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SUMMARY

The FEM is the main tool used for structural analysis. When the design of the mechanical system involves
uncertain parameters, a coupling of the FEM with reliability analysis algorithms allows to compute the
failure probability of the system. However, this coupling leads to successive finite element analysis of
parametric models involving high computational effort. Over the past years, model reduction techniques have
been developed in order to reduce the computational requirements in the numerical simulation of complex
models. The objective of this work is to propose an efficient methodology to compute the failure probability
for a multi-material elastic structure, where the Young moduli are considered as uncertain variables. A proper
generalized decomposition algorithm is developed to compute the solution of parametric multi-material
model. This parametrized solution is used in conjunction with a first-order reliability method to compute
the failure probability of the structure. Applications to multilayered structures in two-dimensional plane
elasticity are presented. Copyright © 2013 John Wiley & Sons, Ltd.

KEY WORDS: structural reliability; finite element analysis; model reduction; proper generalized
decomposition; FORM approximation

1. INTRODUCTION

Many applications in structural analysis require to take into account stochastic properties of material,
geometry, or loads. Different methods based on the probability theory have been developed to
quantify the effect of data uncertainties. First-order reliability method (FORM) [1, 2] is commonly
used in reliability analysis. It is based on the computation of the Hasofer–Lind reliability index ˇ
[3–7], followed by an estimation of the failure probability. In many cases, the structural response
cannot be expressed explicitly, and the reliability analysis needs to be coupled with a FEM. This
coupling implies difficulties, as the computation of the Hasofer–Lind reliability index involves the
resolution of a constrained optimization problem and leads to multiple FEM resolutions [8]; in
particular, the gradient is computed by a finite difference method, which involves two finite element
computations for each parameter. In the literature, these difficulties are often circumvented by the
use of response surfaces [9,10]. Over the past years, the development of model reduction techniques
allows to consider the calculation of the complete solution set and thus to apply the optimization
algorithm directly on an explicit solution. The proper generalized decomposition (PGD) has shown
interesting features in the reduction model framework [11]. This type of method has been also
introduced by [12] and called ‘radial approximation’ in the Latin method framework. It allows to
decrease drastically the computational time [13]. It has been also used in the context of separation
of coordinate variables in multi-dimensional PDEs [11]. For a review about the PGD and its fields
of applications, the reader can refer to [14–16].



In this paper, a PGD algorithm is developed to compute the solution of parametric multi-materials
isotropic elastic model, and the explicit solution obtained is used to compute the failure probability
with a FORM approximation.

The paper is organized as follows. In Section 2, we present the basis of the reliability analysis.
In Section 3, we describe the problem to be solved. Section 4 is devoted to the presentation of the
application of a PGD algorithm to a parametric multi-materials elastic model. The computation of
the failure probability by a FORM approximation in a PGD framework is described in Section 5.
Finally, Section 6 presents an application to multilayered structures in two-dimensional plane
elasticity.

2. PRINCIPLE OF RELIABILITY ANALYSIS

In this section, we describe the problem of reliability assessment, and we introduce the reliability
index [1, 10, 17]. Structural reliability aims at computing the probability of failure of a mechanical
system by accounting for uncertainties arising in a model description (geometry, material properties)
or in the environmental data (prescribed displacement and external forces).

Let m be the vector of the model parameters on which there are some uncertainties. This vector
is modeled by a random vector X, and fX.x/ is the joint probability density function. The structure
failure state is defined by a limit state function G such that

� G.x/ < 0 is a failure state for the structure.
� G.x/D 0 is the limit state.
� G.x/ > 0 is a safe state for the structure.

According to the definition of G, the system fails when this margin is lower or equal to 0. The
failure probability Pf is then given by

Pf D

Z
G.x/60

fX.x/ dx (1)

The evaluation of the integral defined by Equation (1) is not easy because it represents a very
small quantity and the probability density function is not usually well-known because of scarcity
of statistical data. A classical way to evaluate this integral is to use the FORM [1]. An essential
ingredient in the FORM in reliability analysis is to find the so-called design point. The search
for this point is performed in an uncorrelated standard normal space [3]. It is therefore necessary
to transform the original vector of random variables X into a vector Y defined in the space of
independent standard Gaussian variables. The transformation from the variables X to the normalized
variables Y is given by

YD T .X/ (2)

This transformation is called an isoprobabilistic transformation [3, 18].

Remark
When the xi are jointly normal variables (the mean vector being denoted Mx and the covariance
matrix †xx), the Nataf transformation [18] consists in transforming X to the uncorrelated standard
normal space by seeking a linear transformation yD AxCB such that Mx D 0 and †yy D I.

The limit state function is written in the space of independent standard Gaussian variables Y

G.X/DG.T �1.Y//�H.Y/ (3)

and the failure probability simplifies to

Pf D

Z
H.y/60

�.y/ dy (4)



where �.y/ is the n-dimensional standard normal density function with normal components. First-
order reliability method analysis addresses the reliability problem in (4) by means of two key
operations (see [1, 2, 18, 19])

� First, we find the design point in the transformed independent standard normal space. The
design point P � is the solution to the constrained optimization problem

y� D argmin

²q
yT y jH.y/6 0

³
(5)

where y� is the design point and argmin denotes the argument of the minimum of a function.
� Second, we approximate the limit-state surface by the tangent hyperplane at this point and

make use of the properties of the standard normal space to obtain the probability estimate.

The Hasofer–Lind reliability index, ˇ, is defined as the minimum distance between the origin of
the space O and the surface of the limit state

ˇ D

q
.y�/T y� (6)

The FORM failure probability is given by

PF Dˆ.�ˇ/ (7)

where ˆ is the cumulative distribution function of a standard Gaussian variable.

3. THE PROBLEM TO BE SOLVED

Let us consider an elastic structure defined in a domain � bounded by @�. The external actions on
the structure are represented by a surface force density T defined over a subset �N of the boundary
and a body force density b defined in �. We assume that a prescribed displacement ud D 0 is
imposed on �D D @� � �N . The structure is made of p different isotropic elastic materials
occupying a domain �i , such that [piD1�i D � and �i \ �j D ; if i ¤ j . Each material is
defined by its Young’s modulus Ei and Poisson’s ratio �i . Let us consider a quantity of interest,
depending on the solution of the mechanical problem u, denoted S.u/ (displacement of a point,
Von Mises stress in a part of the structure, stress intensity factor . . . ) whose value must be below a
critical value denoted R (max displacement, yield stress, ...). In this problem, the random variables
are the Young’s modulus Ei .i D 1, ...,p/ and the critical value R. The random vector is defined by
XD ŒE1,E2, : : : ,Ep ,R�T , and the limit state function is

G.X/DR� S.u/ (8)

The objective of the analysis is to compute the failure probability of the structure.

3.1. The elastic model

Let us denote by E the random vector of the material properties, ED ŒE1E2 : : : Ep�T . The elastic
problem can be formulated as find a displacement field u.E/ and a stress field � .E/ defined in �
which verify

� The kinematic constraints

u.E/ 2 U (9)

� The equilibrium equations

� .E/ 2 S and 8u� 2 U

�

Z
�

� .E/ W ".u�/d�C
Z
�

b.u� d�C
Z
�N

T.u�d� D 0
(10)



� The constitutive relation

� .E/D C.E/".u.E// (11)

U D ¹u j u 2
�
H1.�/

�3
IuD 0 on �Dº is the space in which the displacement field is being sought,

S D L2Œ��3 the space of the stresses, and ".u/ denotes the linearized deformation associated with
the displacement.

3.2. The optimization problem

Let T be the isoprobabilistic transformation and H the limit state function defined in the space of
standardized vector Y, from Equations (3) and (8). In this space, the failure domain D is defined by

D D ¹y jH.y/6 0º D ¹y j yD T .x/ and G.x/D r � S.u.e//6 0º (12)

where u.e/ is the solution of the elastic problem defined by Equations (9–11) for a realization e of
the random vector E and r is a realization of the random variable R.

The computation of the FORM failure probability defined by Equation (7) consists in solving the
following optimization problem: find ˇ such that

ˇ Dmin
y2D

q
yT y (13)

Usually, the optimization problem defined by Equations (9–11, 13) is solved by an improved
version of the Hassofer–Lind–Rackwitz– Fiessler (HLRF) algorithm [4], the so-called iHLRF
algorithm developed in [5–7]. This algorithm involves at each iteration the computation of solutions
of Equations (9–11) by the FEM for fixed y (see [5, 7, 19] for detailed studies on the convergence
of the optimization problem). The iHLRF algorithm is a search algorithm that employs the
search direction

dD
�
˛T y�

H

krHk

�
˛ � y with ˛ D

rH

krHk
(14)

which is used to built a sequence y.i/ (i 2N) such that

y.iC1/ D y.i/C �d (15)

The step size � is selected to minimize a merit function

m.yC �d/D
1

2
kyk2C cjH.y/j (16)

where c is a penalty parameter satisfying the condition c > kyk=krHk at each step.

4. APPLICATION OF A PROPER GENERALIZED DECOMPOSITION ALGORITHM
TO MULTI-MATERIALS

The proper generalized decomposition (PGD) was introduced in [11] and is based on an a priori
construction of separated variables representation of the solution. The following sections are
dedicated to the introduction of PGD to build a parametric solution for isotropic multi-materials
analysis. We consider the problem defined by Equations (9–11) as a parametrized problem where
the Young’s modulus in each domain �i is in a bounded interval Ii D ŒeimI e

i
M �. The solution

of Equations (9–11) for a point M of the structure depends on the values of Young’s moduli and
is denoted u.M , e1, e2, : : : ep/, and the stress is linked with the strain by a parametrized isotropic
constitutive law C which is defined in each domain�i by CD eiC1.�i / (where C1.�i / is the elastic
tensor defined for Young’s modulus equal to 1).



4.1. The parametrized problem

The displacement solution u is constructed as the sum ofN products of separated functions (N 2N
is the order of the representation)

u.M , e1, e2, : : : ep/D
NX
iD1

f i1 .e1/f
i
2 .e2/ : : : f

i
p.ep/v

i .M/ (17)

where f ij and vi are functions that must be computed during the resolution process. The problem to
be solved is written as follows: find u 2 U (space of admissible displacements) such that

a.u, u�/D b.u�/ 8u� 2 U (18)

with

a.u, u�/D
Z
��I1�I2:::�Ip

C".u/ W ".u�/d� de1 : : : dep

b.u�/D
Z
��I1�I2:::�Ip

b.u� d� de1 : : : dep C

Z
�N�I1�I2:::�Ip

T.u�d� de1 : : : dep

(19)

where �� I1 � I2 : : :� Ip is the integration space associated with the geometric space domain �
and the parameters domain I1 � I2 : : :� Ip of the Young’s moduli.

4.2. Decomposition of the parametrized problem

We assume that the sum of n < N products of separated functions have been already computed.

un.M , e1, e2, : : : ep/D
nX
iD1

f i1 .e1/f
i
2 .e2/ : : : f

i
p.ep/v

i .M/ (20)

The solution at step n C 1 is sought as the sum of un and a product f nC11 .e1/f
nC1
2 .e2/ : : :

f nC1p .ep/vnC1.M/ of unknown functions.

unC1.M , e1, e2, : : : ep/D un.M , e1, e2, : : : ep/C f
nC1
1 .e1/f

nC1
2 .e2/ : : : f

nC1
p .ep/vnC1.M/

(21)

Let us denote by fnC1 the set of functions
�
f nC11 , f nC12 , ...f nC1p

�
and by �i .f/ and �.f/, the two

following products

�i .f/D
pY
jD1

j¤i

fj and �.f/D
pY
jD1

fj (22)

The test functions are derived from Equation (21)

u� D
pX
iD1

�i
�
fnC1

�
f �i vnC1C �

�
fnC1

�
v� (23)

Introducing the trial function u defined by Equation (21) and the test functions u� defined by
Equation (23) into the weak form (18) leads to pC 1 equations

� For the test functions f �i , i 2 ¹1, ...,pº

a.�.fnC1/vnC1,�i .fnC1/f �i vnC1/D b
�
�i .fnC1/vnC1f �i

�
�a

�
un,�i .fnC1/f �i vnC1

�
8f �i
(24)

� For the test function v�

a.�.fnC1/v,�.fnC1/v�/D b.�.fnC1/v�/� a.un,�.fnC1/v�/ 8v� (25)



As these equations define a coupled nonlinear problem, a nonlinear resolution strategy has to be
used. The simplest strategy is the fixed point method. Starting from an initial solution .Qv.0/, Qf.0//,
we construct a sequence .Qv.k//k>1 and .Qf.k//k>1 where

� For i 2 ¹1, ...,pº,
�
Qf
.k/
i

�
is defined by

a
�
Qf
.k/
i �i

�
Qf.k�1/

�
Qv.k�1/,�i

�
Qf.k�1/

�
f �i v

�
D b

�
�i

�
Qf.k�1/

�
f �i Qv

.k�1/
�
� a

�
un,�i

�
Qf.k�1/

�
f �i Qv

.k�1/
�
8f �i (26)

� And Qv.k/ is defined by

a
�
�
�
Qf.k/

�
Qv.k/,�

�
Qf.k/

�
v�
�
D b

�
�
�
Qf.k/

�
v�
�
� a

�
un,�

�
Qf.k/

�
v�
�
8v� (27)

In practice, only few iterations of the fixed point algorithm are necessary to reach a good
approximation .Qv.k/, Qf.k// of .vnC1, fnC1/ (see [14] for more details). The PGD leads to the
algorithm given in Table I.

4.3. Discretization

To compute the solution of Equations (26–27), a discrete representation of the functions
.v, f1, : : : fp/ must be introduced. We use a classical finite element approximation for the spatial
representation in �

v.M/D Nv.M/qv (28)

where Nv.M/ contains the finite element interpolation functions, and qv is the vector of DOF
associated with the finite element mesh in �. And we use series expansions of functions in
.Ii /16i6p

fi .ei /D

n2X
jD�n1

qf ,ij

�
ei

ci

�j
D Nf ,i .ei /qf ,i (29)

where n1 and n2 determine the length of the expansion, Nf ,i is the matrix of the interpolation
functions, qf ,i are the DOF, and ci is a coefficient introduced to obtain a dimensionless function
fi .ei /. In this paper, we use the bounds of the interval Ii to compute ci D 0.5

�
eimC e

i
M

�
.

Table I. Proper generalized decomposition algorithm.

� for nD 1 to Nmax

Initialize Qv.0/ and Qf.0/i for i 2 ¹1, : : : pº
for k D 1 to kmax

for i D 1 to p

Compute Qf.k/i from Equation (26)
end for
Compute Qv.k/ from Equation (27)
Check for convergence

end for

Set vn D Qv.k/ and fni D
Qf.k/i for i 2 ¹1, : : : pº

Set un D un�1C �.fn/ vn

Check for convergence

� end for



5. COMPUTATION OF THE FAILURE PROBABILITY

The failure probability is computed by solving the optimization problem defined by Equation (13),
with the parametrized solution obtained after N iterations of the PGD, expressed as

u.M , e1, e2, : : : ep/D
NX
iD1

f i1 .e1/f
i
2 .e2/ : : : f

i
p.ep/v

i .M/ (30)

The isoprobabilistic transformation T gives the relation between the x D Œx1, : : : xpC1�T and
the y D Œy1, : : : ypC1�T . For the sake of clarity, let us assume that xi are independent Gaussian
random variables with mean 	i and standard deviation 
i . Following the notations introduced in
Section (3.1), the transformation in standard random variables is

yi D
xi �	i


i
for i 2 ¹1, : : : pC 1º (31)

and the inverse transformation T �1 is

xi D 
iyi C	i for i 2 ¹1, : : : pC 1º (32)

Each iteration of iHLRF algorithm used to solve Equation (13) requires the computation of the
gradient vector rH . It must be denoted that the parametrized representation of the solution greatly
simplifies this computation because the solution depends explicitly on the random parameters. In
standard finite element reliability analysis, the parametric dependency of the solution is not explicit
and the computation of the gradient vector rH requires the computation of response surfaces
[9, 10].

The application of the chain rule of differentiation to Equation (12) gives

rH D
@r

@y
�
@S

@u
@u
@e
@e
@y

(33)

in which @r
@y is computed straightforward as @r

@y D Œ0, : : : , 0, 
pC1�T . @S=@u is easy to compute

because S is usually a simple algebraic function of the parametrized response u, @e=@y is the
inverse of the Jacobian matrix of the isoprobabilistic transformation. When Ei are independent
Gaussian random variables, @e=@y is a diagonal matrix whose terms are 
i for i 2 ¹1, : : : pº and 0
for i D p C 1. The last term to be computed is the matrix @u=@e that can be evaluated by a direct
derivation of the parametrized solution (Equation (30)). The minimization of the merit function
(Equation (16)) is solved in an approximate way by applying the Armijo line search [20]. Let
.s, �,	/ a set of constants such that s > 0, � 2�0, 1Œ, and 	 2�0, 1Œ, the Armijo line search consists
in choosing �.iC1/ to be the largest .�k/k2N such that

�k D s�
k (34)

and

m
�

y.i/C �kd.i/
�
�m

�
y.i/

�
6 �k	rm

�
y.i/

�T
d.i/ (35)

where rm
�
y.i/

�
is computed from Equation (16)

rm
�

y.i/
�
D yi C crH

�
yi
�

sign
�
H
�
yi
��

(36)

In iHLRF algorithm, the classical values chosen for .s, �,	/ are .1, 0.5, 0.5/. This leads to the
optimization algorithm given in Table II.



Table II. iHLRF algorithm.

� Compute the parametrized solution u.M , e1, e2, : : : ep/
� Initialization y.0/

� for i D 1 to nmax

Transform y.i/ in
�
e.i/, r.i/

�
Evaluate the limit state function H

�
y.i/

�
DG

�
e.i/, r.i/

�
D r.i/ � S

�
u
�
e.i/

��
Evaluate the gradient of the limit state function rH from Equation (33)
Check for convergence
Compute search direction vector d.iC1/ from Equation (14)
Compute step size �.iC1/

Compute 	rm
�
y.i/

�T d.i/

for k D 0 to kmax
Compute �k D s�

k

Evaluate the merit function m
�
y.i/ C �kd.i/

�
from Equation (35),

Check for convergence
end for

Set y.iC1/ D y.i/ C �.iC1/diC1

� end for

6. NUMERICAL EXAMPLES

The reliability analysis coupled with PGD algorithm introduced in the previous sections is tested
by solving both a reliability analysis problem with a limit state function based on the maximum
displacement at a given point and a problem involving a maximum Yield strength function. These
two problems are solved for structures � made of three different materials. The spatial equations
on � are solved with eight-node quadratic elements (Equation (28)) and the parameters of the
expansions in e (Equation (29)) are set to n1 D 1 and n2 D 2.

6.1. Verification of the proper generalized decomposition algorithm

To validate the PGD algorithm, we consider a structure � composed of three different materials as
shown in Figure 1, submitted to a localized pressure P in plane strain conditions. The deterministic
parameters of the model are the geometry LD 200 mm, h1 D 10 mm, h2 D 10 mm, h3 D 10 mm,
Lp D 4 mm, the pressure P D 10 MPa, and the Poisson ratio of the materials �1 D �2 D �3 D 0.3.
The parametrized solution is computed on � � I1 � I2 � I3, where I1 D [126 GPa; 294 GPa],
I2 D[42 GPa;98 GPa], and I3 D [108 GPa; 252 GPa]. Figure 2 shows the finite element mesh for
half of the model due to the symmetry of the problem.

We define a reference solution uref , which is the classical finite element solution computed on
� � I1 � I2 � I3. A global error indicator between the reference solution uref and a separated
variables solution un of order n is introduced

�n D

s
a.un � uref , un � uref /

a.uref , uref /
(37)

Figure 1. Example 1: multi-layered structure.



Figure 2. Mesh used for the proper generalized decomposition algorithm in example 1.

Figure 3. Convergence of the proper generalized decomposition (PGD) algorithm: evolution of �n with
respect to the number of the PGD iterations.

The convergence of the PGD algorithm is shown in Figure 3. When a quantity of interest S.u/ is
defined, an error on this quantity of interest �Sn can be computed with

�Sn D
max.e1,:::,ep/2I1�I2�...Ip jS.u

n/� S.uref /j

max.e1,:::,ep/2I1�I2�...Ip jS.uref /j
(38)

Let S.u/ D uy.Q, e1, : : : , ep/ the vertical displacement of point Q (see Figure 1). The conver-
gence of the �Sn is shown in Figure 4. One can see that although the global error convergence is
regular (Figure 3), the convergence of a local quantity as uy.Q, e1, : : : , ep/ is less regular, because
the PGD algorithm minimizes only the global residual in energy. Nevertheless, 64 iterations of the
PGD algorithm leads to an error approximatively equal to 1 � 10�3 on the quantity of interest
uy.Q, e1, : : : , ep/, and in the next section, u64y .Q, e1, : : : , ep/D S.u64/ will be used as a reference
value for the computation of a reference value ˇref of the reliability index.

6.2. Example 1: maximum displacement in a multilayered structure

We consider the structure � described in Section 6.1 (Figures 1 and 2). The limit state function is
given by

G D uy,max � uy.Q/ < 0 (39)

where uy.Q/ is the vertical displacement of point Q, and uy,max is the maximum displacement
acceptable. The random variables of the model are the Young modulus Ei and the maximum
displacement uy,max . They are modeled by random Gaussian independent variables and their
parameters are given in Table III. The PGD algorithm described in Section 4 is used to compute
a parametrized solution on � � I1 � I2 � I3. The bounds for Ii are chosen a priori but must



Figure 4. Convergence of uny.Q/ D S.un/: evolution of �Sn with respect to the number of the proper
generalized decomposition (PGD) iterations.

Table III. Example 1.

Variable Probability distribution Mean Standard deviation

E1 (MPa) Normal 210� 103 21� 103

E2 (MPa) Normal 70� 103 7� 103

E3 (MPa) Normal 180� 103 18� 103

uy,max (mm) Normal 0.1 0.01

be sufficiently broad to include the coordinates of the design point. Here, the bounds chosen to
define Ii are the same with the one defined in Section 6.1 (i.e., I1 D [126 GPa; 294 GPa], I2 D
[42 GPa;98 GPa], and I3 D [108 GPa; 252 GPa]). The expression of the vertical displacement at
point Q is given by

uNy .Q, e1, e2, e3/D
NX
iD1

0
@ 3Y
jD1

f ij .ej /

1
A vi .Q/ (40)

The reliability analysis is performed for different values of the order of the PGD solution, and
the results are shown in Figure 5. The parametrized displacement field obtained with the first four
iterations of the PGD leads to a reliability index very close to the converged value. This behavior
will not be seen again on the example presented in Section 6.3. The observation of Figure 5 suggests
that 12 iterations of the PGD will be sufficient to obtain a parametrized displacement field leading to
a stable estimate of the reliability index. Figure 6 illustrates the convergence of the iHLRF algorithm
whenN D 12. It can be seen that four iterations of the iHLRF algorithm lead to a converged solution
ˇ D 4.728. Following Equation (7), the associated failure probability is PF D 1.134 � 10�6. The

coordinates of the design points (i.e., y� D argminy2D
p

yT y) are given in Table IV and are inside
the bounds defined for the PGD analysis.

Remark
It must be denoted that once the parametrized finite element solution has been calculated by the
PGD algorithm, no new finite element solutions need to be computed in order to perform the
reliability analysis.

To obtain a reference value for ˇ, we approximate the loading effect obtained from the reference
solution S.u/ D uy.Q, e1, e2, e3/ � uNy .Q, e1, e2, e3/ computed by Equation (40) with N D 64.



Figure 5. Convergence of the computation of ˇ as a function of the order of the separated representation.

Figure 6. Convergence of the reliability during the iHLRF algorithm.

Table IV. Example 1: design point.

Standard Gaussian space y�1 y�2 y�3 y�4

�1.00 �0.70 �1.06 �4.44
Physical space e�1 (MPa) e�2 (MPa) e�3 (MPa) u�y,max (mm)

189� 103 65.1� 103 161� 103 0.056

With this approximation, it is easy to apply again the iHLRF algorithm (that converges in four
iterations) and obtain a reference value for the reliability index ˇref D 4.737 and an associated
failure probability Pref D 1.085 � 10�6. We can observe that with only 12 iterations of the PGD,
the accuracy of the failure probability is inferior to 5%.

6.3. Example 2: maximum Von Mises stress

We consider a structure � composed of three different materials as shown in (Figure 7), submitted
to a constant pressure P in plane strain conditions. The limit state function is given by

G D 
VM �
1

mes.!/

Z
!

p

dev W 
devd! < 0 (41)



Figure 7. Example 2.

Table V. Example 2: random variables.

Variable Probability distribution Mean Standard deviation

E1 (MPa) Normal 180� 103 18� 103

E2 (MPa) Normal 70� 103 7� 103

E3 (MPa) Normal 210� 103 21� 103


VM (MPa) Normal 150 15

Figure 8. Mesh used for the proper generalized decomposition algorithm in example 2.

where ! is a small part of the structure described in Figure 7,mes.!/ is the area of domain !, 
dev

is the stress deviator tensor, and 
VM is the yield strength of the material in !. The deterministic
parameters of the model are the geometry LD 200 mm, h1 D 10 mm, h2 D 20 mm, h3 D 10 mm,
d1 D 15 mm, the pressure P D 10 MPa, and the Poisson ratio of the materials �1 D �2 D �3 D 0.3.
The random variables of the model are the Young Modulus Ei and the yield strength 
VM , they
are modeled by random Gaussian independent variables and are given in Table V. The parametrized
solution is computed on��I1�I2�I3, where I1 D [108 GPa; 252 GPa], I2 D [42 GPa; 98 GPa],
and I3 D [126 GPa; 294 GPa]. The mesh is shown in Figure 8 (only half of the model is meshed
because of the symmetry of the problem).

For this example, the convergence of the PGD algorithm is shown in Figure 9, and the convergence
of the quantity of interest is shown in Figure 10.

The reliability analysis is performed for values of the order of the PGD solution varying from 1
to 64, and the results are shown in Figure 11. On this example, a PGD order of N D 12 is sufficient
to obtain a stable evaluation of the reliability index. The computation of the failure probability is
PF D 1.199 � 10�2. The coordinates of the design point are given in Table VI and are inside the
bounds defined for the PGD analysis. If a PGD solution of order N D 64 is chosen to compute a
reference failure probability, the computation leads to Pref D 1.191 � 10�2. The results obtained
using an approximation of order N D 12 is very accurate.



Figure 9. Example 2: evolution of �n with respect to the number of the proper generalized decomposition
(PGD) iterations.

Figure 10. Example 2: evolution of �Sn with respect of the number of the proper generalized decomposition
(PGD) iterations.

Figure 11. Convergence of the computation of ˇ as a function of the order of the separated representation.



Table VI. Example 2: design point.

Standard Gaussian space y�1 y�2 y�3 y�4

�0.218 �5.39� 10�2 0.267 �2.23
Physical space (MPa) e�1 e�2 e�3 
VM

176� 103 69.6� 103 216� 103 117

7. CONCLUSIONS

A numerical methodology has been proposed to compute the failure probability of multi-materials
isotropic elastic structures where the Young’s moduli are uncertain parameters. The computation
is carried out in two steps. In the first step, a PGD algorithm is developed allowing an a priori
construction of an approximate parametrized solution of the problem to be solved. In the second
step, a FORM algorithm is used to compute the failure probability of the structure. As the FORM
is applied directly on an explicit parametrized solution, the computation of the derivatives which is
a difficult point of the method can be carried out straightforward. The efficiency of the approach
has been illustrated on examples. Future works will be devoted to the introduction of the following
refined reliability methods: second-order reliability method and importance sampling method.
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