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Robust C0 high-order plate finite element for thin to very thick
structures: mechanical and thermo-mechanical analysis
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SUMMARY

This paper presents a new C0 eight-node quadrilateral finite element (FE) for geometrically linear elastic 
plates. This finite element aims at modeling both thin and thick plates without any pathologies of the classical 
plate finite elements (shear and Poisson or thickness locking, spurious modes, etc). A C1 FE was previously 
developed by the first author based on the kinematics proposed by Touratier. This new FE can be viewed as 
an evolution towards three directions: (1) use of only C0 FE approximations; (2) modeling of thick to thin 
structures; and (3) capability in multifield problems. The transverse normal stress is included allowing use 
of the three-dimensional constitutive law. The element performances are evaluated on some standard plate 
tests, and comparisons are given with exact three-dimensional solutions for plates under mechanical and 
thermal loads. Comparisons are made with other plate models using C1 and semi-C1 FE approximations as 
well as with an eight node C0 FE based on the Reissner–Mindlin model. All results indicate that the present 
element is highly insensitive to mesh distortion, has very fast convergence properties and gives accurate 
results for displacements and stresses. Copyright 

KEY WORDS: sinus model; normal stresses; thick plates; C0 finite element; numerical locking; mechanical
load; thermo-mechanical load

1. INTRODUCTION

Research is still active on plate and shell finite element (FE) approximations to improve perfor-
mances in terms of convergence rate and accuracy on displacements and stresses and to overcome
numerical lacks such as transverse, Poisson and membrane locking, spurious modes, etc. These
developments are mainly based on the classical first order shear deformation theory (FSDT), named
Reissner–Mindlin for plates and Nagdhi for shells. In this research field, contributions on beam,
plate, shell and three-dimensional (3D) shell FE are too extensive to be reviewed here, but readers
can refer for instance to the bibliography listed in [1, 2]. In this huge literature, different techniques
have been developed to overcome or control transverse shear locking. They can be associated with
reduced integration, mixed approach or B-bar solution. In this last approach, the FE approximation
matrix B of the transverse shear strain is replaced by a modified one, denoted B-bar. Exhaustivity
is unreachable, but we can cite among others the following techniques: Kirchhoff-mode [3], mixed
interpolation of tensorial components (MITC) [4], field compatibility [5], assumed natural strain
(ANS) [6], discrete shear triangle (DST) [7] (considered as an extended discrete Kirchhoff triangle
(DKT) formulation), enhanced assumed strain (EAS) [8], : : : and more recently, discrete strain gap
(DSG) [9]. In this last contribution, a unified approach for shear-locking-free shell FE is proposed.

Furthermore, research is also active on the development of new theoretical models for heter-
ogeneous structures and multifield problems. In this context, two families can be identified:
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the equivalent single layer models (ESLM), where the classical Love–Kirchhoff (CLT) and
Reissner–Mindlin (FSDT) models can be found for plates, and the layer-wise models (LWM).
According to [10], the number of unknowns remains independent of the number of constitutive
layers in the ESLM, whereas the same set of variables is used in each layer for the LWM. Another
way for obtaining new models is based on the introduction of interface conditions into high-order
models pertaining to the ESLM or to the LWM. This permits to reduce the number of unknowns
and can be viewed as a ZIGZAG model. Excellent reviews have been made in the following articles
[11–16] or in the most recent review [17]. The variational asymptotic method is also an interesting
contribution to derive an efficient model for composite structures based on Reissner–Mindlin plate
theory, see [18, 19].

The most common approximated plate theories, CLT and FSDT, are based on very few terms,
three and five unknown functions over the thickness. This was motivated by the need of simplified
theories giving simple formulas and equations, which could be solved by hand. Nowadays, comput-
ers can solve large problems with up to 109 unknowns, but numerical tools in computer software
are always essentially based on these simplified theories.

Based on previous experiences of the authors on beams, plates and shells [20–23], this work pro-
poses a new FE by referring to a high-order ESLM, which could be improved for heterogeneous
structures. This high-order model is based on the sinus function, introduced by Touratier [24, 25]
and for which FEs have been developed using a conforming approach [20, 21, 26, 27]. To avoid the
use of C1 FE approximation, two additional unknown functions for bending are introduced with
respect to the FSDT theory. The choice of C0 FE approximations simplifies the boundary condition
definitions, and complex geometry with curved boundary can be approximated in a simple way.
Furthermore, the transverse displacement is refined allowing the use of the 3D constitutive law. This
is essential for thick structures and multifield problems, see [28] for piezoelectric coupling and [29]
for thermal coupling. For this, two supplementary unknowns are introduced, which are statically
condensed at element level. The treatment of the transverse shear locking is based on the field com-
patibility approach originally formulated for FSDT model [30], and here extended to high-order
model.

This new eight-node quadrilateral FE with seven degrees of freedom (DOF) per node is fully
described in the first two sections, in which the definition of the plate problem and the FE
approximations are given. Numerical evaluations are subsequently presented which involve: locking
phenomena (transverse shear and Poisson), sensitivity to distorted meshes and convergence proper-
ties for homogeneous plates under mechanical and thermal loads. A composite plate submitted to
mechanical and thermal loads is finally addressed.

2. DESCRIPTION OF THE PLATE PROBLEM

2.1. Governing equations

Let us consider a plate occupying the domain V D ! !
!
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"
in a Cartesian coordinate

system .x1, x2, x3 D ´/. The plate is defined by an arbitrary surface! in the .x1, x2/ plane, located
at the midplane for ´ D 0, and by a constant thickness e.

2.1.1. Constitutive relation. The plate can be made of N l perfectly bonded orthotropic layers.
Using matrix notation, the 3D constitutive law of the kth layer is given by:
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where we denote the stress vector Œ"$, the strain vector Œ"$ and Cij the 3D stiffness coefficients.
For the thermo-mechanical analysis, the 3D constitutive law is modified, introducing the thermal

expansion coefficients ˛
.k/
i and the variation of the temperature %T , as follows:
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2.1.2. The weak form of the boundary value problem. Using this matrix notation and for admissible
virtual displacement Eu! 2 U !, the variational principle is given by:

find Eu 2 U (space of admissible displacements) such that:
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where Œf $ and ŒF $ are the prescribed body forces and surface loads applied on @VF , respectively.
".Eu!/ is the compatible virtual strain, and & is the mass density.

2.2. The displacement field

It is possible that it will be required that all formulations of the two-dimensional (2D) theory (still
to be established) be deductions from the 3D formulation of a relevant boundary value problem. For
instance, an asymptotic expansion of the displacement field can be used. But it is also possible, and
often very much more practical, to establish a major part of a 2D plate theory without reference to
any 3D formulation. In this last case, an approximate theory can be constructed with 2D ‘ad-hoc’
assumptions, which should lead to the same or nearly the same results as the deductive steps from
three to two dimensions.

Based on the sinus model, see [24], a new plate model which takes into account the transverse
normal stress is presented in this section. This extension is based on following developments

# various models for beams, plates and shells based on the refined sinus theory, [20–26, 31];
# the contributions on plates/shells of different authors on six, seven, nine parameter models,

assuming a non-vanishing "33: see pioneer works on shell FE in [8, 32, 33] and contributions
of Tessler et al. on the ¹1, 2º and ¹3, 2º-plate theories [34, 35].

The kinematics of our model is assumed to have the following particular form
8<
:

U1.x1, x2, x3 D ´/ D u0.x1, x2/ " ´ u1.x1, x2/ C f .´/ .u1.x1, x2/ C '2.x1, x2//
U2.x1, x2, x3 D ´/ D v0.x1, x2/ " ´ v1.x1, x2/ C f .´/ .v1.x1, x2/ " '1.x1, x2//
U3.x1, x2, x3 D ´/ D w0.x1, x2/ C ´ w1.x1, x2/ C ´2 w2.x1, x2/

(4)

where .u0, v0, w0/ are the displacements of a point of the reference surface while .v1, '1/ and
.u1, '2/ are measures for rotations of the normal transverse fiber about the axis .0, x1/ and
.0, x2/, respectively. Finally, the functions .w1, w2/ permit to have a nonconstant deflection for
the transverse fiber and allow to have nonzero transverse normal stress. Furthermore, the quadratic
assumption for the transverse displacement avoids the occurrence of Poisson (or thickness) locking,
see [36].

In the kinematics expressed by Equation (4), the two transverse shear strain components can
be identified:
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Finally, in the context of the sinus model, we have
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It must be noticed that the classical homogeneous sinus model [24] can be recovered from
Equation (4) assuming w0,1 D u1, w0,2 D v1 and neglecting the unknown functions w1 and w2.

The choice of the sinus function can be justified from the 3D point of view, using the work [37].
As it can be seen in [27], a sinus term appears in the solution of the shear equation (see Equation (7)
in [27]). Therefore, the kinematics proposed can be seen as an approximation of the exact 3D solu-
tion. Furthermore, the sinus function has an infinite radius of convergence, and its Taylor expansion
includes not only the third order terms but all the odd terms.

2.3. The strain field

The compatible strain field is directly obtained from Equation (4) as
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The contributions of w1 and w2 in the transverse shear strains, highlighted in Equation (7), will
be neglected to have no derivative of w1 and w2 in the strain components. This choice allows to
use only C"1 continuity conditions for those functions, and it turns out to be very advantageous for
the finite element approximation presented in the next section. Therefore, the transverse shear strain
components become:
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and #1
˛3 is defined in Equation (5).

2.4. Matrix expression of the weak form of the boundary value problem

The displacement field defined in Equation (4) can be written in matrix notation using a generalized
displacement vector as
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where ŒFu.´/$ depends on the normal coordinate ´ only and is given in Appendix A.
From Equation (7), a similar expression can be deduced for the strain field as follows:
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where ŒF".´/$ is given in Appendix A.

Using the constitutive relation given in Equation (1) and the matrix notation for the displacement
and strain fields Equations (9) and (10), the following expressions are obtained for each term of



Equation (3):
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where ŒC $ stands for the 3D stiffness coefficients matrix, see Equation (1). In these last expres-
sions, the integration throughout the thickness can be carried out, taking into account the stacking
sequence of the laminate. The integration with respect to the in-plane domain ! is left over and
discussed in the next section concerning FE approximations:
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The matrices Œk""$ and Œmuu$ can be viewed as the integration over the thickness of the constitutive

relations and the mass density of the plate.
We shall limit the scope of the article to static problems, for which the inertial term is neglected,

see third equation of Equations (11) and (12).
Equation (12) is a good starting point for FE approximations. The generalized displacement

and strain vectors defined by ŒEu$ and ŒE"$, see respectively Equations (9) and (10), must be
approximated, and this will be described in the next section.

3. FINITE ELEMENT APPROXIMATIONS

This section is dedicated to the finite element approximations of the geometry and the generalized
displacement and strain vectors defined in the previous section.

3.1. Approximation for geometry

The eight-node quadrilateral finite element is presented in Figure 1. The in-plane coordinates
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Figure 1. The reference domain of the eight-node finite element.



.x1, x2/ are approximated on the reference bi-unit domain with respect to the reduced coordinates

.), */ by

x˛.), */ D
8X

iD1

Nqi .), */.x˛/i for ˛ 2 ¹1, 2º (13)

where Nqi .), */ are the classical serendipity interpolation functions, see Appendix B.

3.2. Approximations for displacement

From Equations (9) and (10), the following functions have to be approximated:

# displacements .u0, v0, w0/
# rotations .u1, v1, '1, '2/
# normal stretching .w1, w2/

3.2.1. Eight-node quadrilateral finite element. An isoparametric procedure is used and unknown
functions are approximated using the same functions as the geometry, see Equation (13). This
classical approach is used for .u0, v0/ and .u1, v1, '1, '2/.

For the transverse shear strain, and to control the transverse shear locking, a methodology was
previously developed for an eight-node quadrilateral plate finite element [30, 38] based on the
Reissner–Mindlin theory (FSDT) with five DOFs per node. For this, the FE approximation of the
transverse displacement w0 was modified. This methodology is extended for this new FE based on
a refined model and is briefly described succeedingly.

3.2.2. Transverse shear locking. For the constant part of the transverse shear strains, denoted #0 in
Equation (8), the polynomial space of the FE approximation is incompatible because each compo-
nent is the sum of u1 (or v1) and a derivative of w0. This is in fact the origin of the transverse shear
locking, as proved in [30], implying a dependency of the convergence velocity with respect to the
thickness of the plate.

A methodology named ‘field compatibility’ has been developed to avoid the transverse shear
locking in the thin plate domain. This methodology is extended to the present refined model
as follows:

# The constant transverse shear strains are defined in reduced coordinates:

#0
" D u" C w0," #0

# D u# C w0,# (14)

where u" , u# are the projections with respect to the reduced coordinate axis of the functions
u1 and v1 of Equation (4). To ensure the same polynomial approximation for the functions
u" , u# and the derivatives of the transverse displacement in Equation (14), w0 is assumed to be
cubic, introducing four supplementary DOFs at the mid-side nodes: .w0,"/5, .w0,#/6, .w0,"/7,
.w0,#/8.

# A linear variation of the tangential transverse shear strain component is imposed on each side
of the elementary domain, see Figure 1. Thus, the supplementary DOFs introduced at the pre-
vious step can be expressed as a linear combination of u" , u# and w0 DOFs. Therefore, a new
finite element approximation is obtained for the transverse displacement w0.

# The interpolation of the reduced transverse shear strain components is defined in the following
polynomial basis as the intersection sets of monomial terms from ) and *:
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(15)

# According to the dimension of the polynomial basis, five points are needed for each reduced
transverse shear strains. These points were chosen as indicated in Figure 2 because this location
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Figure 2. Point locations for the transverse shear strains evaluations.
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Figure 3. Internal points for the FE approximation of .w1, w2/.

gives the best results in case of distorted meshes, see [30, 38]. The following finite element
approximation is obtained for the reduced transverse shear strains:
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# J (16)

where C)I and C*J are interpolation functions, see [30].
# Using the Jacobian matrix, the physical transverse shear strains #0

23 and #0
13 are deduced from

the reduced transverse shear strains of Equation (16).

3.2.3. Four internal points approximation. For the unknown functions .w1, w2/ that are associated
with the refinement of the transverse displacement, a bilinear finite element approximation is defined
using four internal points denoted .Ki /iD1,4, see Figure 3. The interpolation functions are given in
Appendix B.

3.3. The elementary matrices

The elementary matrices are then deduced from Equation (12) and from the FE approximations
described earlier. Because the variational principle possesses no spatial derivatives of the variables
w1 and w2, these can be condensed out statically at the element level. Therefore, the elementary
stiffness matrices ŒKe$ can be written by referring to the retained (R) and omitted (O) DOFs:

ŒKe$D
(

KRR
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e
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e

)
(17)



This matrix is associated with the following sets of DOFs:
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The static condensation procedure is classical and does not need to be recalled here.
For the elementary load vector, it must be noted that we are able to apply a load on the top, middle

or bottom surface. Therefore, the same condensation procedure is used.
This new FE is denoted sin-z2/CL8: sinus model with a second-order expansion of the transverse

displacement, and CL8 technique for the correction of the transverse shear locking. This FE has
seven DOFs per node and a total of 56 DOFs on the elementary domain.

A Gaussian numerical integration using 3 ! 3 points is used to evaluate the elementary matrices,
and a correct rank with six zero eigenvalues has been obtained. These values correspond to the six
rigid body motions, so, our FE is free from spurious modes.

4. NUMERICAL RESULTS

In this section, several tests available in open literature are presented to evaluate the efficiency of the
proposed FE. The first evaluation addresses the transverse shear and Poisson lockings. Subsequent
tests consider square and circular plates to assess the sensitivity to mesh distortion. Then, isotropic
square thick and thin plates are considered under mechanical and thermal loads to characterize
the convergence properties for displacements and stresses. Finally, a three-layered composite
plate is evaluated under mechanical and thermal loads, following the works of Pagano [39] and
Bhaskar et al. [40].

Present results are compared with solutions obtained with previously published models
[20, 21, 30], namely:

Sin/AG Sinus model using conforming FE approximations; C1 Argyris for the transverse
displacement and semi-C1 Ganev for in-plane displacements and rotations;

SinC/AG Sinus model with interlayer continuity conditions using the same FE approximations;
FSDT/AG Reissner–Mindlin model using the same FE approximations; classical shear correction

factor 5=6 is used for isotropic material;
CLT/AG Kirchhoff–Love model using the same FE approximations;
FSDT/CL8 Reissner–Mindlin model using an eight-node FE approximation and the CL8 correc-

tion for the transverse shear strain approximation; classical shear correction factor 5=6
is used for isotropic material;

Additionally, reference is made to the systematic work of Carrera and his unified formulation
(CUF), see [16, 41, 42]:

ED2 Equivalent single layer model in which each displacement component is expanded to
the second order; nine unknown functions are used in this kinematics;

ED3 Equivalent single layer model in which each displacement component is expanded to
the third-order; twelve unknown functions are used in this kinematics.

All considered problems can make use of symmetry considerations and only a quarter-plate model
is used. The meshes and the notations are presented in Figure 4.

The definition of the boundary conditions is as simple as for FSDT because same boundary condi-
tions are applied to the DOFs .u1, '2/ and .v1, '1/ associated with the deformation of the transverse
normal fiber. Therefore, the boundary conditions used in the evaluation are described in Table I,
where 0 indicates that the DOF is fixed.

4.1. The locking phenomenon

4.1.1. Transverse shear locking. A definition of this locking is given by Babuska [43] as a non-
uniformity of the convergence with respect to the thickness. Therefore, there are two ways of
assessing the sensitivity to transverse shear locking:
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Figure 4. The meshes used for the numerical evaluations.

Table I. Definition of the boundary conditions.

DOF u0 v0 w0 '1 '2 u1 v1

Clamped
x˛ D cst 0 0 0 0 0 0 0

Simply supported: SA-1
x1 D cst 0 0 0 0
x2 D cst 0 0 0 0

Simply supported: SA-2
x˛ D cst 0

Symmetry conditions
x1 D cst 0 0 0
x2 D cst 0 0 0

Figure 5. Transverse displacement with respect to length-to-thickness ratio.

# constant mesh, varying length-to-thickness ratio
# convergence analysis for a thick and a thin plate.

Therefore, the following test is considered:
geometry square plate a ! a and thickness e D 10"n with n 2 ¹0, 4º
boundary conditions simply supported on all sides, uniform transverse load p0

materials isotropic with E D 10.92 and + D 0.3
mesh N D 2 (for the quarter of the plate, see Figure 4)
results the transverse displacement at the center of the plate for ´ D 0,
reference value Kirchhoff–Love theory: U3.a=2, a=2, 0/ D 0.00406 p0

a4

e3 D
;

D D E=12 .1 " +2/.

The results are presented in Figure 5 in which the isoparametric and CL8 approximations for the
constant part of the transverse shear strain #0 are compared. It is obvious that the CL8 approxi-
mation is very efficient to avoid the transverse shear locking, and the mesh N D 2 is sufficient to



obtain a very accurate transverse displacement, independently of the plate thickness. The isopara-
metric approach reveals a very strong locking. Because the reference KL solution is inadequate for
semi-thick to thick plates, a discrepancy appears between the present sin-z2/CL8 and the reference
results for S % 102 in Figure 5.

A convergence study using meshes (N D 1, 2, 4, 8, 16) is presented in Figure 6 for S D 10 and
S D 105 with respect to the 3D elasticity solutions. A comparison is given between the isopara-
metric approximation and the CL8 methodology. For a thick plate (S D 10), the CL8 methodology
improves the accuracy for coarse meshes, and for a thin plate (S D 105), the locking is avoided.

4.1.2. Poisson locking. The following test is considered:

geometry square plate a ! a and three length-to-thickness ratios S D a

e
D 4, 10, 100

boundary conditions simply supported on all sides, uniform transverse load p0 D 1.
materials isotropic with ED10.92 and three values for the Poisson ratio + D 0., 0.3, 0.45
mesh N D 2
results the transverse displacement at the center of the plate for ´ D 0; percent error

with respect to the N D 8 mesh result namely .sol " solref /=solref ! 100

The results are given in Table II by comparing two expansions for U3, that is, the expansion as in
Equation (4) with .wi /iD0,1,2 and a linear one that neglects the second order term w2. No locking is
found for the first case, whereas without w2, a severe locking appears. It increases with the Poisson
coefficient (Poisson locking). There is no sensitivity of the results to the length-to-thickness ratio S .
Therefore, if a constant or a linear variation of the transverse displacement is assumed and the 3D
constitutive relation is used, the Poisson locking appears. In this case, the reduced 2D constitutive

Figure 6. Convergence of the transverse displacement for two length-to-thickness ratios.

Table II. Effect of the Poisson locking.

Percent error U3.a=2, b=2, 0/
.wi /iD0,1,2 .wi /iD0,1

S D 4
+ D 0 "0.31 "0.31
+ D 0.3 "0.42 "11.47
+ D 0.45 "0.52 "49.84

S D 10
+ D 0 "0.24 "0.24
+ D 0.3 "0.31 "12.28
+ D 0.45 "0.39 "62.44

S D 100
+ D 0 "0.05 "0.05
+ D 0.3 "0.06 "18.39
+ D 0.45 "0.11 "66.91



law for the bending is necessary to overcome this locking, and a physical significance is proposed
in [44] for shell formulation.

4.2. The distortion tests

4.2.1. Square plate test. This test is often used to investigate the mesh sensitivity in plate bend-
ing problems [45], where a standard eight-node brick element is presented. The following data are
considered, see Figure 7:

geometry square plate of length a D 100 and thickness e D 1;
boundary conditions clamp on all edges; concentrated load F3 D 178.5714 at the center ;
materials isotropic with E D 10.92 104 and + D 0.3
mesh ND2 with the parameter s 2 ¹0, 4, 8, 12º defining the distortion (see Figure 7),
result displacement U3 at the center for ´ D 0,

reference value Kirchhoff–Love solution given by U3 D 0.0056 F3
L2

e3 D
D 1 with

D D E

12.1 " +2/
.

Two distorted meshes (s D 4, 12) and the regular mesh (s D 0) are presented in Figure 7 (right).
For the most distorted mesh (s D 12), the coordinates of the center node are .37, 37/, whereas the
middle point coordinates of the straight line connecting the two corner nodes are .37.5, 37.5/. The
transverse displacement is presented in Table III. For the regular mesh, a discrepancy of 0.1% is
obtained for the maximum deflection, whereas the error is always less then 7% for all the distorted
meshes. With these results and in comparison with the eight-node 3D-shell FE [45], this FE appears
to be very robust with respect to distortion sensitivity.

4.2.2. Circular isotropic plate. This test is also presented to evaluate the sensitivity to mesh
distortion and the effect of different boundary conditions. The following data are considered:

geometry circular plate with radius R D 5 and two thicknesses e D 1. and 0.1;
boundary conditions simply supported (SA-2) avoiding only transverse displacement, and

clamped (ENC); uniform transverse load of p0 D 10"4

materials isotropic with E D 1.7472 107 and + D 0.3
mesh N D 1I 3I 12I 28 for the quarter of the circular plate, see Figure 8

Figure 7. Clamped square plate used for mesh sensitivity (left) and meshes for s D 0, 4, 12 (right).

Table III. Clamped square plate results: transverse
displacement at the center

s 0 4 8 12

sin-z2/CL8 1.001 0.9836 0.9629 0.9366
Q1A2E11 [45] 0.868 0.8560 0.8100 —



Figure 8. The finite element discretizations (N D 1, 3, 12) of the circular plate (quarter-plate model).

Table IV. Transverse displacement for circular plate.

N sin-z2/CL8 (%) sin-z2/ISO (%) FSDT/CL8 (%)

e D 1.; ENC Kirchhoff–Love ref. solution: 0.72196E-09
1 0.61477E-09 "14.8 0.40546E-09 "43.8 0.63741E-09 "11.7
3 0.73813E-09 2.2 0.68148E-09 "5.6 0.71880E-09 "0.4
12 0.72668E-09 0.7 0.69270E-09 "4.1 0.72189E-09 0.0
28 0.72393E-09 0.3 0.71815E-09 0.3 0.72421E-09 0.3

e D 0.1; ENC Kirchhoff–Love ref. solution: 0.61147E-06
1 0.63716E-07 "89.6 0.65980E-08 "98.9 0.74789E-07 "87.8
3 0.61606E-06 0.8 0.32661E-06 "46.6 0.61528E-06 0.6
12 0.61201E-06 0.1 0.39673E-06 "35.1 0.61200E-06 0.1
28 0.61392E-06 0.4 0.55736E-06 "8.8 0.61391E-06 0.4

e D 1.; SA-2 Kirchhoff–Love ref. solution: 0.25997E-08
1 0.25659E-08 "1.3 0.20555E-08 "20.9 0.24999E-08 "3.9
3 0.25915E-08 "0.3 0.24965E-08 "4.0 0.26020E-08 "0.1
12 0.25786E-08 "0.8 0.24717E-08 "4.9 0.26044E-08 "0.2
28 0.25777E-08 "0.8 0.25620E-08 "1.5 0.26089E-08 "0.3

e D 0.1; SA-2 Kirchhoff–Love ref. solution: 0.24895E-05
1 0.22962E-05 "7.8 0.30000E-06 "87.9 0.22804E-05 "8.7
3 0.24960E-05 0.3 0.14986E-05 "39.8 0.24963E-05 0.3
12 0.24942E-05 0.2 0.16441E-05 "34.0 0.24945E-05 0.2
28 0.24891E-05 0.0 0.22819E-05 "8.3 0.24905E-05 0.0

result displacement U3 at the center,
reference values Kirchhoff–Love solutions.

Table IV reports the results obtained with the present sin-z2 FE using isoparametric and CL8
approximations, and also with the FSDT/CL8 FE. The classical shear correction factor of 5/6 is
used for the latter model. Sin-z2/CL8 and FSDT/CL8 behave in a similar manner. For the small
thickness e D 0.1, sin-z2/ISO exhibits transverse shear locking for both boundary conditions, and
convergence is very slow. Not that convergence velocity of the FE based on CL8 approximation is
not sensitive to thickness. Furthermore, convergence of CL8 FE is faster with errors less than 1%
using N D 3 mesh. The only exception is the (e D 1 ENC) case, where the error using N D 3 mesh
is 2.2%.

4.3. Homogeneous plates

4.3.1. Mechanical analysis. An isotropic square plate with different length-to-thickness ratios is
analyzed. The following data are considered:

geometry square plate a ! a and length-to-thickness ratios S D a

e
D 2, 5, 10, 100;

boundary conditions simply supported on all sides with a bi-sinusoidal transverse distributed load
on the top surface p3.x1, x2, ´ D e

2
/ D p0 sin

(x1

a
sin
(x2

a
materials isotropic with E D 73 GPa and + D 0.34



mesh N D 1, 2, 4, 8, 16 for the quarter of the plate
results displacements and stresses are made non-dimensional according to

NU1 D U1.0, a=2, "e=2/
E e2

p0 a3
I NU3 D U3.a=2, a=2, e=2/

100 E e3

p0 a4

N"11 D "11.a=2, a=2, e=2/
1

p0 S2
I N"13 D "13.0, a=2, 0/

1

p0
S

reference values are the 3D exact elasticity results obtained as in [46].

A convergence study is first conducted to evaluate the convergence velocity for displacement and
stresses for thin S D 100 and very thick S D 2 plates. Results are shown in Figure 9. Convergence
velocity is high, and the error is less than 1% with the mesh N D 2 for the transverse displace-
ment U3. For the in-plane stress "11, and the transverse shear stress "23, error is less than 3% for
all length-to-thickness ratios. For the transverse normal stress, the distribution with respect to the
thickness at the center of the plate is presented in Figures 11 and 12 (left) for the very thick and
thin plates, respectively. The reference solution using ED4 is also given in these figures. Using the
discretizations N D 8 and N D 16, ratios sr1 D 0.65 and sr2 D 0.75 associated with the size of two
adjacent finite elements are introduced, see Figure 10. For the very thick plate, see Figure 11, the
distribution is not sensitive to the mesh, whereas for the thin case, "33 is very sensitive to the mesh
refinement, see the right curve of Figure 12.

Using the mesh N D 8, comparisons with other FE and the systematic approach using CUF are
given in Table V for different length-to-thickness ratios. For all length-to-thickness ratios, including
very thick case, the robustness of this new FE is obvious, and very good results are obtained with
respect to reference elasticity solutions. Present results lie between those of ED2 and ED3 models,
but are obtained with a lower number of unknown functions. With respect to FSDT model, results
are largely improved on displacement and stresses, especially in the semi-thick to thick range. For
semi-thick to thin plate, the results given by the present FE are of the same order of those obtained

Figure 9. Isotropic square plate under mechanical load; convergence for displacement and stresses.

Figure 10. Non regular mesh: N D 16 with sr2 D 0.75.



Figure 11. Isotropic square plate under mechanical load; convergence of "33=p0 for S D 2.

Figure 12. Isotropic square plate under mechanical load; convergence of "33=p0 for S D 100.

by Sin/AG. For thick plates (S D 2, 5), sin-z2/CL8 performs always better, and a good agreement
with the reference solution is found.

There are 1344 DOFs for sin-z2/CL8 with mesh N D 8 and 760 DOFs for Sin/AG with mesh
N D 4, but the bandwith is respectively 189 and 230. Furthermore, the number of integration points
are respectively 9 and 16. Therefore, this new FE seems very attractive for homogeneous plates, if
we examine the ratio between computational cost and accuracy.

4.3.2. Thermo-mechanical analysis. This section is dedicated to the evaluation of this FE for a
square plate subjected to a thermal load. The test is detailed as follows:

geometry square plate a ! a and length-to-thickness ratios S D a

e
D 4, 10, 100;

boundary conditions simply supported on all sides; the thermal load is given by

T .x1, x2, ´/ D T0
2´

e
sin
(x1

a
sin
(x2

a

materials one transverse isotropic layer with EL D 25 GPa, ET D 1 GPa, +LT D 0.25,
GLT D 0.2 GPa, GTT D 0.5 GPa; the thermal expansion coefficients are
defined by ˛T D 1125 ˛L

mesh N D 8 for the quarter of the plate
results displacements and stresses are made non-dimensional according to

NU˛ D U˛
1

T0 ˛L a
for

²
U1.0, a=2, e=2/
U2.a=2, 0, e=2/

NU3 D U3.a=2, a=2, e=2/
e

T0 ˛L a2

N"ij D "ij
1

T0 ˛L ET
for

8̂
<
:̂

"11, "22.a=2, a=2, e=2/
"12.0, 0, e=2/
"13.0, a=2, e=6/
"23.a=2, 0, e=6/



Table V. Isotropic square plate under mechanical load.

S/mesh Model NU1.!10"2) NU3 N"11 N"13

100 Ref. 4.2788 2.7248 0.2037 0.2387
N D 8 Sin-z2/CL8 4.2787 2.7247 0.2038 0.2442
N D 4 Sin/AG 4.2790 2.7254 0.2036 0.2464
N D 4 FSDT/AG 4.2785 2.7254 0.2036 0.1592

ED2 4.2785 2.7247 0.2037 0.1727
ED3 4.2785 2.7248 0.2037 0.2387

10 Ref. 4.3057 2.8345 0.2068 0.2383
N D 8 Sin-z2/CL8 4.3043 2.8210 0.2090 0.2428
N D 4 Sin/AG 4.3238 2.8863 0.2058 0.2462
N D 4 FSDT/AG 4.2785 2.8867 0.2036 0.1592

ED2 4.2762 2.8156 0.2055 0.1722
ED3 4.3056 2.8345 0.2082 0.2383

5 Ref. 4.3765 3.2056 0.2168 0.2371
N D 8 Sin-z2/CL8 4.3747 3.1573 0.2244 0.2411
N D 4 Sin/AG 4.4594 3.3722 0.2318 0.2455
N D 4 FSDT/AG 4.2784 3.3755 0.2036 0.1592

ED2 4.2565 3.1270 0.2118 0.1709
ED3 4.3747 3.2044 0.2224 0.2372

2 Ref. 4.5017 7.3826 0.3145 0.2277
N D 8 Sin-z2/CL8 4.7470 7.3923 0.3244 0.2317
N D 4 Sin/AG 5.3883 6.7038 0.2564 0.2411
N D 4 FSDT/AG 4.2785 6.7968 0.2036 0.1592

ED2 3.7200 6.7598 0.2839 0.1618
ED3 4.4412 7.3337 0.3460 0.2287

N D 4 CLT/AG 4.2785 2.7238 0.2036

Table VI. Thermal load for the homogeneous square plate.

S Model NU1 NU2 NU3 N"11 N"22 N"12 N"13 N"23

4 Ref. "16.244 "90.676 37.652 1043.40 "829.7 "167.95 104.210 "126.930
Sin-z2/CL8 "12.517 "86.795 42.200 746.80 "845.3 "156.13 121.580 "128.340
Sin/AG "13.328 "85.201 21.199 811.30 "846.4 "160.68 125.380 "130.060
FSDT/AG "8.9449 "97.255 21.735 474.90 "811.8 "173.48 83.910 "83.960

10 Ref. "16.017 "33.061 15.577 980.17 1011.3 "77.09 70.620 "72.960
Sin-z2/CL8 "15.323 "32.357 16.279 926.37 "1013.7 "74.96 73.540 "74.280
SIN/AG "15.311 "32.092 12.764 926.03 "1012.2 "79.91 74.190 "74.700
FSDT/AG "14.286 "34.726 12.789 846.81 "1004.7 "83.02 48.230 "48.280

100 Ref. "15.991 "16.177 10.240 964.81 "1064.5 "50.530 7.961 "7.964
Sin-z2/CL8 "15.984 "16.169 10.240 966.02 "1063.9 "50.550 8.143 "8.141
SIN/AG "15.870 "16.223 10.140 958.11 "1062.0 "53.38 8.097 "8.104
FSDT/AG "15.858 "16.251 10.140 957.18 "1061.9 "53.49 5.237 "5.235
CLT/AG "15.876 "16.048 10.120 958.94 "1064.0 "51.69 — —

The results are given in Table VI using the mesh N D 8. For the thin plate (S D 100), all mod-
els give almost the same results, and CLT can be used. For semi-thick (S D 10) and thick plates
(S D 4), the present FE gives best results. Note that in the thick case, a coefficient two is observed
for the transverse displacement between present Sin-z2/CL8 and Sin/AG or FSDT/AG. The stresses
obtained by Sinus models are of the same accuracy and closer to the reference solutions than the
FSDT results. The use of the 3D constitutive law is, hence, proved to be mandatory to capture the
effect of the thermal expansion coefficients in the three directions for the thick cases.

4.4. Three-layered plates

4.4.1. Mechanical analysis. A composite plate is analyzed to assess this new FE plate for mul-
tilayered structures. Authors are aware that laminated structures need high-order model based for
example, on a ZIGZAG theory or on a layer-wise description. The purpose of this tests is to propose
a first assessment of this simple FE in the field of composite structures. The plate test is as follows:



geometry square plate a ! a and length-to-thickness ratios S D a

e
D 4, 10, 100; three

layers of equal thickness, e=3
boundary conditions simply supported on all sides, a bi-sinusoidal transverse distributed load is

applied on the top surface p3.x1, x2, ´ D e

2
/ D p0 sin

(x1

a
sin
(x2

a
materials cross-ply (0°, 90°, 0°) laminate and EL D 25 GPa, ET D 1 GPa, +LT D

0.25, GLT D 0.2 GPa, GTT D 0.5 GPa
mesh N D 16 for the quarter of the plate; N D 8 is used for FE based on AG

interpolations.
results displacements and stresses are made non-dimensional according to

NU˛ D U˛
EL

p0
e S3 for

²
U1.0, a=2, "e=2/
U2.a=2, 0, "e=2/

NU3 D U3.a=2, a=2, 0/
100 EL

p0 e S4

N"˛ˇ D "˛ˇ
1

p0 S2
for

²
"11.a=2, a=2, e=2/, "22.a=2, a=2, "e=6/
"12.0, 0, "e=2/

N"˛3 D "˛3
1

p0 S
for

²
"13.0, a=2, 0/
"23.a=2, 0, 0/

reference values are the 3D exact elasticity results given in [39].

The results are presented in Table VII. Good agreement is obtained by Sin-z2/CL8 with respect
to the reference values for all length-to-thickness ratios. For the thick plate, some distributions with
respect to the thickness and comparisons with Sin/AG results are also given in Figure 13 for Ui

and in Figures 14–16 for the stresses. The agreement between the previously developed C1 FE
and the present C0 FE is obvious. The distribution over the thickness of U3 is non-constant using
sin-z2/CL8, see the right curve of Figure 13. The only discrepancy is located at the top and bottom
surfaces for the transverse shear stresses, see Figure 16, where the traction-free boundary condi-
tions are not exactly recovered. This is due to the constant term of the transverse shear strain #0,
see Equation (8), which is not exactly zero. Note that the free top and bottom boundary conditions
are exactly satisfied using the C1 FE based on the sinus model.

Table VII. (0°, 90°, 0°) square plate under mechanical load.

S Model NU1
NU2

NU3 N"11 "N"22 N"12 N"13 N"23

4 Ref. 0.0094 0.0228 2.0059 0.8008 0.5563 0.0505 0.2559 0.2172
Sin-z2/CL8 0.0094 0.0218 2.0306 0.7617 0.5056 0.0491 0.2110 0.1864
Sin/AG 0.0094 0.0229 1.9345 0.7554 0.5033 0.0507 0.2113 0.1877
SinC/AG 0.0107 0.0218 1.9622 0.8560 0.5838 0.0510 0.2774 0.1494
FSDT/AG 0.0054 0.0181 1.7758 0.4370 0.4774 0.0369 0.1201 0.1301

10 Ref. 0.0074 0.0111 0.7530 0.5906 0.2882 0.0290 0.3573 0.1228
Sin-z2/CL8 0.0073 0.0106 0.7186 0.5857 0.2737 0.0281 0.2732 0.1046
Sin/AG 0.0072 0.0106 0.7180 0.5727 0.2708 0.0279 0.2583 0.1059
SinC/AG 0.0075 0.0110 0.7533 0.5975 0.2908 0.0279 0.3744 0.0859
FSDT/AG 0.0064 0.0096 0.6693 0.5134 0.2536 0.0252 0.1363 0.0762

100 Ref. 0.0068 0.0068 0.4347 0.5393 0.1808 0.0214 0.3947 0.0828
Sin-z2/CL8 0.0068 0.0068 0.4343 0.5396 0.1808 0.0214 0.2950 0.0744
Sin/AG 0.0068 0.0068 0.4343 0.5390 0.1806 0.0214 0.2738 0.0764
SinC/AG 0.0068 0.0068 0.4347 0.5393 0.1808 0.0214 0.4081 0.0600
FSDT/AG 0.0068 0.0068 0.4337 0.5384 0.1804 0.0213 0.1416 0.0586



Figure 13. (0°, 90°, 0°) square plate under mechanical load; distribution of NUi for S D 4.

Figure 14. (0°, 90°, 0°) square plate under mechanical load; distribution of N"˛˛ for S D 4.

Figure 15. (0°, 90°, 0°) square plate under mechanical load; distribution of N"12 and N"33 for S D 4.

Figure 16. (0°, 90°, 0°) square plate under mechanical load; distribution of N"˛3 for S D 4.

4.4.2. Thermo-mechanical analysis. This last test deals with a thermal load applied on a simply
supported square laminated plate. The description of this test is the same as in the previous section



but the mechanical pressure load is replaced by an imposed temperature profile defined as follows:

T .x1, x2, ´/ D T0
2´

e
sin
(x1

a
sin
(x2

a
(19)

Furthermore, the thermal expansion coefficients are defined by ˛T D 1125 ˛L.
The non-dimensional values are obtained using the following relations:

NU˛ D U˛
1

T0 ˛L a
for

²
U1.0, a=2, e=2/
U2.a=2, 0, e=2/

NU3 D U3.a=2, a=2, e=2/
e

T0 ˛L a2
I

N"ij D "ij
1

T0 ˛L ET
for

8<
:
"11, "22.a=2, a=2, e=2/
"12.0, 0, e=2/
"13.0, a=2, e=6/, "23.a=2, 0, e=6/

As previously pointed out, the 3D constitutive law is essential to capture the full coupling between
thermal load and induced stresses in the normal direction. The results are presented in Table VIII
for different length-to-thickness ratios S , and comparisons are given with other FE. The reference
solutions are given in [40]. For the thin plate case, the results obtained by the present FE are of
same order than other results, but for the semi-thick and thick cases, a clear improvement is found,
especially for the transverse displacement.

The distributions through the thickness for S D 10 and S D 100 are presented in Figures 17
and 18 for displacements and in Figures 19–22 for stresses. Comparisons are given with respect
to exact solutions and Sin/AG results. A good agreement is recovered between present results and
the reference solutions excepted for the transverse shear stress in Figure 22, where continuity con-
dition at layer interfaces is not fulfilled by our present approach. The main difference between

Table VIII. (0°, 90°, 0°) square plate under thermal load.

S Model NU1 NU2 NU3 N"11 N"22 N"12 N"13 N"23

4 Ref. "18.11 "81.83 42.69 1183.0 "856.1 "157.00 84.81 "128.70
Sin-z2/CL8 "14.63 "72.51 46.87 906.0 "885.6 "137.00 56.29 "113.70
Sin/AG "14.78 "61.61 25.92 907.0 "918.4 "124.90 56.38 "111.00
FSDT/AG "9.12 "70.78 22.62 468.0 "896.4 "130.10 35.19 "117.30

10 Ref. "16.61 "31.95 17.39 1026.0 "1014.0 "76.29 60.54 "66.01
Sin-z2/CL8 "15.89 "29.65 17.67 970.0 "1021.0 "71.59 37.11 "73.93
SIN/AG "15.59 "27.69 14.13 945.0 "1026.0 "71.98 35.80 "73.72
FSDT/AG "14.21 "29.58 13.23 837.0 "1022.0 "72.88 21.82 "72.76

100 Ref. "16.00 "16.17 10.26 965.4 "1065.0 "50.53 7.07 "7.08
Sin-z2/CL8 "15.99 "16.14 10.26 966.5 "1064.0 "50.52 4.23 "8.39
SIN/AG "15.88 "16.12 10.16 958.8 "1064.0 "52.34 4.01 "8.31
FSDT/AG "15.87 "16.14 10.16 957.5 "1064.0 "52.40 2.43 "8.08
CLT/AG "15.89 "15.99 10.12 958.9 "1064.0 "51.70 — —

Figure 17. (0°, 90°, 0°) square plate under thermal load; distribution of NU˛ .



Figure 18. (0°, 90°, 0°) square plate under thermal load; distribution of NU3.

Figure 19. (0°, 90°, 0°) square plate under thermal load; distribution of N"11.

Figure 20. (0°, 90°, 0°) square plate under thermal load; distribution of N"22.

Figure 21. (0°, 90°, 0°) square plate under thermal load; distribution of N"12.

Sin-z2/CL8 and Sin/AG concerns the transverse displacement, see Figure 18. Thanks to the choice
of a non-constant variation of U3, the present approach is in very good agreement with respect to
the reference solution.



Figure 22. (0°, 90°, 0°) square plate under thermal load; distribution of N"13.

5. CONCLUSION

In this paper, a new C0 FE has been presented on the basis of a refined sinus model, introducing
only two supplementary unknown functions, and two more DOFs at each node, with respect to the
classical FSDT model. The 3D constitutive law is used, using a specific refinement for the trans-
verse displacement, avoiding the classical plate hypothesis, neglecting the transverse normal stress.
Furthermore, a static condensation at the elementary level is used to eliminate the additional terms
for the transverse displacement. Based on the sinus model, this approach does not need shear
correction factor.

This FE is free of numerical illness such as transverse shear and Poisson lockings, oscillation and
spurious mechanics. The methodology for the control of the transverse shear locking, previously
introduced for the development of an FSDT FE, has been extended with success to this refined
model.

The evaluation has been conducted for isotropic very thick-to-thin plates, and results are in good
agreement with reference solutions. Distorted mesh for square and circular plates has been also
evaluated to quantify the sensitivity to mesh distortion for different boundary conditions. Finally,
a three-layered square plate submitted to mechanical and thermal loads has been also considered,
leading to very promising results.

This new FE seems to be a very attractive tool for thick-to-thin plate as it shows a good compro-
mise between cost and accuracy for displacements and stresses, under various boundary conditions
and loads.

The present work could be a good starting point for the development of hierarchic approaches,
as it has been performed for multilayered beam structures [23, 29], and for plates and shells in
[20, 21, 27]. Therefore, future works are pointed towards a full evaluation of multilayered and
sandwich plates and on the development of the associated shell FE.

APPENDIX A: EXPRESSION OF THE THICKNESS MATRICES

The matrix ŒFu.´/$ .3, 9/, associated with the displacement, is given by

ŒFu.´/$D

2
4

1 0 0 0 f .´/ f .´/ " ´ 0 0 0
0 1 0 "f .´/ 0 0 f .´/ " ´ 0 0
0 0 1 0 0 0 0 ´ ´2

3
5 (A.1)

The matrix ŒF$.´/$ .6, 22/, associated with the strain components, has its non-zero terms
defined by

F$.´/.1, 2/ D 1 F$.´/.1, 11/ D f .´/ F$.´/.1, 14/ D f .´/ " ´

F$.´/.2, 6/ D 1 F$.´/.2, 9/ D "f .´/ F$.´/.2, 18/ D f .´/ " ´

F$.´/.3, 19/ D 1 F$.´/.3, 20/ D 2´



F$.´/.4, 7/ D "f 0.´/ F$.´/.4, 16/ D f 0.´/ F$.´/.4, 21/ D 1

F$.´/.5, 10/ D f 0.´/ F$.´/.5, 13/ D f 0.´/ F$.´/.5, 22/ D 1

F$.´/.6, 3/ D 1 F$.´/.6, 5/ D 1 F$.´/.6, 8/ D "f .´/

F$.´/.6, 12/ D f .´/ F$.´/.6, 15/ D f .´/ " ´ F$.´/.6, 17/ D f .´/ " ´

APPENDIX B: FINITE ELEMENT APPROXIMATIONS

The eight node interpolation

The interpolation functions on the elementary domain are defined as follows:

8.), */ 2 Œ"1, 1$2, p.), */ D
8X

iD1

Nqi .), */ pi with

Nq1.), */ D "1

4
.1 " )/.1 " */.1 C ) C */ Nq2.), */ D "1

4
.1 C )/.1 " */.1 " ) C */

Nq3.), */ D "1

4
.1 C )/.1 C */.1 " ) " */ Nq4.), */ D "1

4
.1 " )/.1 C */.1 C ) " */

Nq5.), */ D 1

2
.1 " )2/.1 " */ Nq6.), */ D 1

2
.1 C )/.1 " *2/

Nq7.), */ D 1

2
.1 " )2/.1 C */ Nq8.), */ D 1

2
.1 " )/.1 " *2/

The four node interpolation

8.), */ 2 Œ"1, 1$2, p.), */ D
4X

iD1

N li .), */ pi with

N l1.), */ D .1 " c )/.1 " c */=4 N l2.), */ D .1 C c )/.1 " c */=4

N l3.), */ D .1 " c )/.1 C c */=4 N l4.), */ D .1 " c )/.1 C c */=4
with c D

p
3.
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