piezoelectric plate (V).

Distance from 0 20 40 60 80 100
clamping (mm)
TVQ-2005 309 264 192 131 59 18
BN-2001 297 224 157 93 30

297 224 157 93 30
C7CL8PZ 293 228 163 98 32

293 228 163 98 32

683

¢(z==h/2) =0V) for both the thick and thin ring cases.
Due to symmetry, the model can be reduced to one
eighth of the ring by applying corresponding symmetry
boundary conditions at §=0°, 90° and x,=5/2 (the
same notation of Figure 9 is employed).

Mesh

The symmetric model is discretized with m, =2 ele-
ments along the cylinder axis x, and with m, =16 ele-
ments along the hoop axis x; (Figure 9). Additionally,
the piezoelectric ring will be subdivided into various
numerical layers, denoted m., in order to refine the
description of the electrostatic potential.

Results

The distributions along the circumferential direction
of the electric potential ¢(0) and of the radial deflection
u.(0) are given. The values are taken at the center of the
ring, x, = b/2, and at the middle surface z=0 (Figure 9).

We compare the results of the present C7CL8PZ ele-
ment with the reference solution issued from a 3D FE
calculation of ANSYS. The proper mesh densities to be
used for the 3D FE solutions have been obtained from
preliminary convergence studies like the one reported in
Table 5.

350

—6—TVQ-2005
—A— BN-2001
300 4 A e : R —— C7CL8PZ H

250

200

o (V)

150 |

100 |

50

0 20 40 60 80 100
X (mm)

Figure 6. Distribution along the axis of the induced potential at the
top surface of the PVDF bimorph.

Table 5. Convergence study for the 3D FE computation
of the thick PZT-4 ring: u,(6=0°).

Refinement along x4: m,,=20; m,=16

my, 10 20 30 40 60
Error (%) 2.2 2.2 0.1 0.0 0.0
Refinement along x,: my, =60; m,=16

my, - 5 10 15 20
Error (%) - 1.2 0.05 0.01 0.0
Refinement along z: m,, =60; m,, =20

m, - 2 4 8 16

Error (%) - 0.2 0.07 0.01 0.0




A convergence analysis is presented in Table 6 for the
present shell element C7CL8PZ. The radial displace-
ments u, at 6=0° and 6=90° are analyzed. We vary
both the in-plane discretization and the number of
numerical layers into which the piezoelectric material
is subdivided along the thickness direction. Table 6
shows that the element has a high convergence velocity

Table 6. In-plane convergence study for the present
shell element, thin PZT-4 ring: percentage error with
respect to 3D FE solution for u,(0=0°) and u,(0=90 ).

My, X My; M;=8

2x2 2x4 2x8 2x16 2x24
Error (%) for u,(0°) 7 25 1 0.7 0.6
Error (%) for u,(90°) 6.7 2.1 0.9 0.6 0.6

Table 7. Convergence study of the present shell
element: influence of the number of numerical layers
m, on the radial deflections u,(0=0°) and u,(0=90°)
and the percentage errors with respect to the 3D FE
solution (m, =16, m,,=2).

Thin homogeneous PZT-4 ring

my uz(6=0°) Error (%) uz(0=90°) Error (%)

1 0.50519E-02 16 —0.46390E-02 16

2 0.45033E-02 4 —0.41353E-02 4

4 0.43870E-02 1.2 —0.40285E-02 1.2

8 0.43590E-02 0.6 —0.40028E-02 0.6

3D FEM 0.43320E-02 —0.39788E-02

1 0.64665E-05 13 —0.58305E-05 11

2 0.59253E-05 4 —0.53397E-05 4

4 0.58136E-05 2 —0.52386E-05 1.8

8 0.57869E-05 1.7 —0.52144E-05 1.3

3D FEM 0.56899E-05 —0.51435E-05

(@ x10-8
5 T T T T
4b..| o 3DFEM L SR oo
——C7CL8PZ

Radial deflection (m)

toward the reference solution issued from the 3D FE
computation even for a thin ring. Based on these results,
the mesh density with m, =16 and m,, =2 will be taken
for the following computations.

The influence of the number of numerical layers m. is
assessed in Table 7 for the thin and thick PZT-4 ring.
Convergence toward the 3D FE solution is recognized.
A noticeable influence of m. is remarked, which con-
firms the important role played by the induced electric
potential by taking m. =1, the linear approximation for
the electric potential ¢ neglects the additional stiffness
due to the direct piezoelectric effect and leads to errors
greater than 10%. Note that this error is greater for the
thin piezoelectric ring. Upon increasing mi., a piece-wise
linear refinement of the radial distribution of ¢ allows to
take into account the piezoelectric stiffening effect. In
the following, m. =4 numerical layers will be employed
for the piezoelectric layer, which bounds the error to
about 2%.

Finally, the variation along the circumferential direc-
tion of the radial deflection u. and of the electric poten-
tial ¢ at the mid-surface are reported in Figures 7 and 8,
respectively. An excellent agreement is found between
the results of the present shell element and the reference
3D FE computation for both the thin and the thick case.
Note that the electric potential remains constant across
the present shell element.

COMPOSITE TITANIUM|PZT-4 RING
Geometry

A circular cylindrical ring is considered that is made
of an inner Titanium layer with an attached continuous
PZT-4 layer. The inner radius is fixed at R;=0.289m,
the depth of the ring is 5 =10.3048 m and the total thick-
ness of the composite ring is #=0.04 m, where the thick-
ness of the Titanium and of the PZT-4 layers are

(b)  x10°®
6

o 3D FEM
| ——C7CL8PZ

o

Radial deflection (m)
o

4

Figure 7. Distributions of the radial displacement u,(0) for the thin (left) and thick (right) PZT-4 ring.



hr=0.03m and /p=0.01 m, respectively (Heyliger et al.,
1996). For further convenience, we identify the location
of the interface between the Titanium and the PZT-4
plies as z;=—h/2 + hy and the location of the mid-sur-
face of the PZT-4 ply as zp==z;+ hp/2 =h/2 — hp/2. The
geometry is depicted in Figure 9 along with the used
coordinate axes.

Material

The material properties for the PZT-4 coincide with
those listed in the previous section, those for the isotro-
pic Titanium layer read (Heyliger et al., 1996):

E;=114GPa V=03 G, =43.8GPa
E>=114GPa vi3=0.3 G13=43.8GPa
E;=114GPa v23=0.3 G»3;=43.8GPa
ey =0C/m? €3, =0C/m? e33=0C/m’
e1s=0C/m? e24=0C/m’

e1=13.06nF/m &,=13.06nF/m ¢&33=13.06nF/m

Boundary Conditions

The cylindrical ring is unsupported and loaded at
0==90° by a radial line load Fy =656.17N/m. The
interface between the perfectly bonded Titanium and
PZT-4 layers is grounded, ¢(z = z;) =0, while the electric
potential of the outer surface of the piezoelectric layer
¢(z=h/2) is let free (Heyliger et al., 1996). Symmetry is
exploited by modeling only one eighth of the ring upon
application of corresponding symmetry conditions at
6=0°, 90° and at x, =5b/2.

Mesh

The symmetric model is discretized with m, =24 ele-
ments along the circumferential direction and m, =2
elements along the axis of the cylinder. _

Results

We report the circumferential distributions of the elec-
tric potential ¢(f) and of the radial displacement u.(6)
taken at the center of the ring (x, =5/2). The values of
the radial displacement are taken at the mid-surface of
the ring z=0, while those of the electric potential are
taken at the middle surface of the piezoelectric ply,
z=zp, and at the outer surface z =h/2.

A preliminary convergence analysis is proposed in
order to assess the role of the number m. of numerical
layers into which the PZT-4 ply is subdivided. Table 8
reports the radial displacements at 6 =0° and § =90° for
different values of m.. The reference values have been
provided by a 3D FE solution of ANSYS. The employed
mesh for the 3D solution is m, x m, x m.=60 x
20 x 16. In contrast to the homogeneous short-circuited
PZT-4 ring discussed in the previous section, only a mar-
ginal influence of m. can be appreciated with differences
of less than 1%. This completely different behavior is
attributed the different electrical boundary

to

Figure 9. Quarter model of the composite Ti/[PZT-4 cylindrical ring:
geometry and loading.
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Figure 8. Distributions of the electric potential ¢(6) for the thin (left) and thick (right) PZT-4 ring.



conditions. In fact, an induced electric field can be con-
structed by a non-zero value of the electric potential at
the outer surface, which can be readily obtained by a
linear distribution of the electric potential.

Table 8. Convergence study of the present shell
element: influence of the number of numerical layers
m, on the radial deflection at 0=0° and 0=90° and the
percentage errors with respect to the 3D FE solution.

Thick composite Ti/PZT-4 ring

m, u,(0°) Error (%) u,(90°) Error (%)
1 0.50433E-05 0.79 —0.45595E-05 0.64

2 0.50374E-05 0.67 —0.45541E-05 0.52

4 0.50360E-05 0.64 —0.45528E-05 0.50
3D FEM 0.50036E-05 —0.45301E-05
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Figure 10. Distribution of the radial displacement u,(0) for the
mechanically loaded Ti/PZT-4 composite cylindrical ring.
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The circumferential distributions of the radial dis-
placement u.(6, z=0) and of the electrostatic potential
@0, z=zp) and (0, z=h/2) are illustrated in Figures 10
and 11, respectively. An excellent agreement is found
between the results of the present shell element and
those issued from the 3D FE solution.

Composite Cylindrical Shell Panels

The last examples shall validate our C7CL8PZ ele-
ment with respect to applications involving composite
layups made of orthotropic elastic materials and piezo-
electric plies. Two case studies are addressed, a simply
supported orthotropic panel and a cantilever panel with
bending—twisting elastic coupling.

SIMPLY-SUPPORTED COMPOSITE
CYLINDRICAL SHELL PANEL

This example has been formulated by Saravanos (1997)
for validating his 8-node quadrilateral element S-1997. It
consists of a simply supported 90° cylindrical shell panel
made of the symmetric stack [0/90], of graphite—epoxy
(Gr—Ep) composite. A continuous piezoelectric actuator
is either embedded into the stack or attached to the inner
or outer surface of the panel. Figure 12 illustrates the
configuration with the actuator placed at the inner
(bottom) surface of the composite stack.

Geometry

The 90° cylindrical panel has a thickness of #=2mm
and a mid-surface radius R=200mm (R/h=100).
The panel is square with »=nR/2 (Figure 12). Each
composite Gr—Ep ply has a thickness sc=0.375mm
and the thickness of the piezoelectric actuator is
hp=0.5mm. Three configurations are considered for
the laminated actuator: [p/0/90/90/0], [0/90/p/90/0],
and [0/90/90/0/p], where the placement of the
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Figure 11. Distributions of the electric potential ¢(0) at the middle surface of the PZT-4 ply (z=zp, left) and at the outer surface (z = h/2, right) for

the mechanically loaded Ti/PZT-4 composite cylindrical ring.



piezoelectric actuator (p) is at the inner, middle, and
outer surface, respectively.

Material

Both the elastic Gr—Ep composite and the piezoelec-
tric actuator are assumed to be transversely isotropic.
The following properties are assumed for the Gr—Ep
composite ply (Saravanos, 1997; Benjeddou et al., 2002):

E,=132.4GPa Vi, =0.24 G1,=5.6GPa
E>=10.8GPa vi3=0.24 G13=5.6GPa
E;=10.8GPa Va3 =0.49 G»3=3.6GPa
e31=0C/m? e3,=0C/m? e33=0C/m?
e1s=0C/m? e24=0C/m>

€11=3.5¢ €7 =13 € €33=13 €

where ey =28.85 x 107" F/m is the vacuum permittivity
constant. The actuator consists of the piezoceramic
material PZT-4 and has the following characteristics
(Saravanos, 1997; Benjeddou et al., 2002):

E;=813GPa vi»=0.33 G1>»=130.6 GPa
E>=81.3GPa vi3=0.43 G13=25.6GPa
Ey=64.5GPa Va3 =0.43 Gy3;=25.6 GPa
e31=—52C/m*>  e3=—52C/m>  e33=15.08C/m?
e1s=12.72C/m>  e,4=12.72C/m>

€11 =1475 ¢, €2, = 1475 ¢, €33 = 1300 ¢

Boundary Conditions

All edges of the cylindrical shell panel are simply sup-
ported: v, =v.=0 at x;=0, ©/2 and v, =v.=0 at
x>=0, b. A uniform electric field E.=—400kVm™' is
imposed in the PZT actuator through the following elec-
tric potentials at the bottom and top electrodes: ¢, =0,
Drop=200 V.

[0/90/90/0]

Xo

Figure 12. The 90° cylindrical panel [p/0/90/90/0]: a composite
elastic laminate with a PZT actuator (p) attached to the inner
(bottom) surface.

Mesh

The shell reference surface has been discretized with
m,, =4 elements along the cylinder axis x, and m, =15
elements in the circumferential direction (hoop axis x).

Results

The non-dimensional radial deflection u.// is reported
at the mid-surface along the axial mid-span of the panel
(i.e., at points located at x, =5/2, z=0, see Figure 12).

Figure 13 illustrates the distribution of the non-
dimensional radial deflection u./h along the axial mid-
span of the shell for the three configurations ([p/0/90/
90/01, [0/90/p/90/0], and [0/90/90/0/p]). The results of the
present element are compared with those of Saravanos
(1997) and Balamurugan and Narayanan (2008).
Additionally, we report the results issued from a 3D
FE computation made with ANSYS. The employed
mesh density for the 3D FE computation is m, =80,
m,, =40, and m.=10.

A good agreement is found between all approaches.
The comparison between the three configurations shows
that the position of the actuator in the composite stack
has an important influence on the deformed shape. Note
that the solid shell element BN-2008 retains the induced
electric field by a quadratic approximation for the elec-
tric potential. As already recognized by Balamurugan
and Narayanan (2008), their element appears to be the
stiffest one.

CANTILEVER CYLINDRICAL SHELL

A clamped composite shell panel with attached piezo-
ceramic actuators is considered as proposed by Kioua
and Mirza (2000). The piezoelectric composite shell
has the symmetric stacking [p/30/30/0], and shows a
bending—twisting coupling under the action of the actu-
ators. The data for the case study is summarized in the
following.

x 1073
14 ¢ : - [—c7cLePz
- -3D FEM

_ 12 | . "7[0/90/90/0/;)] |7, 821997
S o BN-2008 2N
5 10 ¢ :
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3 8¢ [p/0/90/90/0]
= :
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o
3 4l
N
T 2
£
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0 0.2 0.4 0.6 0.8 1
Normalized hoop distance

Figure 13. Simply supported 90° composite shell panel: effect of
thickness location of the actuator.



Geometry

The cylindrical shell illustrated in Figure 14 is consid-
ered. It has square in-plane dimensions ¢ =b=0.254m
and the mid-surface curvature radius R is varied within
the range of validity of shallow shell approximations
between R/b=10 and R/b=100 (Kioua and Mirza,
2000). Each composite Gr—Ep ply has a thickness of
he=0.138 mm, each piezoelectric actuator has the thick-
ness hp=0.254 mm and the total thickness of the sym-
metric stack [p/30/30/0], is 7 =1.336 mm.

Material

The material data reported by Kioua and Mirza
(2000) were limited to the in-plane properties and no
electric permittivities were indicated. In this study, the
data set has been completed by referring to similar mate-
rial properties available in literature. The material prop-
erties for Gr—Ep given by Kioua and Mirza (2000) are
close to those of the T300/976 composite, for which the
complete data set has been provided by Benjeddou et al.
(2002). The following data are used in this study:

E; =150 GPa vi»=0.3 G,=7.1GPa
E,=9GPa vi3=0.3 G;3=7.1GPa
E;=9GPa Vv,3=0.49 G»3=3GPa
e31=0C/m? e =0C/m? e33=0C/m?
e1s=0C/m? e54=0C/m’

611:0.03IHF/m 622:0.027 nF/m 63320.027 nF/m

The actuators are two PZT G1195 plies with opposite
polarization directions. Unfortunately, the elastic stiff-
ness data for the PZT G1195 reported by Benjeddou
et al. (2002) do not agree with those used in the original
work of Kioua and Mirza (2000). A piezoelectric mate-
rial with elastic properties similar to those given by
Kioua and Mirza (2000) has been found in the work
of Lee and Saravanos (1999), where reference is made

PZT

Figure 14. Cantilever composite cylindrical shell with attached pie-
zoelectric actuators.

to an isotropic piezoceramic. As a result, the following
isotropic properties are employed in this study:

E;=63GPa vi»=0.3 G1,=24.2GPa
E,=63GPa vi3=0.3 G13=24.2GPa
Ey=63GPa v23=0.3 Gy3;=24.2GPa
031 =22.86C/m>  ¢3,=2286C/m*> e33=0C/m>
e1s=0C/m? e24=0C/m?

€11 = 15.05 nF/m € = 15.05 nF/m €33 = 15.05 nF/m

Boundary Conditions

The shell is clamped at one of its curved edges. An
electric field is induced in the piezoceramic actuators by
applying an electric potential of =100V at the outer
electrodes while the inner surfaces are grounded.

Mesh
A regular mesh with eight elements per edge is used.

Results

The magnified mid-span tip deflection 10° us(a, b/2) is
reported along with a magnified measure of the twist.
The twist is computed as the ratio between the difference
of the deflections at the tip corners and the width b: 10°
[us(a, b) — us(a, 0)]/b.

The results are reported in Figure 15 by plotting the
evolution of the tip deflection and twist with respect to
the curvature ratio R/b of the panel. Present results are
compared with those obtained with the finite shell ele-
ments ISOPY (Lee et al., 2003) and GEXP4 (Kulikov
and Plotnikova, 2008), see also Table 2. A perfect agree-
ment between the different element formulations can be
seen, which validates the present element formulation
with respect to its capability of modeling piezoelectric
composite shells.
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Figure 15. Actuated cantilever composite shell: magnified deflec-

tion (10° ug(a, b/2)/b) and twist (10° [us(a, b) — us(a, 0)]/b) for vari-
ous curvature ratios R/b.



CONCLUSION

This article has presented a new and simple finite shell
element for multilayered panels including piezoelectric
actuators and/or sensors. The shell model consists
of the classical Reissner—Mindlin kinematics with an
additional quadratic thickness stretch term that per-
mits to retain the full 3D constitutive law without
Poisson locking problems. A layer-wise linear assump-
tion has been used for the electrostatic potential. The FE
approximations of the employed 8-node element have
been detailed out along with an efficient technique
to avoid transverse shear and membrane locking. The
electric potential is constant over the elementary
domain, which ensures efficiency and a direct satisfac-
tion of the equipotentiality condition on the patch
electrodes. The element has been validated through
various linear static case studies for which a rather
large number of results were provided in literature.
Flat plates as well as open and closed shells have been
considered that were made up of homogeneous or
laminated materials. New reference solutions have
been provided by means of 3D FEM computations
with a commercial software.

In general, a very good agreement has been found
between the reference solutions and the results of the
proposed shell element. The capability to properly
represent the piezoelectric coupling in both actuator
and sensor cases has been demonstrated. In particular,
the electric field induced by the direct piezoelectric
effect could be well captured upon subdividing the
piezoelectric ply into several numerical layers. Based
on the promising results obtained for linear static
applications, future works should address the exten-
sion of the proposed shell element to linear dynamics
and its application to active control and optimization
problems.
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APPENDIX
Constitutive Relation

The elastic, piezoelectric and dielectric matrices of an
orthotropic material polarized along the thickness direc-
tion 3 are detailed out in the following expression of the
converse and direct piezoelectric effect:
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