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Composite beam finite element based on the Proper Generalized Decomposition

P. Vidal ⇑, L. Gallimard, O. Polit
Laboratoire Energétique, Mécanique, Electromagnétisme, Université Paris Ouest Nanterre-La Défense, 50 rue de Sèvres, 92410 Ville d’Avray, France

a b s t r a c t

In this paper, a finite element based on the Proper Generalized Decomposition is presented for the anal-
ysis of bi-dimensional laminated beams. We propose to approximate the displacement field as a sum of
separated functions of x (axial coordinate) and z (transverse coordinate). This choice yields to an iterative
process that consists of computing a product of one-dimensional functions at each iteration. Mechanical
tests for thin/thick laminated and sandwich beams are presented in order to evaluate the capability of
this method. Both convergence rate and accuracy are discussed. The influence of the numerical layers
is also assessed.

1. Introduction

Composite and sandwich structures are widely used in the
industrial field due to their excellent mechanical properties, espe-
cially their high specific stiffness and strength. In this context, they
can be subjected to severe mechanical loads. For composite design,
accurate knowledge of displacements and stresses is required. So,
it is important to take into account effects of the transverse shear
deformation due to the low ratio of transverse shear modulus to
axial modulus, or failure due to delamination. In fact, they can play
an important role on the behavior of structures in services, which
leads to evaluate precisely their influence on local stress fields in
each layer, particularly on the interface between layers.

According to published research, various theories in mechanics
for composite or sandwich structures have been developed. The
following classification is associated with the dependancy on the
number of degrees of freedom (dofs) with respect to the number
of layers:

� the Equivalent Single Layer approach (ESL): the number of
unknowns is independent of the number of layers, but the
transverse shear and normal stresses continuity on the inter-
faces between layers are often violated. The first work for
one-layer isotropic plates was proposed in [1]. Then, we can dis-
tinguish the classical laminate theory [2] (it is based on the
Euler–Bernoulli hypothesis and leads to inaccurate results for
composites and moderately thick beams, because both trans-
verse shear and normal strains are neglected), the first order
shear deformation theory ([3], composite laminates [4]), and

higher order theories [5–8]. Some of them take into account
transverse normal deformation [9–11] with a higher order the-
ory. All these studies are based on a displacement approach,
although other approaches are formulated on the basis of mixed
formulations [12,13].
� the layerwise approach (LW): the number of dofs depends on the

number of layers. This theory aims at overcoming the restriction
of the ESL concerning the discontinuity of out-of-plane stresses
on the interface layers. This approach was introduced in [14,15],
and also used in [16–18]. For recent contributions, see [19–22].
Again, some models which take into account the transverse nor-
mal effect have been developed: [23] within a displacement
based approach and [24,25,12,26] within a mixed formulation.

In this framework, refined models have been developed in order
to improve the accuracy of ESL models avoiding the additional
computational cost of LW approach. Based on physical consider-
ations and after some algebraic transformations, the number of un-
knowns becomes independent of the number of layers. Whitney
[17] has extended the work of [27] for symmetric laminated com-
posites with arbitrary orientation and a quadratic variation of the
transverse stresses in each layer. So, a family of models, denoted
zig-zag models, was derived (see [28–33]). Note also the refined
approach based on the Sinus model [34–36]. This above literature
deals with only some aspects of the broad research activity about
models for layered structures and corresponding finite element
formulations. An extensive assessment of different approaches
has been made in [37–41].

Over the past years, the Proper Generalized Decomposition
(PGD) has shown interesting features in the reduction model
framework [42]. This type of method has been also introduced by
Ladevèze [43] and called ‘‘radial approximation’’ in the Latin
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method framework. It allows to decrease drastically computational
time [44]. It has been also used in the context of separation of
coordinate variables in multi-dimensional PDEs [42]. For a review
about the PGD and its fields of applications, the reader can refer to
[45,46].

In this work, a finite element based on the PGD for rectangular
laminated beam analysis is built. The displacements are written
under the form of separated variables representations, i.e. a sum
of products of unidimensional polynomials of x and z. The approx-
imation of the 2D beam is based on a quadratic finite element (FE)
approximation for the variation with respect to x and a quadratic
LW description for the variation with respect to z. Using the PGD,
each unknown function of x is classically approximated using
one degree of freedom (dof) at the node of the mesh while the
LW unknown functions of z are global for the whole beam. Finally,
the deduced non-linear problem implies the resolution of two lin-
ear problems alternatively. This process yields to few unknowns
involved in each of these linear problems.

We now outline the remainder of this article. First the mechan-
ical formulation is given. Then, the finite element discretization
based on the Proper Generalized Decomposition is described. The
principles of the approach are recalled in the framework of our
study. It is illustrated by numerical tests which have been per-
formed upon various isotropic, laminated and sandwich beams. A
parametric study is given to show the effects of boundary condi-
tions, length-to-thickness ratio and number of degrees of freedom.
This set of numerical evaluations includes highly anisotropic struc-
tures. The accuracy of the results are evaluated by comparisons
with an exact three-dimensional theory for laminates in bending
[18] and also two-dimensional finite element computations using
commercial finite element software.

2. Reference problem description

2.1. The governing equations

Let us consider a beam occupying the domain X ¼ Xx �Xz�
� b

2 6 y 6 b
2

� �
¼ ½0; L� � � h

2 6 z 6 h
2

� �
� � b

2 6 y 6 b
2

� �
in a Cartesian

coordinate (x,y,z). The beam has a rectangular uniform cross sec-
tion of height h, width b and is assumed to be straight. The beam
is made of NC layers of different linearly elastic materials. Each
layer may be assumed to be orthotropic in the beam axes. The x
axis is taken along the central line of the beam whereas y and z
are the two axes of symmetry of the cross section intersecting at
the centroid, see Fig. 1. As shown in this figure, the y axis is along
the width of the beam. This work is based upon a displacement ap-
proach for geometrically linear elastic beams.

In the following, the beam is considered in the (x,z) plane, the y-
coordinate is neglected.

2.1.1. Constitutive relation
Each layer of the laminate is assumed to be orthotropic. Using

matrix notation, the stress–strain law of the kth layer is given by:

rðkÞ11

rðkÞ33

rðkÞ13

2
664

3
775 ¼

CðkÞ11 CðkÞ13 0

CðkÞ33 0

symm CðkÞ55

2
664

3
775

eðkÞ11

eðkÞ33

eðkÞ13

2
664

3
775 i:e: ½rðkÞ� ¼ ½CðkÞ�½eðkÞ� ð1Þ

where we denote the stress r and the strain e. CðkÞij are the moduli of
the material for the kth layer taking into account the zero trans-
verse normal stress hypothesis (r22 = 0). They are expressed by

CðkÞij ¼ CðkÞij � CðkÞi2 CðkÞj2 =CðkÞ22 ð2Þ

where CðkÞij are 3D stiffness coefficients. We also have CðkÞ55 ¼ CðkÞ55 .

2.1.2. The weak form of the boundary value problem
Using the above matrix notation and for admissible displace-

ment d~u 2 dU, the Principle of Virtual Work is given by:
find ~u 2 U (space of admissible displacements) such that

�
Z

X
½eðd~uÞ�T ½rð~uÞ�dXþ

Z
X
½du�T ½b�dXþ

Z
CF

½du�T ½F�dCF ¼ 0

8d~u 2 dU
ð3Þ

where [b] and [F] are the prescribed body and surface forces applied
on CF.

2.2. The displacement field for the composite beam

In classical beam theory, the displacement field is assumed to
be of the following form

u1ðx; zÞ ¼
PN1

i¼0
ziv i

1ðxÞ ð4Þ

u3ðx; zÞ ¼
PN3

i¼0
ziv i

3ðxÞ ð5Þ

where v i
1; v i

3

� �
are the functions to be sought.

For instance, we can derive two models available in literature:

� the classical Timoshenko model with N1 = 1 and N3 = 0,
� ED2 model in Carrera’s Unified Formulation [39] with N1 = 2

and N3 = 2.

3. Application of the Proper Generalized Method to beam

The Proper Generalized Decomposition (PGD) was introduced in
[42] and is based on an a priori construction of separated variables
representation of the solution. The following sections are dedicated
to the introduction of PGD for beam analysis.

3.1. The displacement field

The displacement solution (u1(x,z),u3(x,z)) is constructed as the
sum of N products of functions of only one spatial coordinate
(N 2 N is the order of the representation)

u1ðx; zÞ ¼
PN
i¼1

f i
1ðzÞv i

1ðxÞ

u3ðx; zÞ ¼
PN
i¼1

f i
3ðzÞv i

3ðxÞ
ð6Þ

where f i
1; f

i
3

� �
and v i

1; v i
3

� �
are functions which must be computed

during the resolution process. In this paper, polynomial expansions
are used and only the coefficients of each polynomial expansion
have to be computed. As an illustration the new unknowns are
the ai

kj

� �
j¼0;2

coefficients in

f i
kðzÞ ¼ ai

k0 þ ai
k1zþ ai

k2z2 for k 2 f1;3g

3.2. The problem to be solved

The relation (6) can be written in a more compact way

Fig. 1. The laminated beam and co-ordinate system.



u ¼
PN
i¼1

Fiv i ¼
PN
i¼1

Vif i ð7Þ

with the following notations

u ¼
u1ðx; zÞ
u3ðx; zÞ

� 	
; v i ¼ v i

1ðxÞ
v i

3ðxÞ

" #
; f i ¼ f i

1ðzÞ
f i
3ðzÞ

" #
; ð8Þ

and

Vi ¼ v i
1ðxÞ 0
0 v i

3ðxÞ

" #
and Fi ¼ f i

1ðzÞ 0
0 f i

3ðzÞ

" #
ð9Þ

Using this new separated representation, an iterative procedure
must be introduced. If we assume that the first n functions have
been already computed, the solution for the iteration n + 1 is
written as

u ¼ �uþ Vf ¼ �uþ Fv ð10Þ

where �u is the associated known set at iteration n defined by

�u ¼
Pn
i¼1

Fiv i ¼
Pn
i¼1

Vif i ð11Þ

and

v ¼
v1ðxÞ
v3ðxÞ

� 	
f ¼

f1ðzÞ
f3ðzÞ

� 	
V ¼

v1ðxÞ 0
0 v3ðxÞ

� 	
F¼

f1ðzÞ 0
0 f3ðzÞ

� 	

The new unknowns (v, f) are computed such that (10) satisfies
the weak Eq. (3). For sake of clarity the surfaces forces are ne-
glected in the developments and the weak form of the beam prob-
lem introduced in Eq. (3) simplifies in

�
Z

Xx

Z
Xz

ð½eðduÞ�T ½C�½eðuÞ� þ ½du�T ½b�Þdzdx ¼ ½0� ð12Þ

where [C] represents, in each layer (k), the matrix of the elastic
moduli. Introducing du = Vdf + Fdv in Eq. (12), two equations are
deduced

�
Z

Xx

Z
Xz

ð½eðFdvÞ�T ½C�½eð�uþ FvÞ� þ ½Fdv �T ½b�Þdzdx ¼ ½0� ð13Þ

�
Z

Xx

Z
Xz

ð½eðVdf Þ�T ½C�½eð�uþ Vf Þ� þ ½Vdf �T ½b�Þdzdx ¼ ½0� ð14Þ

As these equations define a coupled non-linear problem, a non-
linear resolution strategy has to be used. The simplest strategy is a
fixed point method. An initial function f(0) is set, and at each step,
the algorithm computes a new pair (v(m+1), f(m+1)) such that

� v(m+1) satisfies Eq. (13) for f set to f(m)

� f(m+1) satisfies Eq. (14) for v set to v(m+1)

These two equations are linear and the first one has to be solved
on Xx, while the second one has to be solved on Xz.

The fixed point algorithm is stopped when

Z
Xx

Z
Xz

v ðmþ1Þ
1 f ðmþ1Þ

1 �v ðmÞ1 f ðmÞ1

� �2
þ v ðmþ1Þ

3 f ðmþ1Þ
3 �v ðmÞ3 f ðmÞ3

� �2
dxdz

� 	1=2

6 e ð15Þ

where e is a small enough parameter to be fixed by the user.

3.3. Variational problem defined on Xx

For the sake of simplicity, the function f(m) which is assumed to
be known, will be denoted �f (and F), and the function v(m+1) to be
computed will be denoted v. The strain in Eq. (13) is defined in ma-
trix notations as

½eðFvÞ� ¼ ½Bzð�f Þ�½Ev � ð16Þ

with

½Bzð�f Þ� ¼
0 �f 1 0 0
0 0 �f 03 0
�f 01 0 0 �f 3

2
64

3
75 and ½Ev � ¼

v1

v 01
v3

v 03

2
6664

3
7775 ð17Þ

where the prime stands for the classical derivation (i.e.
v 01ðxÞ ¼

dv1
dx ðxÞ). The variational problem defined on Xx from Eq.

(13) isZ
Xx

½dEv �T ½kzð�f Þ�½Ev �dx ¼
Z

Xx

½dv �T ½fzð�f Þ�dx�
Z

Xx

½dEv �T ½rzð�f ; �uÞ�dx

ð18Þ

with

½kzð�f Þ� ¼
Z

Xz

½Bzð�f Þ�T ½C�½Bzð�f Þ�dz ð19Þ

½fzð�f Þ� ¼
Z

Xz

FT ½b�dz ð20Þ

½rzð�f ; �uÞ� ¼
Z

Xz

½Bzð�f Þ�T ½C�½eð�uÞ�dz ð21Þ

3.4. Variational problem defined on Xz

In the following, the function v(m+1) which is assumed to be
known, will be denoted �v (and V), and the function f(m+1) to be
computed will be denoted f. The strain in Eq. (14) is defined in ma-
trix notations as

½eðVf Þ� ¼ ½Bxð�vÞ�½Ef � ð22Þ

with

½Bxð�vÞ� ¼
�v 01 0 0 0
0 0 0 �v3

0 �v1 �v 03 0

2
64

3
75 and ½Ef � ¼

f1

f 01
f3

f 03

2
6664

3
7775 ð23Þ

The variational problem defined on Xz from Eq. (14) isZ
Xz

½dEf �T ½kxð�vÞ�½Ef �dz ¼
Z

Xz

½dF�T ½fxð�vÞ�dz�
Z

Xz

½dEf �T ½rxð�v; �uÞ�dz

ð24Þ

with

½kxð�vÞ� ¼
Z

Xx

½Bxð�vÞ�T ½C�½Bxð�vÞ�dx ð25Þ

½fxð�vÞ� ¼
Z

Xx

VT ½b�dx ð26Þ

½rxð�v ; �uÞ� ¼
Z

Xx

½Bxð�vÞ�T ½C�½eð�uÞ�dx ð27Þ

4. Galerkin discretization

To build the beam finite element approximation, a discrete rep-
resentation of the functions (v, f) must be introduced. We use a
classical finite element approximation in Xx, and a polynomial
expansion in Xz. The elementary vector of degree of freedom
(dof) associated with the finite element mesh in Xx is denoted
qv

e

� �
and the vector of dof associated with the polynomial expan-

sion in Xz is denoted [qf]. The displacement fields and the strain



fields (see Eqs. (16) and (22)) are determined from the values of
qv

e

� �
and [qf] by

ve ¼ ½Nx� qv
e

� �
; Ee

v
� �

¼ ½Bx� qv
e

� �
; f ¼ ½Nz�½qf � and ½Ef � ¼ ½Bz�½qf �

ð28Þ

The matrices [Nx], [Bx], [Nz], [Bz] contain the interpolation func-
tions, their derivatives and the Jacobian components dependent on
the chosen discrete representation. The fields ð�v ;�f Þ built at each
iteration of the fixed point method are defined by the vectors ½�qv �
and ½�qf �.

4.1. Approximation on Xx

The introduction of (28) in the variational Eq. (18) leads to the
linear system

½Kzð�f Þ�½qv � ¼ ½Rvð�f ; �uÞ� ð29Þ

where qv is the vector of the nodal displacements associated with
the finite element mesh in Xx; ½Kzð�f Þ� the stiffness matrix obtained
by summing the elements’ stiffness matrices Ke

zð�f Þ
� �

and ½Rvð�f ; �uÞ�
the equilibrium residual obtained by summing the elements’ resid-
ual load vectors Re

vð�f ; �uÞ
� �

Ke
zð�f Þ

� �
¼
Z

Le

½Bx�T ½kzð�f Þ�½Bx�dz ð30Þ

and

Re
vð�f ; �uÞ

� �
¼
Z

Le

½Nx�T ½fzð�f Þ�dx�
Z

Le

½Bx�T ½rzð�f ; �uÞ�dx ð31Þ

4.2. Approximation on Xz

The introduction of (28) in the variational Eq. (24) leads to the
linear system

½Kxð�vÞ�½qf � ¼ ½Rf ð�v ; �uÞ� ð32Þ

where [qf] is the vector of degree of freedom associated with the
polynomial expansion in Xz; ½Kxð�vÞ� is a stiffness matrix defined
by (33) and ½Rf ð�v ; �uÞ� an equilibrium residual defined by (34)

½Kxð�vÞ� ¼
Z

Xz

½Bz�T ½kxð�vÞ�½Bz�dx ð33Þ

½Rf ð�v ; �uÞ� ¼
Z

Xz

½Nz�T ½fxð�vÞ�dz�
Z

Xz

½Bz�T ½rxð�v ; �uÞ�dz ð34Þ

5. Numerical results

In this section, several static tests are presented validating our
approach and evaluating its efficiency. A classical quadratic finite
element is used for the unknowns depending on the x-axis coordi-
nate. For the transverse direction, a quadratic layer-wise descrip-
tion is chosen. The present model is herein denoted by the
acronym B2LD2-PGD as a reference to the nomenclature from
[39]. B2 refers to the quadratic beam FE, LD2 means a layer-wise
approach in a displacement formulation with a second order
expansion in z. The properties of our method are assessed: conver-
gence study and effect of the aspect ratio. Then, the influence of the
boundary conditions is addressed. Finally, the flexural behaviour of
highly inhomogeneous laminated and sandwich beams is analysed.

For all these tests, the different boundary conditions and their
associated acronym are summarized in Table 1. The numbers of
dofs are also precised for the two problems associated to v i

1;v i
3

� �
and f i

1; f
i
3

� �
. They are denoted Ndofx and Ndofz respectively.

Notice also that the convergence velocity of the fixed point
process (cf. Section 3.2) is high. Usually, only a maximum of three
iterations is required to reach the convergence as in [45].

Table 1
Boundary conditions/loads.

BC Load

C–F Clamped/Free Force at x1 = L
C–SP Clamped/Free Sinusoidal pressure
CC–SP Clamped/Clamped Sinusoidal pressure
SS–F Simply-supported/Simply-supported Force at x1 = L/2
SS–SP Simply-supported/Simply-supported Sinusoidal pressure

Table 2
Convergence study – SS–SP – isotropic – S = 4.

Nx 1 2 4 8 16 32 64
Ndofx + Ndofz 4 + 6 8 + 6 16 + 6 32 + 6 64 + 6 128 + 6 256 + 6

�wðL=2; 0Þ 13.1438 13.8011 13.8497 13.8528 13.8531 13.8531 13.8531
�r11ðL=2;h=2Þ 10.035 10.140 9.8778 9.7870 9.7626 9.7564 9.7548
�r13ð0;0Þ 2.4950 1.8026 1.4658 1.3678 1.3423 1.3359 1.3343
�r33ðL=2;h=2Þ 1.2514 1.1447 1.0553 1.0273 1.0199 1.0181 1.0176

Table 3
Convergence study with numerical layers – SS–SP – S = 4 – Nx = 8.

Nz 1 2 4 Reference
Ndofx + Ndofz 32 + 6 32 + 10 32 + 18

�wðL=2; 0Þ 13.853 (1.8%) 14.091 (0.1%) 14.1084 (0.01%) 14.107
�r11ðL=2;h=2Þ 9.7870 (1.7%) 10.0100 (0.5%) 10.0020 (0.4%) 9.9556
�r13ð0; 0Þ 1.3678 (28%) 2.1763 (14%) 1.9672 (3%) 1.9012
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Fig. 2. Distribution of r13 along the thickness – numerical layers-isotropic-SS–SP–
S = 4 � Nx = 8.



In the following, the beam is discretized with Nx elements. For
the transverse approximation, a physical layer is discretized by
one numerical layer. The use of more numerical layers is also eval-
uated. The number of numerical layer is denoted Nz. This strategy
allows to improve the accuracy of the results as in [47] and [48].

As far as the computational cost is concerned, the present pro-
cess requires two or three resolutions of two linear problems
including Ndofx and Ndofz = 4 � Nz + 2 dofs respectively. In a classi-
cal layerwise FE approach, the calculation implies one linear reso-
lution with Ndofx � Ndofz dofs. The computational gain becomes
important when the number of numerical layers and the number
of elements increase.

5.1. Properties of the approach

In this section, the properties of the PGD approach are assessed:

� a convergence study
The influences of the refinement of the mesh with respect to the
length and the number of numerical layers in the thickness are
addressed.

� the length-to-thickness ratio

A simply-supported and clamped–clamped isotropic beam is
considered with the following characteristics:

geometry: isotropic beam with length-to-thickness ratio S = L/h
boundary conditions: the beam is subjected to a sinusoidal
pressure which is expressed as qðxÞ ¼ q0 sin px

L

� �
.

material properties: E = 106 MPa, m = 0.3
mesh: half of the beam is meshed. Nx varies from 1 to 64.
results: the results ð�w; �r11; �r13; �r33Þ are made non-dimensional
using:

�w ¼ u3ðL=2;0Þ100Eh3

q0L4 ; �rij ¼ rij
1
q0

for
r11;r33ðL=2;h=2Þ

r13ð0;0Þ

(

The reference solution is issued from a 2D elasticity analysis with a
very refined mesh including 3800 dofs in ANSYS. The element
PLANE82 is used.

5.1.1. Convergence study
Table 2 gives the convergence of the present model for the

transverse displacement, the in-plane, transverse shear and trans-
verse normal stresses for S = 4. One numerical layer through the
thickness is used. The number of dofs of each linear problem is also
precised. The convergence velocity is very high. Based on progres-
sive mesh refinement, a Nx = 8 mesh is adequate to model the thick
isotropic beam for a bending analysis. The difference compared
with results issued from a Nx = 64 mesh becomes less than 2.5%.
Note that the deflection is insensitive to the mesh.

Based on this result, the influence of the numerical layer is
given in Table 3 using the Nx = 8 mesh. A physical layer can be
divided into several numerical layers. The error rate decreases
when the number of numerical layers increases for the displace-
ment and the stresses. The transverse shear stress is very sensitive
to this refinement. Fig. 2 shows the distribution through the thick-
ness of r13. As it is expected, the quadratic approximation is not a
good choice for recovering a parabolic distribution. Therefore,
more numerical layers are needed.

5.1.2. Shear locking phenomenon
Considering various values for the aspect ratio, the normalized

displacement obtained at the middle of the clamped–clamped iso-
tropic beam is shown in Fig. 3 (bottom) along with a reference
solution, and they are found to be in excellent agreement. From
Fig. 3 (top), we notice that the velocity convergence is independent
of the slenderness ratio. So, it is inferred from Fig. 3 that the pres-
ent element is free from the shear locking phenomenon.

100 101 10210−2

100

102

N

er
r [

%
] S=10

S=100
S=1000

100 101 102 103 1040

5

10

S

PGD
reference

Fig. 3. Locking study – clamped/clamped – sinusoidal pressure – isotropic – Nx = 8
(bottom) – Nz = 1.

Table 4
Number of couples with respect to the boundary conditions/loads – Nx = 16.

S 4 10 100

C–F 4 4 3
C–SP 3 3 3
SS–F 2 2 1
SS–SP 1 1 1
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Fig. 4. Distribution of �w (left), �r11 (middle) and �r13 (right) along the thickness – S = 4 – isotropic – CF.



5.2. Influence of the boundary conditions

The influence of the boundary conditions and the type of loads
on the number of couples f i

1ðzÞ; v i
1ðxÞ

� �
; f i

3ðzÞ; v i
3ðxÞ

� �
(Cf. Eq. (6)) is

summarized in Table 4. The configuration and the notation are gi-
ven in Section 5. As expected, the C–F case needs more couples

than the other cases, and the number of terms is also sensitive to
the aspect ratio.

For the more severe case, Fig. 4 shows the distribution of
ð�w; �r11; �r13Þ with respect to the number of couples. During this
iterative process, the transverse displacement is strongly im-
proved, while the stresses are not too much modified. It is

Table 5
Three layers (0�/90�/0�) – SS–SP – Nx = 8 – sr (6) – Nz = NC.

S Model �uð0;h=2Þ �wðL;0Þ �r11ðL=2;h=2Þ �r13ð0; 0Þ

4 Exact �0.9456 2.8899 18.820 1.432
B2LD2-PGD �0.9304 (1.6%) 2.8664 (0.8%) 18.536 (1.5%) 1.417 (1.0%)

20 Exact �66.9407 0.6185 263.163 8.7483
B2LD2-PGD �66.9380 (0.0%) 0.6184 (0.0%) 263.220 (0.0%) 8.7451 (0.0%)

40 Exact �519.115 0.5379 1019.68 17.641
B2LD2-PGD �519.160 (0.0%) 0.5377 (0.0%) 1020.00 (0.0%) 17.690 (0.3%)

100 Exact �8038.46 0.5152 6314.56 44.206
B2LD2-PGD �8039.60 (0.0%) 0.5140 (0.2%) 6316.70 (0.0%) 45.274 (2.4%)
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Fig. 5. Distribution of �u (left) and �w (right) along the thickness – S = 4–3 layers (0�/90�/0�) – Nz = NC.
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necessary to have additional numerical layers to recover the para-
bolic distribution of r13 as in Section 5.1 (Cf. Fig. 2).

5.3. Bending analysis of laminated composite beam

To see the capability of the present approach to model lami-
nated composite beam, symmetric and antisymmetric beams are
considered as in [18]. It is detailed below:

geometry: composite cross-ply beam (0�/90�/0�), (0�/90�/0�/
90�) and length-to-thickness ratio S = 4/20/40/100. All layers
have the same thickness.
boundary conditions: simply supported beam subjected to
sinusoidal load qðxÞ ¼ q0 sin px

L .
material properties:

EL ¼ 172:4 GPa;ET ¼ 6:895 GPa ;GLT ¼ 3:448 GPa;
GTT ¼ 1:379 GPa ; mLT ¼ mTT ¼ 0:25

where L refers to the fiber direction, T refers to the transverse
direction.

mesh: half of the beam is meshed. Nx = 8 with spacing ratio (6)
(denoted sr (6)), Lemax

Lemin
¼ 6, where Le max and Le min are the maxi-

mal and minimal length of the elements. The mesh is refined
near the two edges of the finite element model.

number of dofs: Ndofx = 32 and Ndofz = 4 � Nz + 2
results: The results ð�u; �w; �r11; �r13Þ are made non-dimensional
using:

�u ¼ u1ð0;h=2Þ ET

hq0

�w ¼ u3ðL=2;0Þ100ET

S4hq0

�rij ¼ rij
1
q0

for
r11ðL=2; h=2Þ
r13ð0;0Þ
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The three layers case (0�/90�/0�) is first presented. The numeri-
cal results for deflection, in-plane displacement, shear stress, and
in-plane stress are given in Table 5 with respect to span-to-thick-
ness ratio: S = 4 (thick), S = 20 (moderately thick), S = 40 (thin),
S = 100 (very thin). The percent error with respect to the exact
solution [18] is also given in this table. We observe that the present
approach performs very well with respect to this exact solution.
The maximum error rate is less than 2.4% whatever the slenderness
ratio.

For the ratio S = 4 (the most critical test), the normalized in-
plane, transverse shear, normal stresses, and the transverse dis-
placement are presented in Figs. 5–7. These distributions are in
excellent agreement with the reference solutions, excepted for
r13 in Fig. 6 right. The variation of the transverse shear stress is lin-
ear in each layer, due to the choice of the quadratic LW description
for the functions f i

kðzÞ. Moreover, the continuity of the transverse
shear stress at the interface is not fulfilled. To improve this result,
it is necessary to divide each layer into a minimum of 2 numerical
layers. The corresponding distributions of �r13 and �r33 through the
thickness are given in Fig. 8. The improvement is evident.

Note that the model can be viewed as a zig-zag one (see Fig. 5
left).

Next we consider the four-layer case (0�/90�/0�/90�). The results
are summarized in Table 6. Figs. 9–11 show the in-plane and out-
of-plane displacements, the in-plane, transverse normal and shear
stresses for the more severe case (S = 4). All results are satisfactory
with respect to the exact solution for S = 4, 20, 40, 100. The maxi-
mum error rate is 0.4% for the displacements and 4% for the stres-
ses. The use of more numerical layers improves the accuracy of the
results for both transverse shear and normal stresses (see Fig. 12).

5.4. Bending analysis of sandwich beam

This test deals with a sandwich beam under a sinusoidal pres-
sure with a high value of face-to-core stiffness ratio. This severe
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test allows us to evaluate the capability of the model for a high
anisotropic beam. This case has already been studied in [49].

This example is detailed now.

geometry: the 3-layer sandwich beam has aluminium alloy
faces and a soft core with thickness 0.1 h/0.8 h/0.1 h and
length-to-thickness ratio S = 4.

boundary conditions: simply supported (SS–SP) beam under a
sinusoidal pressure qðxÞ ¼ q0 sin px

L

� �
material properties: face: Ef = 73,000 MPa, m = 0.34.
Core: Ec = gEf, with g = 10�5

mesh: Nx = 16 sr (8), half of the beam is meshed.
number of dofs: Ndofx = 64 and Ndofz = 4 � NC + 2
results: the results ð�u; �w; �r11; �r13Þ are made non-dimensional
using:

Table 6
Four layers (0�/90�/0�/90�) – SS–SP – Nx = 8 sr (6) – Nz = NC.

S Model �uð0;h=2Þ �wðL; 0Þ �r11ðL=2; h=2Þ �r13ð0; 0Þ

4 Exact �3.0275 4.1846 2.6278 1.9224
B2LD2-PGD �3.0143 (0.4%) 4.1702 (0.3%) 2.6218 (0.2%) 1.9125 (0.5%)

20 E �184.217 1.2627 29.1867 11.2757
B2LD2-PGD �184.224 (0.0%) 1.2624 (0.0%) 29.2010 (0.0%) 11.3290 (0.5%)

40 Exact �1415.01 1.1616 111.3850 22.6850
B2LD2-PGD �1415.16 (0.0%) 1.1605 (0.1%) 111.4500 (0.1%) 22.9170 (1.0%)

100 Exact �21850.43 1.1331 686.7017 56.8072
B2LD2-PGD �21853.00 (0.0%) 1.1291 (0.4%) 687.1800 (0.1%) 59.4660 (4%)
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�u ¼ u1ð0;�h=2Þ Ef

hq0

�w ¼ u3ðL=2;0Þ100Ef

S4hq0

�rij ¼ rij
1
q0

for
r11ðL=2;�h=2Þ
r13ð0;0Þ
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They are compared with results from a commercial code with a very
refined mesh including 3800 dofs.

The distributions of �u; �w; �r11; �r13 and �r33 through the thick-
ness are shown in Figs. 13–15. We notice that all these quantities
have a complex behavior. The distribution of the in-plane displace-
ment through the thickness is not linear and a strong discontinuity
of the slope occurs at the interface between the bottom face and
the core. The distributions of the stresses are non-symmetric,
and rather different in the top and bottom faces. Finally, for this se-
vere case, the results issued from the present approach are in very
good agreement with the reference solution.

6. Conclusion and future prospects

In this article, a beam finite element based on the PGD has been
presented and evaluated through different benchmarks. The PGD
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approach allows to express the displacement as a separated repre-
sentation of two 1D space functions. For the axial coordinate, clas-
sical 3-node FE is used while a quadratic layerwise description is
introduced for the transverse coordinate. The derived iterative pro-
cess implies the resolution of two 1D problems and the total cost
depends on the number of couples representing the solution. This
method has been applied to the modeling of laminated and sand-
wich composite. Several numerical evaluations have proved that
it has very good properties. The convergence rate is high and accu-
rate results are obtained for very thick to thin beams. The influence
of the boundary conditions has been also addressed. This FE based
on the PGD is accurate and less costly than layerwise FE or plane
elasticity model in commercial software. Moreover, numerical lay-
ers can be introduced to improve the accuracy of the results with
few additional computational times.

Based on these promising results, the use of the PGD for layer-
wise plate FE will be carried out. Furthermore, the PGD can be used
to define the utmost terms of the expansion in the thickness,
regarding the boundary conditions, the geometry and the material
properties.
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