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A refined sinus plate finite element for laminated and sandwich structures
under mechanical and thermomechanical loads

P. Vidal ⇑, O. Polit
LEME, EA 4416, Université Paris Ouest, 50 rue de Sèvres, 92410 Ville d’Avray, France

a b s t r a c t

This paper presents a C1 6-node triangular finite element for multilayered composite plates submitted to
mechanical and thermomechanical loads. It is based on the sinus model with layer refinement and
includes the transverse normal effect. This kinematics allows to exactly ensure both (i) the continuity
conditions for displacements and transverse shear stresses at the interfaces between layers of a lami-
nated structure, and (ii) the boundary conditions at the upper and lower surfaces of the plates. It is
important to notice that the number of unknowns is independent of the number of layers. This finite ele-
ment is able to model both thin and very thick plates without any pathologies of the classic plate finite
elements (shear locking, spurious modes, etc.). It is built on the Argyris interpolation for bending and the
Ganev interpolation for membrane displacements and transverse shear rotations. The representation of
the transverse shear strains by cosine functions allows avoiding shear correction factors. In addition,
the transverse normal stress can be accurately recovered from equilibrium equations at the post-process-
ing level, using the high degree of interpolation polynomia.

Both mechanical and thermomechanical tests for thin and very thick plates are presented in order to
evaluate the capability of this new finite element to give accurate results with respect to exact three-
dimensional solutions. Both convergence velocity and accuracy are discussed and this new finite element
yields very satisfactory results at a low computational cost. In particular, the transverse shear stresses
computed from the constitutive relation are well estimated with regards to other equivalent single layer
or even with respect to layerwise models.

1. Introduction

Composite and sandwich structures are widely used in the
industrial field due to their excellent mechanical properties, espe-
cially their high specific stiffness and strength. In this context, they
can be subjected to severe mechanical and thermal loading
(through heating or cooling). For composite design, accurate
knowledge of displacements and stresses is required. So, it is
important to take into account effects of the transverse shear
deformation due to the low ratio of transverse shear modulus to
axial modulus, or failure due to delamination, etc. In fact, they
can play an important role on the behavior of structures in services,
which leads to evaluate precisely their influence on local stress
fields in each layer, particularly at the interface between layers.

The aim of this paper is to develop a triangular finite element
(FE) with high capabilities and good numerical properties dedi-
cated to the modeling of composite structures. In particular, this

2D approach must be suitable to give 3D stresses for very thick
to thin structures submitted to mechanical and thermal loading.

Research is active on the development of new theoretical mod-
els for heterogeneous structures and multifield problems. Two
families of models can be identified:

! The equivalent single layer models (ESLM), where the classical
Love–Kirchhoff (CLT) and Reissner–Mindlin (FSDT) models can
be found for plates. The first one leads to inaccurate results
for composites because both transverse and normal strains are
neglected. The second one needs a shear correction factor. So,
the higher order shear deformation theory has been developed
(see the work of Reddy [1]), but transverse shear and normal
stress continuity conditions at the interfaces between layers
are often violated. In the ESLM context, a simple way to improve
the estimation of the mechanical quantities has been proposed
by Murakami [2]: one function is added in each in-plane dis-
placement to introduce the slope discontinuity at the interface
between two adjacent layers. It allows to describe the so-called
zig-zag effect.⇑ Corresponding author.

E-mail address: philippe.vidal@u-paris10.fr (P. Vidal).



! The layer-wise models (LWM) that aim at overcoming the
restriction of the ESL concerning the discontinuity of out-of-
plane stresses at the interface between adjacent layers. The
reader can refer to the works of Pagano [3] and Reddy [4].

According to Reddy [5], the number of unknowns remains inde-
pendent of the number of constitutive layers in the ESLM, while the
same set of variables is used in each layer for the LWM.

Another way for obtaining new models is based on the intro-
duction of interface conditions into higher-order model pertaining
to the ESLM or to the LWM. This permits to reduce the number of
unknowns and can be viewed as a Zig-Zag model. Excellent re-
views have been made in the following articles [6–9] or in the most
recent review proposed by Zhang and Yang [10].

Furthermore, research is also active on the development of new
FE and, with respect to our study, triangular plate FE of the litera-
ture shall be next briefly described. We only focus on the FE based
on higher-order theories. In Gaudenzi et al. [11] and Chaudhuri and
Seide [12], three-node FE based on a layerwise approach are pre-
sented, but the computational cost increases with the number of
layers.

In the ESL approach, some authors do not use the interface con-
tinuity conditions on transverse stresses and we can cite among
other: Raghuram et al. [13] have presented a C1 three-node FE
introducing only the top and bottom free conditions on the trans-
verse shear stresses. The evaluation is about free-edge effects and
this FE is not free of Poisson locking as a linear expansion is used
for the transverse displacement; Sheikh and Chakrabarti [14] have
developed a non-conforming six-node FE based on the Reddy’s the-
ory. The free conditions on the transverse shear stresses at the top
and bottom surface of the plate are fulfilled but the transverse nor-
mal stress is neglected; Das et al. [15] have also developed a C0

three-node FE based on the {3,2} order single-layer theory but
the evaluations are dedicated to sandwich structures; Thai et al.
[16] have built a C0 three-node FE without transverse normal
stress. All these FE need post-processing calculations to improve
the transverse shear stresses distributions.

The interface continuity conditions have been introduced by
some authors: Di Sciuva [17] has proposed a three-node FE based
on a third-order theory without transverse normal stress, and this
FE exhibits a severe transverse shear locking; Oh and Cho [18] have
presented a non-conforming three-node FE based on a cubic zig-
zag plate theory but need a post-processsing treatment to recover
accurate transverse shear and normal stresses. It must be noted
that the thermo-electric-mechanical coupling is addressed in this
contribution. Zhen and Wanji [19] have proposed a three-node
FE satisfying the C1 weak-continuity conditions at the inter-ele-
ment and some results of this contribution will be used in the sec-
tion dedicated to numerical assessment for further comparison.

In this paper, a new six-node triangular finite element is de-
scribed and applied to rectangular laminated and sandwich plate
analysis. Based on the Sinus theory developed in Vidal and Polit
[20] for beams, its generalization to plate is presented here for
the first time. This work can also be viewed as an evolution of a
previous triangular FE by Polit and Touratier [21] towards three
directions: (i) modeling of thin to very thick structures, (ii) model-
ing of any lamination schemes and (iii) capability in multifield
problems. As in the beam theory, the double superposition hypoth-
esis is introduced for the in-plane displacement. The transverse
displacement is refined allowing the use of the three-dimensional
constitutive law. This is essential for thick structures and multifield
problems. All interface continuity and boundary conditions are ex-
actly satisfied for displacement and transverse shear stresses using
the Heaviside function. This function allows to take into account
any lamination scheme, whereas the FE presented in [21] was ded-
icated to cross ply and symmetric angle ply schemes. Moreover,

transverse shear stresses can be obtained directly from the three-
dimensional constitutive law. The original Sinus plate theory uses
only five unknown functions as FSDT while this new theory re-
quires six more functions, thus involving eleven independent gen-
eralized displacements. In order to develop a conform, efficient and
accurate FE, Argyris and Ganev interpolations are used as in Polit
and Touratier [21]. These FE approximations are C1 and semi-C1,
respectively, providing a high convergence rate. Furthermore, since
Argyris interpolation is a polynomial of the fifth-order and Ganev
interpolation of the fourth-order, the field compatibility for the
FE approximations of the transverse shear strains is automatically
fulfilled, avoiding the transverse shear locking.

This new triangular FE with eleven unknown functions is de-
tailed out in the first two sections. Numerical evaluations are sub-
sequently presented. After a preliminary convergence analysis,
laminated (two and three layers) and sandwich plates under
mechanical loading are discussed and, finally, two and three lay-
ered plates submitted to thermal loads are addressed. In these
numerical evaluations, displacement and stress results of this
new FE are compared with three-dimensional elasticity solutions
of Pagano [22] for mechanical loads and of Bhaskar et al. [23] for
thermal loads. Present results are also assessed against solutions
obtained from classical models (CLT, FSDT) and original Sinus the-
ory using the same FE approximations, as well as against other
models previously published in open literature.

2. Description of the plate problem

2.1. The governing equations for mechanics

Let us consider a plate occupying the domain
V ¼ X# ½% h

2 6 z 6 h
2& in a Cartesian coordinate ðx1; x2; zÞ. The plate

is defined by an arbitrary region X in the ðx1; x2Þ plane, as midplane
for z ¼ 0, and by a constant thickness h, see Fig. 1.

2.1.1. Constitutive relation
The plate is assumed to be made of NC perfectly bonded ortho-

tropic layers. Using matrix notation, the three dimensional consti-
tutive law of the kth layer is given by:

rðkÞ11

rðkÞ22

rðkÞ33

rðkÞ23

rðkÞ13

rðkÞ12

2

66666666664

3

77777777775

¼

CðkÞ11 CðkÞ12 CðkÞ13 0 0 CðkÞ16

CðkÞ22 CðkÞ23 0 0 CðkÞ26

CðkÞ33 0 0 CðkÞ36

CðkÞ44 CðkÞ45 0

sym CðkÞ55 0

CðkÞ66

2

66666666664

3

77777777775

eðkÞ11

eðkÞ22

eðkÞ33

cðkÞ23

cðkÞ13

cðkÞ12

2

66666666664

3

77777777775

i:e: rðkÞ
! "

¼ CðkÞ
h i

eðkÞ
! "

; ð1Þ

Fig. 1. The laminated plate and coordinate system.



where we denote the stress vector [r], the strain vector ½e& and Cij

the three-dimensional stiffness coefficients.
For the thermomecanical analysis, the three-dimensional con-

stitutive law is modified introducing the thermal expansion coeffi-
cients aðkÞi and the variation of the temperature DT , as follows:

rðkÞ11

rðkÞ22

rðkÞ33

2

64

3

75 ¼
CðkÞ11 CðkÞ12 CðkÞ13

CðkÞ22 CðkÞ23

sym CðkÞ33

2

64

3

75
eðkÞ11 % aðkÞ1 DT

eðkÞ22 % aðkÞ2 DT

eðkÞ33 % aðkÞ3 DT

2

64

3

75: ð2Þ

2.1.2. The weak form of the boundary value problem
Using the above matrix notation and for admissible virtual dis-

placement ~u) 2 U), the variational principle reads:
Find ~u 2 U (space of admissible displacements) such that

%
Z

V
eð~u)Þ½ &T rð~uÞ½ &dV þ

Z

V
u)½ &T f½ &dV þ

Z

@VF

u)½ &T F½ &d@V

¼ 0 8~u) 2 U); ð3Þ

where ½f & and ½F& are the prescribed body and surface forces applied
on @VF and eð~u)Þ is the virtual strain. U) is the space of admissible
virtual displacements.

2.2. The displacement field for laminated plates

Based on the sinus function (see [24,25]), a model which takes
into account the transverse normal deformation is presented in
this section. It is based on

! various works on beams, plates and shells, [24,26,27,42] cover-
ing the refined theory, and
! the so-called 1, 2-3 double-superposition theory of Li and Liu

[28], developed in the sinus approach for beams in Vidal and
Polit [20].

Moreover, this refined model (see Vidal and Polit [29]) takes
into account the continuity conditions between layers of the lam-
inate for both displacements and transverse shear stresses, and the
free conditions on the upper and lower surfaces.

The important feature in this new model is the introduction of
both a layer refinement with physical meaning and the transverse
normal effect in the framework of plate structures.

For this, the model kinematics is written in terms of Heaviside
function according to the following particular form:

U1ðx1;x2;zÞ¼u0ðx1;x2Þþzu1ðx1;x2Þþ f ðzÞ w0;1ðx1;x2Þþh2ðx1;x2Þð Þ

þ
XNC

k¼1

!uðkÞlocðx1;x2;zÞþ ûðkÞlocðx1;x2;zÞ
# $

#ðHðz%zkÞ%Hðz%zkþ1ÞÞ;
U2ðx1;x2;zÞ¼v0ðx1;x2Þþzv1ðx1;x2Þþ f ðzÞ w0;2ðx1;x2Þ%h1ðx1;x2Þð Þ

þ
XNC

k¼1

!v ðkÞlocðx1;x2;zÞþ v̂ ðkÞlocðx1;x2;zÞ
# $

#ðHðz%zkÞ%Hðz%zkþ1ÞÞ;
U3ðx1;x2;zÞ¼w0ðx1;x2Þþzw1ðx1;x2Þþz2w2ðx1;x2Þ;

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð4Þ

where H is the Heaviside function defined by

Hðz% zkÞ ¼ 1 if z P zk;

Hðz% zkÞ ¼ 0 otherwise:

%
ð5Þ

In Eq. (4), ðu0;v0;w0Þ are the displacements of a point of the
middle surface while ðv1; h1Þ and ðu1; h2Þ are measurements of
rotations of the normal transverse fiber around the axis ð0; x1Þ
and ð0; x2Þ, respectively. The local functions !uðkÞloc ; û

ðkÞ
loc and !v ðkÞloc ; v̂

ðkÞ
loc

are based on Legendre polynomials and can be written as:

!uðkÞlocðx1; x2; zÞ ¼ fkuk
31ðx1; x2Þ þ % 1

2þ
3f2

k
2

# $
uk

32ðx1; x2Þ;

ûðkÞlocðx1; x2; zÞ ¼ % 3fk
2 þ

5f3
k

2

# $
uk

33ðx1; x2Þ;

8
><

>:

!v ðkÞlocðx1; x2; zÞ ¼ fkvk
31ðx1; x2Þ þ % 1

2þ
3f2

k
2

# $
vk

32ðx1; x2Þ;

v̂ ðkÞlocðx1; x2; zÞ ¼ % 3fk
2 þ

5f3
k

2

# $
vk

33ðx1; x2Þ:

8
><

>:

ð6Þ

A non-dimensional coordinate is introduced by: fk ¼ akz% bk, with
ak ¼ 2

zkþ1%zk
, bk ¼ zkþ1þzk

zkþ1%zk
. The coordinate system is precised in Fig. 2.

Finally, the functions ðw1;w2Þ permit to have a non-constant
deflection for the transverse fiber and allow to have non zero trans-
verse normal strain. Furthermore, the Poisson or thickness locking
is avoided assuming an order two for the transverse displacement,
see the work of Carrera and Brischetto [30].

In the context of the sinus model, we have:

f ðzÞ ¼ h
p sin

pz
h
: ð7Þ

It must be noticed that the classical homogeneous sinus model [24]
can be recovered from Eq. (4) assuming w0;1 ¼ %u1;w0;2 ¼ %v1 on
the one hand, and neglecting unknown functions w1;w2 and the lo-
cal thickness functions !uðkÞloc ; û

ðkÞ
loc ; !v ðkÞloc and v̂ ðkÞloc , on the other hand. The

choice of the sine function can be justified from the three-dimen-
sional point of view, using the work of Cheng [31]. As it can be seen
in Polit and Touratier [21], a sine term appears in the solution of the
shear equation (see Eq. (7) in [21]). Therefore, the kinematics pro-
posed can be seen as an approximation of the exact three-dimen-
sional solution. Furthermore, the sine function has an infinite
radius of convergence and its Taylor expansion includes not only
the third order terms but all the odd terms.

At this stage, 6# NC þ 9 generalized displacements are in-
cluded in Eqs. (4)–(6). In the following, the number of unknown
parameters is reduced through some relations issued from:

! lateral boundary conditions at top and bottom of the plate,
! interlaminar continuity conditions (displacements, transverse

shear stresses).

2.2.1. Continuity conditions and free conditions
From the displacement field Eq. (4), continuity conditions on

displacements and stresses must be imposed. For an interface layer
k 2 f2; . . . ;NCg, we have:

! the displacement continuity conditions as in Sze et al. [32] i.e.:

!uðkÞlocðx1; x2; zkÞ ¼ !uðk%1Þ
loc ðx1; x2; zkÞ k ¼ 2; . . . ;NC;

ûðkÞlocðx1; x2; zkÞ ¼ ûðk%1Þ
loc ðx1; x2; zkÞ k ¼ 2; . . . ;NC;

(
ð8Þ

Fig. 2. Transverse coordinate of laminated plate.



!v ðkÞlocðx1; x2; zkÞ ¼ !v ðk%1Þ
loc ðx1; x2; zkÞ k ¼ 2; . . . ;NC;

v̂ ðkÞlocðx1; x2; zkÞ ¼ v̂ ðk%1Þ
loc ðx1; x2; zkÞ k ¼ 2; . . . ;NC;

(
ð9Þ

! the transverse shear stresses continuity conditions between
two adjacent layers:

rðkÞ13 ðx1; x2; zþk Þ ¼ rðk%1Þ
13 ðx1; x2; z%k Þ k ¼ 2; . . . ;NC;

rðkÞ23 ðx1; x2; zþk Þ ¼ rðk%1Þ
23 ðx1; x2; z%k Þ k ¼ 2; . . . ;NC:

ð10Þ

This way, 6# ðNC % 1Þ conditions are imposed, which allows to
reduce the number of unknowns to 15 generalized displacements.

Free conditions of the transverse shear stresses on the upper
and lower surfaces must also be verified:

rð1Þ13 x1; x2; z ¼ %
h
2

& '
¼ 0 and rðNCÞ

13 x1; x2; z ¼
h
2

& '
¼ 0;

rð1Þ23 x1; x2; z ¼ %
h
2

& '
¼ 0 and rðNCÞ

23 x1; x2; z ¼
h
2

& '
¼ 0:

ð11Þ

The number of generalized displacements is reduced to 11, and
is independent of the number of layers. The herewith unknowns
are u0; u1; h2;v0;v1; h1;w0;w1;w2;u1

31 and v1
31. The resulting model

will be denoted SinRefc-11p.

2.3. The strain

From the displacement field Eq. (4) and the physical consider-
ations given in Eqs. (8)–(11), the strain components for a cross-
ply composite plate are deduced as:

e11 ¼ u0;1 þ zu1;1 þ f ðzÞ þ SubðzÞ
( )

w0;11 þ h2;1ð Þ
þSudðzÞu1

31 ;1 þ SukðzÞw1 ;11 þ SulðzÞw2;11

þSugðzÞ w0;11 þ u1;1ð Þ;

e22 ¼ v0;2 þ zv1;2 þ f ðzÞ þ SvbðzÞ
( )

w0;22 % h1;2
( )

þSvdðzÞv1
31 ;2 þ SvkðzÞw1;22 þ SvlðzÞw2;22

þSvgðzÞ w0;22 þ v1;2ð Þ;

e33 ¼ w1 þ 2zw2;

c23 ¼ f ðzÞ;3 þ SvbðzÞ;3
# $

w0;2 % h1ð Þ þ SvdðzÞ;3v1
31

þ 1þ SvgðzÞ;3
# $

w0;2 þ v1ð Þ

þ zþ SvkðzÞ;3
# $

w1;2 þ z2 þ SvlðzÞ;3
# $

w2;2;

c13 ¼ f ðzÞ;3 þ SubðzÞ;3
# $

w0;1 þ h2ð Þ þ SudðzÞ;3u1
31

þ 1þ SugðzÞ;3
# $

w0;1 þ u1ð Þ

þ zþ SukðzÞ;3
# $

w1;1 þ z2 þ SulðzÞ;3
# $

w2;1;

c12 ¼ u0;2 þ v0;1 þ zðu1;2 þ v1;1Þ þ f ðzÞ þ SubðzÞ
( )

w0;12 þ h2;2ð Þ
þ f ðzÞ þ SvbðzÞ
( )

w0;12 % h1;1ð Þ þ SudðzÞu1
31 ;2 þ SvdðzÞv1

31 ;1

þ SukðzÞ þ SvkðzÞð Þw1 ;12 þ SulðzÞ þ SvlðzÞ
( )

w2;12

þSugðzÞ w0;12 þ u1;2ð Þ þ SvgðzÞ w0;12 þ v1;1ð Þ:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð12Þ

The expressions of the continuity functions Su#ðzÞ and Sv#ðzÞ are gi-
ven in Appendix A. Note that the expressions associated with the
angle-ply plate are not given here for brevity reason.

2.4. The matrix expression for displacement and strain

Matrix notation for the displacement field defined in Eq. (4) can
be written using a generalized displacement vector as:

u½ &T ¼ FuðzÞ½ & Eu½ & with

Eu½ &T ¼ u0
..
.

v0
..
.

w0 w0;1 w0;2
..
.

h1
..
.

h2
..
.

u1
..
.

v1
..
.

h

w1 w1;1 w1;2
..
.

w2 w2;1 w2;2
..
.

u1
31

..

.
v1

31

i

u½ &T ¼ U1 U2 U3½ &;

ð13Þ

where FuðzÞ½ & depends on the normal coordinate z and is given in
Appendix A.

In a similar manner, from Eq. (12), the following expression can
be deduced for the strain field:

e½ &T¼ FeðzÞ½ & Ee½ & with

Ee½ &T¼ u0;1 u0;2
..
.

v0;1 v0;2
..
.

w0 w0;1 w0;2 w0;11 w0;12 w0;22
..
.

h

h1 h1;1 h1;2
..
.

h2 h2;1 h2;2
..
.

u1 u1;1 u1;2
..
.

v1 v1;1 v1;2
..
.

w1 w1;1 w1;2 w1;11 w1;12 w1;22
..
.

w2 w2;1 w2;2 w2;11 w2;12 w2;22
..
.

u1
31 u1

31 ;1 u1
31 ;2

..

.
v1

31 v1
31 ;1 v1

31 ;2

*

ð14Þ

where ½FeðzÞ& is deduced from Eqs. (13) and (A.3), and is not given
for brevity reason.

2.5. The matrix expression of the weak form of the boundary value
problem

Using the constitutive relation given in Eq. (1), the matrix
expression for the displacement and strain fields, Eqs. (13) and
(14), the following expressions are obtained for each term of Eq.
(3):
Z

V
eð~u)Þ½ &T rð~uÞ½ &dV ¼

Z

V
E)e
! "T FeðzÞ½ &T C½ & FeðzÞ½ & Ee½ &dV;

Z

V
u)½ &T f½ &dV þ

Z

@VF

u)½ &T F½ &d@V

¼
Z

V
E)u
! "T FuðzÞ½ &T f½ &dV þ

Z

@VF

E)u
! "T FuðzÞ½ &T F½ &d@V;

ð15Þ

where ½C& stands for the three dimensional stiffness coefficient, see
Eq. (1). In these last expressions, the integration throughout the
thickness can be explicitly carried out taking into account the stack-
ing sequence of the laminae. The integration with respect to the in-
plane domain X is kept:
Z

V
eð~u)Þ½ &T rð~uÞ½ &dV ¼

Z

X
E)e
! "T kee½ & Ee½ &dX

with kee½ & ¼
Z h=2

%h=2
FeðzÞ½ &T C½ & FeðzÞ½ &dz;

Z

V
u)½ &T f½ &dV ¼

Z

X
E)u
! "T bu½ & f½ &dV

with bu½ & ¼
Z h=2

%h=2
FuðzÞ½ &T dz;

ð16Þ

where the matrix kee½ & can be viewed as the integration over the
thickness of the constitutive relations.

Eq. (16) is a good starting point for finite element approxima-
tions of the displacement. The generalized displacement and strain
vectors defined by Eu½ & and Ee½ &, see respectively Eqs. (13) and (14),
must be approximated and this will be described in the next
section.



3. The finite element approximations: the triangular six-node
FE

This section is dedicated to the finite element approximations of
the generalized displacement and strain vectors ( Eu½ &; Ee½ &) defined
in the previous section.

3.1. Elementary stiffness matrix

The elementary stiffness matrix Ke½ & is deduced from Eq. (16) at
the elementary level as:
Z

Xe

E) h
ee

h iT
kee½ & Eh

ee

h i
dXe ¼ Q )e

! "T Ke½ & Q e½ &; ð17Þ

where Xe refers to one element of the triangulation of the multilay-
ered structure [Xe. The superscript h indicates the finite element
approximation. ½Qe& is the elementary vector of dofs in global
coordinates.

From Eq. (12), the unknowns associated with the deflection
wh

0;w
h
1;w

h
2 must be at least C1-continuous functions. Generalized

membrane displacements uh
0 and vh

0, generalized shear rotation
hh
a, and uh

1;vh
1 and generalized refined functions (u1 h

31 ;v1 h
31 ) can be

therefore C0-continuous. In order to develop a conform FE approx-
imation, we choose the Argyris interpolation for the transverse dis-
placements and the Ganev interpolation for the other generalized
displacements. Since the Argyris interpolation is a polynomia of
the fifth order and the Ganev interpolation of the fourth order,
we can immediately conclude that the transverse shear locking is
avoided as the field compatibility is automatically ensured for
the transverse shear strains, see for example [33]. Note that the
Argyris interpolation is a C1 FE approximation, and the Ganev
interpolation involves a semi-C1 continuity. Due to the very long
expressions for these interpolations, the reader is referred to either
the original papers of Argyris et al. [34] and Ganev and Dimitrov
[35], or to a more recent book of Bernadou [36].

Figs. 3 and 4 show the local degrees of freedom for the approx-
imations of wh

0;w
h
1;w

h
2 and uh

a ; vh
a ; hh

a ; u1 h
31 ;v1 h

31 respectively. The
discrete form of the vector Eh

ee

h i
(idem for ½E)hee

& adding an asterisk
superscript on the degrees of freedom) may therefore be written
as:

Eh
ee

h i
¼ Kk½ & Tke½ & De½ & Q e½ &; ð18Þ

where De½ & is a geometric transformation matrix between local and
global degrees of freedom. This vector contains the degrees of free-
dom of the three corner nodes and of the three mid-side nodes
(which are not the same):

! for a corner node, we have the following degrees of freedom:

u0 u0;1 u0;2 v0 v0;1 v0;2

w0 w0;1 w0;2 w0;11 w0;22 w0;12

h1 h1;1 h1;2 h2 h2;1 h2;2

u1 u1;1 u1;2 v1 v1;1 v1;2

w1 w1;1 w1;2 w1;11 w1;22 w1;12

w2 w2;1 w2;2 w2;11 w2;22 w2;12

u1
31 u1

31 ;1 u1
31 ;2 v1

31 v1
31 ;1 v1

31 ;2

; ð19Þ

! while, for a mid-side node, they are:

u0 u0;n v0 v0;n

w0;n

h1 h1;n h2 h2;n

u1 u1;n v1 v1;n

w1;n w2;n

u1
31 u1

31;n v1
31 v1

31;n

; ð20Þ

where p;n is the derivative with respect to the normal direction of
the edge. Finally, in Eq. (18), the matrix ½Kk& is expressed as a func-
tion of barycentric coordinates, while ½Tke& only contains geometric
constants, so that the product ½Kk&½Tke& may be seen as the interpo-
lations with respect to the local degrees of freedom (see Figs. 3 and
4) for the components of the vector ½Eh

ee
& (½E)hee

&).

From Eqs. (17) and (18), the elementary stiffness matrix can be
written as:

Ke½ & ¼
Z

Xe

½De&T ½Tke&T ½Kk&T kee½ &½Kk&½Tke&½De&dXe: ð21Þ

The matrices ½De&; ½Tke&; ½Kk& are detailed in Bernadou [36].
The exact numerical integration rule for the ½Ke& matrix is given

in Dunavant [37] and requires 16 points for the shear part of this
stiffness matrix. The same rule has been used for membrane, bend-
ing and refined bending parts.

The expression of the load vectors is classical and not precised
here for the sake of brevity. For more details, the reader can refer
to the work of Polit and Touratier [21].

Fig. 3. The set RK of local dof of a function p for an Argyris triangle.

Fig. 4. The set RK of local dof of a function p for a Ganev triangle.

Table 1
Conditions on dofs for the two interpolations.

Edge Interpolation p p;1 p;2 p;n p;11 p;22 p;12

x1 = cst GANEV 0 1 0 1 – – –
ARGYRIS 0 1 0 1 1 0 1

x2 ¼ cst GANEV 0 0 1 1 – – –
ARGYRIS 0 0 1 1 0 1 1

0: Fixed; 1: free; –: unavailable.



3.2. Boundary conditions

The boundary conditions to be satisfied on the generalized dis-
placements for a simply supported rectangular plate of plane-form
dimensions a and b are given by:

! edges x1 ¼ 0 and x1 ¼ a for all x2 2 ½0; b&:

vh
0 ¼ vh

1 ¼ wh
0 ¼ hh

1 ¼ wh
1 ¼ wh

2 ¼ v1 h
31 ¼ 0:

! edge x2 ¼ 0 and x2 ¼ b for all x1 2 ½0; a&:

uh
0 ¼ uh

1 ¼ wh
0 ¼ hh

2 ¼ wh
1 ¼ wh

2 ¼ u1 h
31 ¼ 0:

These conditions on the generalized displacements depending
of the type of interpolation can be deduced on the dofs using
Table 1. Note that these boundary conditions can be managed
automatically using a reference number.

From this table, the generalized displacements concerned by
the analytical boundary conditions specified above, and the
degrees of freedom for each node (see (19) and (20)), it is easy to
obtain all the degrees of freedom that must be nil.

4. The numerical results

In this section, several static tests available in open literature
are presented for validating our finite element and evaluating its
efficiency. The properties of the FE are assessed. The results are dis-
cussed for mechanical and thermal loads.

The comparisons will involve simpler refined kinematics mod-
els with the same FE approximation based on Argyris–Ganev inter-
polations [25,33,38]:

Sin Sinus model with five unknown functions.
Sinc Sinus model with interlayer continuity conditions ensured
by a Heaviside function. Five unknown functions are used.
FSDT Reissner–Mindlin model where the classical shear correc-
tion factor 5/6 is used.
CLT Kirchhoff–Love model.

Furthermore, the reference is also made to the systematic work
of Carrera and his ‘‘Carrera Unified Formulation’’ (CUF), see
[39–41]:

Fig. 5. The meshes used (N = 1, 2, 4) for numerical evaluations.

Table 2
Convergence study for simply supported three-layered square plate.

S Nb dofs SinRefc-11p [19] Exact

N = 1 N = 2 N = 4 N = 8 N = 8 N = 16 N = 20
121 440 1672 6512 1186 4802 7522

2 U3 5.1098 (0.3%) 5.1116 (0.3%) 5.1117 (0.3%) 5.1117 (0.3%) – – – 5.0954
!r13 0.1637 (0.1%) 0.1636 (0.2%) 0.1636 (0.2%) 0.1636 (0.2%) 0.1600 (2.4%) 0.1631 (0.5%) 0.1639 (0.1%) 0.1640
!r23 0.2656 (2.5%) 0.2655 (2.5%) 0.2655 (2.5%) 0.2655 (2.5%) 0.2791 (7.7%) 0.2817 (8.7%) 0.2820 (8.8%) 0.2591
!r33 0.4293 (4.5%) 0.4387 (2.4%) 0.4410 (1.9%) 0.4411 (1.8%) 0.5194 (15.6%) 0.4774 (6.3%) 0.4516 (0.5%) 0.4493

4 U3 2.007 (0.0%) 2.008 (0.1%) 2.008 (0.1%) 2.008 (0.1%) – – – 2.006
!r13 0.2558 (0.0%) 0.2556 (0.1%) 0.2556 (0.1%) 0.2556 (0.1%) 0.2515 (1.7%) 0.2557 (0.1%) 0.2562 (0.1%) 0.2559
!r23 0.2199 (1.2%) 0.2190 (0.8%) 0.2190 (0.8%) 0.2190 (0.8%) 0.2180 (0.4%) 0.2185 (0.6%) 0.2184 (0.6%) 0.2172
!r33 0.4666 (5.3%) 0.4800 (2.6%) 0.4832 (1.9%) 0.4834 (1.9%) 0.5530 (12.3%) 0.5373 (9.1%) 0.5111 (3.8%) 0.4927

10 U3 0.7528 (0.0%) 0.7531 (0.0%) 0.7531 (0.0%) 0.7531 (0.0%) – – – 0.7530
!r13 0.3577 (0.1%) 0.3572 (0.0%) 0.3573 (0.0%) 0.3573 (0.0%) 0.3471 (2.9%) 0.3562 (0.3%) 0.3574 (0.0%) 0.3573
!r23 0.1249 (1.7%) 0.1232 (0.4%) 0.1232 (0.4%) 0.1232 (0.4%) 0.1227 (0.1%) 0.1220 (0.7%) 0.1215 (1.1%) 0.1228
!r33 0.4747 (5.0%) 0.4910 (1.7%) 0.4964 (0.6%) 0.4968 (0.5%) 0.5125 (2.6%) 0.5191 (3.9%) 0.5068 (1.5%) 0.4994

20 U3 0.5163 (0.0%) 0.5164 (0.0%) 0.5164 (0.0%) 0.5164 (0.0%) – – – 0.5164
!r13 0.3858 (0.3%) 0.3846 (0.0%) 0.3846 (0.0%) 0.3846 (0.0%) 0.3662 (4.8%) 0.3793 (1.4%) 0.3818 (0.7%) 0.3846
!r23 0.0971 (3.5%) 0.0942 (0.4%) 0.0941 (0.4%) 0.0941 (0.4%) 0.0936 (0.2%) 0.0945 (0.7%) 0.0942 (0.4%) 0.0938
!r33 0.4728 (5.4%) 0.4879 (2.4%) 0.4980 (0.4%) 0.4988 (0.2%) – – – 0.4999

50 U3 0.4450 (0.0%) 0.4451 (0.0%) 0.4451 (0.0%) 0.4451 (0.0%) – – – 0.4451
!r13 0.3984 (1.3%) 0.3935 (0.0%) 0.3934 (0.0%) 0.3934 (0.0%) 0.3534 (10.1%) 0.3793 (3.5%) 0.3828 (2.6%) 0.3934
!r23 0.0901 (7.0%) 0.0847 (0.5%) 0.0846 (0.4%) 0.0845 (0.4%) 0.0897 (6.5%) 0.0851 (1.1%) 0.0850 (1.0%) 0.0842
!r33 0.4677 (6.5%) 0.4720 (5.6%) 0.4964 (0.7%) 0.4992 (0.2%) – – – 0.5000

100 U3 0.4347 (0.0%) 0.4347 (0.0%) 0.4347 (0.0%) 0.4347 (0.0%) – – – 0.4347
!r13 0.4050 (2.6%) 0.3953 (0.2%) 0.3947 (0.0%) 0.3947 (0.0%) – – – 0.3947
!r23 0.0898 (8.5%) 0.0832 (0.5%) 0.0831 (0.4%) 0.0831 (0.4%) – – – 0.0828
!r33 0.4662 (6.8%) 0.4546 (9.1%) 0.4925 (1.5%) 0.4988 (0.2%) – – – 0.5000



ED3 Equivalent single layer and displacement approach, each
component is expanded until the third order; twelve unknown
functions are used in this kinematic.
EDZ3 Equivalent single layer and displacement approach, each
component is expanded until the second order and this expan-
sion is extended by the Murakami zig-zag function; twelve
unknown functions are used in this kinematic.
LD2 Layerwise approach and displacement approach, each com-
ponent is expanded until the second order in each layer;
3ð2NC þ 1Þ unknown functions are used in this kinematic.

The meshes and the notations are illustrated in Fig. 5.

4.1. Convergence study

Before proceeding to the detailed analysis, numerical computa-
tions are carried out to establish the convergence properties and
the effect of aspect ratio (shear locking).

The test concerns simply supported very thick and thin
symmetric composite plates and is issued from Pagano [22]. The
following data are considered:

Geometry: composite cross-ply plate (0"/90"/0"), a = b and
length-to-thickness ratio from S = 2 to 100 (S ¼ a

h); a quarter of
the plate is meshed. All layers have the same thickness.
Boundary conditions: simply supported plate subjected
to bi-sinusoidal pressure on the top surface
qðx1; x2; z ¼ h=2Þ ¼ q0 sin px1

a sin px2
b .

Material properties:

EL ¼ 172:4 GPa; ET ¼ 6:895 GPa; GLT ¼ 3:448 GPa;
GTT ¼ 1:379 GPa; mLT ¼ mTT ¼ 0:25;

where L refers to the fiber direction, T refers to the transverse
direction.

Results: displacements and stresses are made non-dimensional
according to

!U3 ¼ U3ða=2; b=2;0Þ100EL

q0hS4 ; !r13 ¼ r13ð0; b=2; 0Þ 1
q0S

;

!r23 ¼ r23ða=2;0; 0Þ 1
q0S

; !r33 ¼ r33ða=2; b=2;0Þ 1
q0
:

Table 2 gives the convergence of the SinRefc-11p model for the
transverse displacement, the transverse shear stresses and the

transverse normal stress for different length-to-thickness ratios.
The results from Zhen and Wanji [19] are also given for compari-
son. It must be noticed that the convergence rate is very high.
Based on progressive mesh refinement, a N = 4 mesh is adequate
to model very thick to thin laminated plates for a bending analysis.
The error rate is less than 2.5% regardless of the slenderness ratio.
The transverse normal stress is the most sensitive variable. More-
over, the present FE is very efficient using much less dofs compared
with the three-noded triangular element in Zhen and Wanji [19]. In
the latter approach, a C1 weak-continuity conditions in the inter-
element is satisfied. The maximum error rate is 8.8% (S ¼ 2) and
3.8% (S P 4) for N = 20.

Considering various values for aspect ratio, the normalized dis-
placement obtained at the center point of the plate is shown in
Fig. 6 for a fixed mesh with N = 2 along with the exact solution
of Pagano [22]. They are found to be in excellent agreement. It is
also inferred from Fig. 6 that the present element is free from shear
locking phenomenon as the element is developed using a field
compatibility approach.

4.2. Bending analysis of laminated composite plate

This test case proposed by Pagano [22] involves simply sup-
ported symmetric and anti-symmetric composite plates:

Geometry: rectangular ðb ¼ 3aÞ and square plate with length-
to-thickness ratios from S = 2 to S = 100. All layers have the
same thickness.
Boundary conditions: simply-supported plate subjected to bi-
sinusoidal load qðx1; x2Þ ¼ q0 sin px1

a sin px2
b .

Material properties: composite cross-ply plate (0"/90"/0") and
(0"/90") with same properties as in 4.1.
Mesh: N = 8 is used for the quarter of the plate.
Results: displacements and stresses are made non-dimensional
according to

!Ua ¼ Ua
EL

q0hS3 for
U1ð0; b=2; zÞ;
U2ða=2; 0; zÞ;

%

!U3 ¼ U3ða=2; b=2; zÞ100EL

q0hS4 ;

!rab ¼ rab
1

q0S2 for
r11ða=2; a=2; zÞ;r22ða=2; a=2; zÞ;
r12ð0;0; zÞ;

%

!ra3 ¼ ra3
1

q0S
for

r13ð0; b=2; zÞ;
r23ða=2; 0; zÞ;

%

!r33 ¼ r33ða=2; b=2; zÞ 1
q0
:

Reference values are the three-dimensional exact elasticity
results given by Pagano [22].

The two-layer case (0"/90") is first presented for a rectangular
plate. The numerical results for deflection, in-plane displacements,
transverse shear stresses, and in-plane stresses are given in Table 3
with respect to span-to-thickness ratio: from S = 2 (very thick) to
S = 100 (very thin). The error rate for the refined model, sinus mod-
el with continuity, sinus model without continuity and the classi-
cal FSDT and CLT are also compared in this table. The refined sinus
approach gives more precise results than the previous sinus mod-
els (Sin and Sinc) and classical ones. The error is less than 1.3% for
the displacements, and less than 2.5% for the stresses with S P 4.
Even for the very thick case, the accuracy of the results remains
satisfactory.

100 1050

1

2

3

4

5

6

 S

SinRefc−11p
exact

Fig. 6. Variation of the non-dimensional transverse displacement with respect to
aspect ratio S – !U3 ¼ U3ða=2; b=2; 0Þ 100EL

q0hS4 – three layers (0"/90"/0"); mesh N = 2;
SinRefc-11p model.



For S P 20, all the models give good results only for displace-
ments and in-plane stresses. The improvement of the accuracy of
the results for the SinRefc-11p is particularly significant for the
transverses shear stresses regardless of the span-to-thickness ratio.
The results computed from the constitutive law are in good agree-

ment with the exact solution. The maximum error rate is less than
2.2% for S P 4.

The variation of normalized in-plane, transverse shear and nor-
mal stresses, and in-plane and transverse displacements through
the thickness (S ¼ 4) are shown in Figs. 7–9 for further comparison.

Table 3
Results for simply supported rectangular plate – b ¼ 3a – 2 layers.

S U1ðh=2Þ U2ð%h=2Þ U3ð0Þ !r11ð%h=2Þ !r22ðh=2Þ !r12ðh=2Þ !r13max !r23max

2 SinRefc-
11p

%0.0851 (0.1%) 0.0387 (0.7%) 9.8771 (1.3%) %2.2521 (12.9%) 0.6833 (3.2%) %0.0755 (0.1%) 0.5584 (4.2%) 0.1130 (0.6%)

Sinc %0.0358 (57.9%) 0.0290 (24.8%) 7.7834 (22.2%) %2.8053 (40.6%) 0.4803 (27.5%) %0.0458 (39.3%) 0.3588 (33.1%) 0.0732 (35.6%)
Sin %0.0588 (30.9%) 0.0357 (7.3%) 8.6475 (13.6%) %2.8980 (45.3%) 0.5164 (22.0%) %0.0589 (21.9%) 0.5536 (3.3%) 0.1162 (2.2%)
FSDT %0.0543 (36.2%) 0.0387 (0.6%) 10.4584 (4.5%) %1.5693 (21.3%) 0.4535 (31.5%) %0.0530 (29.7%) 0.4241 (20.9%) 0.0919 (19.2%)
CLT %0.0566 (33.5%) 0.0196 (49.0%) 2.4628 (75.4%) %1.6411 (17.7%) 0.2065 (68.8%) %0.0393 (47.9%) 0.0000 (100.0%) 0.0000 (100.0%)
Exact %0.0851 0.0385 10.0073 %1.9951 0.6620 %0.0755 0.5361 0.1137

4 SinRefc-
11p

%0.0656 (0.2%) 0.0271 (0.1%) 4.3820 (0.3%) %1.7856 (2.5%) 0.3364 (1.7%) %0.0499 (0.1%) 0.6492 (1.4%) 0.0776 (1.9%)

Sinc %0.0506 (22.8%) 0.0238 (12.2%) 3.9500 (10.1%) %1.9625 (12.6%) 0.2966 (10.3%) %0.0418 (16.0%) 0.4034 (37.0%) 0.0648 (14.9%)
Sin %0.0569 (13.0%) 0.0258 (4.7%) 4.1328 (5.9%) %1.9751 (13.3%) 0.3093 (6.5%) %0.0456 (8.4%) 0.6018 (6.0%) 0.0931 (22.2%)
FSDT %0.0557 (15.0%) 0.0271 (0.2%) 4.4873 (2.1%) %1.6129 (7.5%) 0.3035 (8.2%) %0.0447 (10.3%) 0.4326 (32.4%) 0.0665 (12.7%)
CLT %0.0566 (13.6%) 0.0196 (27.5%) 2.4628 (43.9%) %1.6411 (5.8%) 0.2065 (37.5%) %0.0393 (21.1%) 0.0000 (100.0%) 0.0000 (100.0%)
Exact %0.0655 0.0271 4.3931 %1.7428 0.3306 %0.0498 0.6401 0.0762

10 SinRefc-
11p

%0.0583 (0.1%) 0.0211 (0.0%) 2.7754 (0.0%) %1.6624 (0.3%) 0.2286 (0.4%) %0.0412 (0.1%) 0.6921 (0.3%) 0.0612 (2.1%)

Sinc %0.0556 (4.6%) 0.0204 (2.9%) 2.7092 (2.4%) %1.6940 (2.2%) 0.2226 (2.2%) %0.0398 (3.4%) 0.4190 (39.3%) 0.0579 (3.4%)
Sin %0.0566 (2.8%) 0.0208 (1.3%) 2.7367 (1.4%) %1.6954 (2.3%) 0.2250 (1.2%) %0.0404 (1.8%) 0.6190 (10.3%) 0.0787 (31.3%)
FSDT %0.0564 (3.2%) 0.0210 (0.0%) 2.7889 (0.5%) %1.6357 (1.3%) 0.2250 (1.2%) %0.0403 (2.1%) 0.4370 (36.7%) 0.0532 (11.2%)
CLT %0.0566 (2.9%) 0.0196 (6.8%) 2.4628 (11.3%) %1.6411 (1.0%) 0.2065 (9.3%) %0.0393 (4.6%) 0.0000 (100.0%) 0.0000 (100.0%)
Exact %0.0583 0.0211 2.7760 %1.6569 0.2277 %0.0412 0.6903 0.0600

20 SinRefc-
11p

%0.0570 (0.0%) 0.0200 (0.0%) 2.5410 (0.0%) %1.6469 (0.1%) 0.2120 (0.0%) %0.0398 (0.0%) 0.6996 (0.1%) 0.0584 (2.2%)

Sinc %0.0563 (1.2%) 0.0198 (0.8%) 2.5248 (0.7%) %1.6544 (0.6%) 0.2106 (0.6%) %0.0394 (0.9%) 0.4214 (39.7%) 0.0566 (1.0%)
Sin %0.0566 (0.7%) 0.0199 (0.4%) 2.5315 (0.4%) %1.6547 (0.6%) 0.2112 (0.3%) %0.0396 (0.5%) 0.6217 (11.1%) 0.0761 (33.2%)
FSDT %0.0566 (0.8%) 0.0200 (0.0%) 2.5444 (0.1%) %1.6397 (0.3%) 0.2113 (0.3%) %0.0396 (0.5%) 0.4378 (37.4%) 0.0509 (11.0%)
CLT %0.0566 (0.8%) 0.0196 (1.8%) 2.4628 (3.1%) %1.6411 (0.2%) 0.2065 (2.5%) %0.0393 (1.2%) 0.0000 (100.0%) 0.0000 (100.0%)
Exact %0.0570 0.0200 2.5413 %1.6450 0.2119 %0.0398 0.6991 0.0572

40 SinRefc-
11p

%0.0567 (0.0%) 0.0197 (0.0%) 2.4822 (0.0%) %1.6431 (0.1%) 0.2077 (0.1%) %0.0394 (0.0%) 0.7016 (0.0%) 0.0577 (2.2%)

Sinc %0.0565 (0.3%) 0.0197 (0.2%) 2.4783 (0.2%) %1.6444 (0.1%) 0.2075 (0.2%) %0.0394 (0.2%) 0.4220 (39.8%) 0.0563 (0.3%)
Sin %0.0566 (0.2%) 0.0197 (0.1%) 2.4800 (0.1%) %1.6445 (0.1%) 0.2077 (0.1%) %0.0394 (0.1%) 0.6224 (11.3%) 0.0755 (33.7%)
FSDT %0.0566 (0.2%) 0.0197 (0.0%) 2.4833 (0.0%) %1.6407 (0.1%) 0.2077 (0.1%) %0.0394 (0.1%) 0.4380 (37.6%) 0.0503 (10.9%)
CLT %0.0566 (0.2%) 0.0196 (0.5%) 2.4628 (0.8%) %1.6411 (0.1%) 0.2065 (0.7%) %0.0393 (0.3%) 0.0000 (100.0%) 0.0000 (100.0%)
Exact %0.0567 0.0197 2.4824 %1.6421 0.2079 %0.0394 0.7014 0.0564

100 SinRefc-
11p

%0.0566 (0.0%) 0.0196 (0.0%) 2.4657 (0.0%) %1.6421 (0.0%) 0.2065 (0.1%) %0.0393 (0.0%) 0.7022 (0.0%) 0.0574 (2.2%)

Sinc %0.0566 (0.0%) 0.0196 (0.0%) 2.4653 (0.0%) %1.6416 (0.0%) 0.2067 (0.0%) %0.0393 (0.0%) 0.4222 (39.9%) 0.0562 (0.1%)
Sin %0.0566 (0.0%) 0.0196 (0.0%) 2.4656 (0.0%) %1.6417 (0.0%) 0.2067 (0.0%) %0.0393 (0.0%) 0.6226 (11.3%) 0.0753 (33.9%)
FSDT %0.0566 (0.0%) 0.0196 (0.0%) 2.4661 (0.0%) %1.6411 (0.0%) 0.2067 (0.0%) %0.0393 (0.0%) 0.4380 (37.6%) 0.0501 (10.9%)
CLT %0.0566 (0.0%) 0.0196 (0.1%) 2.4628 (0.1%) %1.6411 (0.0%) 0.2065 (0.1%) %0.0393 (0.1%) 0.0000 (100.0%) 0.0000 (100.0%)
Exact %0.0566 0.0196 2.4659 %1.6413 0.2067 %0.0393 0.7020 0.0562
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Fig. 7. Distribution of !r11 (left), !r22 (middle) and !r12 (right) along the thickness – S = 4–2 layers – SinRefc-11p.



It is seen from these figures that the new element performs very
well for thick plate, which is not the case for the other models
(see Table 3).

As far as the three-layer case is concerned, the results are
shown in Table 4 for a rectangular plate. The SinRefc-11p model
yields again the more accurate results. The maximum error rate re-
mains less than 1.2% for both the displacements and the stresses
for S P 4. The main improvement is about the transverse shear
stresses. For the displacements, this improvement increases when
S decreases. CLT and FSDT models fail to predict good results for
S 6 10 and S 6 40 respectively, and the out-of-plane stresses are
never well-estimated.

A comparison is also given in Table 5 with three well-estab-
lished models issued from the Carrera’s unified formulation. In this
table, H refers to the use of Hooke’s law and E Eq means that the
transverse shear stresses are calculated by integrating the equilib-
rium equations. We notice that the present model is better than an
ESL model with 12 unknown functions (ED3). The accuracy of the
SinRefc-11p and the second-order LW approach is similar, but with
a different computational cost. The importance of the zig-zag ef-
fect, via Murakami’s function for EDZ3 or using our approach, is
highlighted. Note that the process to evaluate the transverse shear
stresses is different between the four approaches, and our FE needs
no post-processing calculation.

Figs. 10–12 show the distribution of the displacements and the
stresses through the thickness for S ¼ 4. These results show that
the present element yields very satisfactory distributions.

For a square plate with three layers (Table 6), the same com-
ments can be made. The maximum error rate of the present FE is
1% for S P 4 proving the accuracy of the approach.

4.3. Bending analysis of a sandwich plate

A sandwich plate is now analyzed. The test is described as
follows:

Geometry: square sandwich plate with length-to-thickness
ratios from S = 2 to S = 100. The thickness of each face sheet is h

10.
Boundary conditions: simply-supported plate subjected to bi-
sinusoidal load qðx1; x2Þ ¼ q0 sin px1

a sin px2
b .

Material properties: the material of the face sheet is the same
as in 4.1.
The core material is transversely isotropic with respect to z and
is characterized by:
Exx ¼ Eyy ¼ 0:04 GPa, Ezz ¼ 0:5 GPa, Gxz ¼ Gyz ¼ 0:06 GPa,
Gxy ¼ 0:016 GPa, mxz ¼ myz ¼ 0:02; mxy ¼ 0:25.
Mesh: N = 8 is used for the quarter of the plate.
Results: displacements and stresses are made non-dimensional
according to

!Ua ¼ Ua
EL

q0hS3 for
U1ð0; b=2; zÞ
U2ða=2;0; zÞ

%

!U3 ¼ U3ða=2; b=2; zÞ100EL

q0hS4 ;

!rab ¼ rab
1

q0S2 for
r11ða=2; a=2; zÞ; r22ða=2; a=2; zÞ;
r12ð0;0; zÞ;

%

!ra3 ¼ ra3
1

q0S
for

r13ð0; b=2; zÞ;
r23ða=2; 0; zÞ;

%

!r33 ¼ r33ða=2; b=2; zÞ 1
q0
:

Reference values are the three-dimensional exact elasticity
results given by Pagano [22].

The results are summarized in Table 7 and the distribution of
the mechanical quantities through the thickness are shown in
Figs. 13–15. The SinRefc-11p is also suitable to model very thick
to thin sandwich structures. For S P 4, the error rate remains less
than 3.3 % for the stresses and 0.6% for the displacements. The
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Fig. 8. distribution of !r13 (left), !r23 (middle) and !r33 (right) along the thickness – S = 4–2 layers – SinRefc-11p.
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Fig. 9. distribution of U1 (left), U2 (middle), U3 (right) along the thickness – S = 4–2 layers – SinRefc-11p.



results of the Sinus model with continuity are better than those of
the original Sin model. As expected, the validity of the classical
models (FSDT, CLT) is limited to the thin plate only for displace-
ments and in-plane stresses.

A comparison with the three models issued from CUF is given in
Table 8. The refined Sinus model is more accurate and efficient
(lower computational cost than the CUF models presented in this
table), including with respect to the LW approach with a 2nd order
expansion.

4.4. Thermo-mechanical results

Only the present FE is now evaluated for the thermo-mechani-
cal coupling as the transverse normal stress is needed for a correct
modeling of this coupling [20]. The test is described below:

Geometry: square plate with length-to-thickness ratios from
S = 4 to S = 100. All layers have the same thickness.

Boundary conditions: simply-supported plate subjected to a
bi-sinusoidal temperature field Tðx1; x2; zÞ ¼ T0

2z
h sin px1

a sin px2
b

(linear temperature profile across the thickness).
Material properties: composite cross-ply plate (0"/90"/0") and
(0"/90") with the same properties of 4.1 and aT ¼ 1125aL,
where aL;aT are the thermal expansion coefficients in the fiber
and transverse direction, respectively.
Mesh: N = 8 is used for the quarter of the plate.
Results: displacements and stresses are made non-dimensional
according to

!Ua ¼Ua
1

aLT0hS
for

U1ð0;b=2;zÞ
U2ða=2;0;zÞ

%
!U3 ¼U3ða=2;b=2;zÞ 1

aLT0hS2 ;

!rab ¼rab
1

ETaLT0
for

r11ða=2;a=2;zÞ;r22ða=2;a=2;zÞ;r12ð0;0;zÞ;
r13ð0;b=2;zÞ;r23ða=2;0;zÞ;r33ða=2;b=2;zÞ:

%

Reference values are the three-dimensional exact elasticity
results given by Bhaskar et al. [23].

Table 4
Results for simply supported rectangular plate – b ¼ 3a – 3 layers.

S U1ðh=2Þ U2ð%h=2Þ U3ð0Þ !r11ðh=2Þ !r22ð%h=6Þ !r12ðh=2Þ !r13(0) !r23(0)

2 SinRefc-11p %0.0284 (9.0%) 0.0285 (1.8%) 8.1500 (0.2%) 2.3241 (9.0%) %0.2705 (1.0%) %0.0567 (0.6%) 0.2564 (0.3%) 0.0670 (0.3%)
Sinc %0.0280 (7.8%) 0.0226

(19.6%)
6.4696
(20.8%)

2.2129 (3.7%) %0.1893
(29.3%)

%0.0501
(11.1%)

0.2531 (1.6%) 0.0469 (29.7%)

Sin %0.0269 (3.4%) 0.0297 (6.0%) 7.7796 (4.7%) 2.1256 (0.4%) %0.2067
(22.8%)

%0.0608 (7.9%) 0.2395 (6.8%) 0.0690 (3.4%)

FSDT %0.0075
(71.3%)

0.0249
(11.3%)

7.8184 (4.3%) 0.5940
(72.2%)

%0.2195
(18.0%)

%0.0430
(23.8%)

0.1538 (40.2%) 0.0536 (19.8%)

CLT %0.0079
(69.6%)

0.0026
(90.6%)

0.5034
(93.8%)

0.6232
(70.8%)

%0.0251
(90.6%)

%0.0083
(85.3%)

%0.0000
(100.0%)

%0.0000
(100.0%)

exact %0.0260 0.0281 8.1659 2.1331 %0.2677 %0.0564 0.2571 0.0668

4 SinRefc-11p %0.0143 (0.6%) 0.0133 (0.4%) 2.8227 (0.1%) 1.1541 (0.9%) %0.1182 (0.9%) %0.0268 (0.2%) 0.3508 (0.1%) 0.0333 (0.1%)
Sinc %0.0154 (7.9%) 0.0125 (5.6%) 2.7298 (3.2%) 1.2138 (6.1%) %0.1062

(10.9%)
%0.0277 (2.9%) 0.3784 (7.8%) 0.0299 (10.2%)

Sin %0.0135 (5.1%) 0.0125 (5.1%) 2.6658 (5.5%) 1.0672 (6.7%) %0.1034
(13.3%)

%0.0268 (0.4%) 0.2851 (18.8%) 0.0355 (6.3%)

FSDT %0.0078
(45.6%)

0.0104
(21.0%)

2.3625
(16.3%)

0.6130
(46.4%)

%0.0934
(21.7%)

%0.0205
(23.9%)

0.1566 (55.4%) 0.0257 (23.1%)

CLT %0.0079
(44.5%)

0.0026
(80.1%)

0.5034
(82.2%)

0.6233
(45.5%)

%0.0251
(78.9%)

%0.0083
(69.2%)

%0.0000
(100.0%)

%0.0000
(100.0%)

exact %0.0142 0.0132 2.8211 1.1443 %0.1193 %0.0269 0.3511 0.0334

10 SinRefc-11p %0.0092 (0.0%) 0.0047 (0.0%) 0.9190 (0.0%) 0.7269 (0.1%) %0.0430 (1.2%) %0.0120 (0.0%) 0.4201 (0.0%) 0.0152 (0.1%)
Sinc %0.0093 (1.4%) 0.0047 (1.8%) 0.9183 (0.1%) 0.7331 (1.0%) %0.0418 (3.8%) %0.0122 (1.8%) 0.4410 (5.0%) 0.0151 (1.1%)
Sin %0.0089 (3.4%) 0.0044 (6.4%) 0.8698 (5.3%) 0.6983 (3.8%) %0.0401 (7.8%) %0.0116 (3.0%) 0.3021 (28.1%) 0.0172 (13.1%)
FSDT %0.0079

(14.0%)
0.0040
(14.8%)

0.8030
(12.6%)

0.6214
(14.4%)

%0.0375
(13.9%)

%0.0105
(12.5%)

0.1578 (62.4%) 0.0133 (12.8%)

CLT %0.0079
(13.7%)

0.0026
(44.5%)

0.5034
(45.2%)

0.6233
(14.1%)

%0.0251
(42.2%)

%0.0083
(30.9%)

%0.0000
(100.0%)

%0.0000
(100.0%)

Exact %0.0092 0.0047 0.9189 0.7260 %0.0435 %0.0120 0.4201 0.0152

20 SinRefc-11p %0.0082 (0.0%) 0.0032 (0.0%) 0.6096 (0.0%) 0.6502 (0.0%) %0.0296 (0.8%) %0.0092 (0.0%) 0.4344 (0.0%) 0.0120 (0.1%)
Sinc %0.0083 (0.3%) 0.0032 (0.7%) 0.6096 (0.0%) 0.6514 (0.2%) %0.0295 (1.4%) %0.0093 (0.6%) 0.4517 (4.0%) 0.0122 (1.8%)
Sin %0.0081 (1.1%) 0.0031 (2.7%) 0.5958 (2.3%) 0.6422 (1.2%) %0.0290 (3.0%) %0.0091 (1.2%) 0.3047 (29.8%) 0.0141 (18.2%)
FSDT %0.0079 (4.1%) 0.0030 (5.9%) 0.5784 (5.1%) 0.6228 (4.2%) %0.0283 (5.4%) %0.0088 (4.3%) 0.1580 (63.6%) 0.0113 (5.8%)
CLT %0.0079 (4.0%) 0.0026

(17.2%)
0.5034
(17.4%)

0.6232 (4.1%) %0.0251
(15.9%)

%0.0083
(10.4%)

%0.0000
(100.0%)

%0.0000
(100.0%)

Exact %0.0082 0.0032 0.6095 0.6500 %0.0299 %0.0092 0.4344 0.0119

40 SinRefc-11p %0.0080 (0.0%) 0.0028 (0.0%) 0.5301 (0.0%) 0.6301 (0.0%) %0.0262 (0.6%) %0.0085 (0.0%) 0.4382 (0.0%) 0.0111 (0.1%)
Sinc %0.0080 (0.1%) 0.0028 (0.2%) 0.5301 (0.0%) 0.6303 (0.0%) %0.0262 (0.4%) %0.0085 (0.2%) 0.4545 (3.7%) 0.0114 (2.8%)
Sin %0.0080 (0.3%) 0.0028 (0.8%) 0.5265 (0.7%) 0.6280 (0.3%) %0.0261 (0.9%) %0.0085 (0.3%) 0.3054 (30.3%) 0.0133 (20.1%)
FSDT %0.0079 (1.1%) 0.0027 (1.7%) 0.5221 (1.5%) 0.6231 (1.1%) %0.0259 (1.6%) %0.0084 (1.2%) 0.1581 (63.9%) 0.0107 (3.1%)
CLT %0.0079 (1.0%) 0.0026 (5.0%) 0.5034 (5.0%) 0.6233 (1.1%) %0.0251 (4.6%) %0.0083 (2.8%) %0.0000

(100.0%)
%0.0000
(100.0%)

Exact %0.0080 0.0028 0.5301 0.6300 %0.0263 %0.0085 0.4382 0.0111

100 SinRefc-11p %0.0079 (0.0%) 0.0027 (0.0%) 0.5077 (0.0%) 0.6244 (0.0%) %0.0252 (0.6%) %0.0083 (0.0%) 0.4394 (0.0%) 0.0109 (0.2%)
Sinc %0.0079 (0.0%) 0.0027 (0.0%) 0.5077 (0.0%) 0.6244 (0.0%) %0.0253 (0.1%) %0.0083 (0.0%) 0.4553 (3.6%) 0.0112 (3.1%)
Sin %0.0079 (0.0%) 0.0027 (0.1%) 0.5071 (0.1%) 0.6240 (0.1%) %0.0253 (0.2%) %0.0083 (0.1%) 0.3056 (30.4%) 0.0131 (20.7%)
FSDT %0.0079 (0.2%) 0.0027 (0.3%) 0.5064 (0.3%) 0.6232 (0.2%) %0.0253 (0.3%) %0.0083 (0.2%) 0.1581 (64.0%) 0.0106 (2.3%)
CLT %0.0079 (0.2%) 0.0026 (0.8%) 0.5034 (0.8%) 0.6233 (0.2%) %0.0251 (0.8%) %0.0083 (0.5%) %0.0000

(100.0%)
%0.0000
(100.0%)

Exact %0.0079 0.0027 0.5077 0.6244 %0.0253 %0.0083 0.4393 0.0108



Table 5
Results for simply supported rectangular plate – b ¼ 3a – 3 layers.

S Nb fcts U3ð0Þ !r13ð0Þ

4 10 20 4 10 20

Exact 2.8211 0.9189 0.6095 0.3511 0.4201 0.4344
SinRefc-11p 11 2.8227 (0.1%) 0.9190 (0.0%) 0.6096 (0.0%) H 0.3508 (0.1%) 0.4201 (0.0%) 0.4344 (0.0%)
ED3 12 2.627(6.9%) 0.867 (5.6%) 0.595 (2.4%) E Eq 0.376 (7%) 0.427 (1.6%) 0.436 (0.4%)
EDZ3 12 2.811 (0.4%) 0.919 (0.0%) 0.610 (0.0%) E Eq 0.347 (1.2%) 0.420 (0.0%) 0.434 (0.0%)
LD2 21 2.798 (0.8%) 0.918 (0.1%) 0.610 (0.0%) E Eq 0.347 (1.2%) 0.420 (0.0%) 0.434 (0.1%)

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

σ11/q0

 z
/h

SinRefc−11p
exact

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

σ22/q0

 z
/h

SinRefc−11p
exact

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

σ12

 z
/h

SinRefc−11p
exact

Fig. 10. distribution of !r11 (left), !r22 (middle) and !r12 (right) along the thickness – S = 4–3 layers – SinRefc-11p.
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Fig. 11. distribution of !r13 (left), !r23 (middle), and !r33 (right) along the thickness – S = 4–3 layers – SinRefc-11p.
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Fig. 12. distribution of U1 (left), U2 (middle), U3 (right) along the thickness – S = 4–3 layers – SinRefc-11p.



Table 6
Results for simply supported square plate – b ¼ a – 3 layers.

S U1ðh=2Þ U2ð%h=2Þ U3ð0Þ !r11ðh=2Þ !r22ð%h=6Þ !r12ðh=2Þ !r13(0) !r23(0)

2 SinRefc-11p %0.0188
(11.8%)

0.0330 (0.3%) 5.1117 (0.3%) 1.6013
(11.5%)

%0.7692 (3.6%) %0.0894 (4.0%) 0.1636 (0.2%) 0.2655 (2.5%)

Sinc %0.0188
(11.3%)

0.0282
(14.7%)

4.4271
(13.1%)

1.5001 (4.5%) %0.7972 (7.4%) %0.0738
(14.0%)

0.1746 (6.5%) 0.1712 (33.9%)

Sin %0.0168 (0.1%) 0.0410
(23.8%)

5.0635 (0.6%) 1.3582 (5.4%) %0.5662
(23.7%)

%0.0908 (5.7%) 0.1576 (3.9%) 0.2422 (6.5%)

FSDT %0.0043
(74.5%)

0.0268
(19.1%)

5.2293 (2.6%) 0.3597
(75.0%)

%0.7038 (5.2%) %0.0488
(43.2%)

0.1038 (36.7%) 0.1846 (28.8%)

CLT %0.0068
(59.8%)

0.0068
(79.5%)

0.4313
(91.5%)

0.5387
(62.5%)

%0.1796
(75.8%)

%0.0213
(75.2%)

%0.0000
(100.0%)

%0.0000
(100.0%)

Exact %0.0169 0.0331 5.0954 1.4360 %0.7424 %0.0859 0.1640 0.2591

4 SinRefc-11p %0.0097 (0.5%) 0.0228 (0.2%) 2.0080 (0.1%) 0.8086 (1.0%) %0.5583 (0.4%) %0.0511 (0.1%) 0.2556 (0.1%) 0.2190 (0.8%)
Sinc %0.0107 (9.9%) 0.0218 (4.3%) 1.9622 (2.2%) 0.8560 (6.9%) %0.5838 (5.0%) %0.0510 (0.1%) 0.2774 (8.4%) 0.1494 (31.2%)
Sin %0.0094 (3.4%) 0.0229 (0.6%) 1.9345 (3.6%) 0.7554 (5.7%) %0.5033 (9.5%) %0.0507 (0.7%) 0.2113 (17.4%) 0.1877 (13.6%)
FSDT %0.0054

(44.6%)
0.0181
(20.4%)

1.7758
(11.5%)

0.4370
(45.4%)

%0.4774
(14.2%)

%0.0369
(27.7%)

0.1201 (53.1%) 0.1301 (40.1%)

CLT %0.0068
(30.1%)

0.0068
(70.3%)

0.4313
(78.5%)

0.5387
(32.7%)

%0.1796
(67.7%)

%0.0213
(58.3%)

%0.0000
(100.0%)

%0.0000
(100.0%)

Exact %0.0097 0.0228 2.0059 0.8008 %0.5563 %0.0511 0.2559 0.2172

10 SinRefc-11p %0.0074 (0.0%) 0.0111 (0.0%) 0.7531 (0.0%) 0.5915 (0.2%) %0.2880 (0.1%) %0.0288 (0.0%) 0.3573 (0.0%) 0.1232 (0.4%)
Sinc %0.0075 (1.7%) 0.0110 (0.6%) 0.7533 (0.0%) 0.5975 (1.2%) %0.2908 (0.9%) %0.0290 (0.7%) 0.3744 (4.8%) 0.0859 (30.0%)
Sin %0.0072 (2.5%) 0.0106 (4.2%) 0.7180 (4.6%) 0.5727 (3.0%) %0.2708 (6.0%) %0.0279 (3.1%) 0.2583 (27.7%) 0.1059 (13.7%)
FSDT %0.0064

(12.6%)
0.0096
(13.3%)

0.6693
(11.1%)

0.5134
(13.1%)

%0.2536
(12.0%)

%0.0252
(12.7%)

0.1363 (61.9%) 0.0762 (37.9%)

CLT %0.0068 (7.9%) 0.0068
(38.8%)

0.4313
(42.7%)

0.5387 (8.8%) %0.1796
(37.7%)

%0.0213
(26.2%)

%0.0000
(100.0%)

%0.0000
(100.0%)

Exact %0.0074 0.0111 0.7530 0.5906 %0.2882 %0.0288 0.3573 0.1228

20 SinRefc-11p %0.0069 (0.0%) 0.0080 (0.0%) 0.5164 (0.0%) 0.5526 (0.0%) %0.2101 (0.0%) %0.0234 (0.0%) 0.3846 (0.0%) 0.0941 (0.4%)
Sinc %0.0070 (0.4%) 0.0080 (0.1%) 0.5166 (0.0%) 0.5538 (0.3%) %0.2105 (0.2%) %0.0234 (0.2%) 0.3991 (3.8%) 0.0671 (28.4%)
Sin %0.0069 (0.8%) 0.0078 (1.9%) 0.5057 (2.1%) 0.5471 (1.0%) %0.2049 (2.5%) %0.0231 (1.3%) 0.2697 (29.9%) 0.0843 (10.2%)
FSDT %0.0067 (3.6%) 0.0075 (5.3%) 0.4921 (4.7%) 0.5318 (3.7%) %0.1997 (5.0%) %0.0223 (4.4%) 0.1402 (63.6%) 0.0632 (32.6%)
CLT %0.0068 (2.2%) 0.0068

(15.0%)
0.4313
(16.5%)

0.5387 (2.5%) %0.1796
(14.5%)

%0.0213 (8.9%) %0.0000
(100.0%)

%0.0000
(100.0%)

Exact %0.0069 0.0080 0.5164 0.5524 %0.2101 %0.0234 0.3846 0.0938

40 SinRefc-11p %0.0068 (0.0%) 0.0071 (0.0%) 0.4529 (0.0%) 0.5422 (0.0%) %0.1874 (0.0%) %0.0218 (0.0%) 0.3925 (0.0%) 0.0856 (0.4%)
Sinc %0.0068 (0.1%) 0.0071 (0.0%) 0.4529 (0.0%) 0.5425 (0.1%) %0.1875 (0.0%) %0.0218 (0.1%) 0.4060 (3.5%) 0.0617 (27.7%)
Sin %0.0068 (0.2%) 0.0070 (0.6%) 0.4501 (0.6%) 0.5408 (0.3%) %0.1861 (0.7%) %0.0217 (0.4%) 0.2728 (30.5%) 0.0781 (8.4%)
FSDT %0.0067 (0.9%) 0.0070 (1.6%) 0.4466 (1.4%) 0.5369 (1.0%) %0.1847 (1.5%) %0.0216 (1.2%) 0.1413 (64.0%) 0.0596 (30.1%)
CLT %0.0068 (0.6%) 0.0068 (4.3%) 0.4313 (4.8%) 0.5387 (0.6%) %0.1796 (4.2%) %0.0213 (2.4%) %0.0000

(100.0%)
%0.0000
(100.0%)

Exact %0.0068 0.0071 0.4529 0.5422 %0.1874 %0.0218 0.3924 0.0853

100 SinRefc-11p %0.0068 (0.0%) 0.0068 (0.0%) 0.4347 (0.0%) 0.5393 (0.0%) %0.1808 (0.0%) %0.0214 (0.0%) 0.3947 (0.0%) 0.0831 (0.4%)
Sinc %0.0068 (0.0%) 0.0068 (0.0%) 0.4347 (0.0%) 0.5393 (0.0%) %0.1808 (0.0%) %0.0214 (0.0%) 0.4081 (3.4%) 0.0601 (27.5%)
Sin %0.0068 (0.0%) 0.0068 (0.1%) 0.4343 (0.1%) 0.5390 (0.0%) %0.1806 (0.1%) %0.0214 (0.1%) 0.2737 (30.6%) 0.0764 (7.8%)
FSDT %0.0068 (0.1%) 0.0068 (0.3%) 0.4337 (0.2%) 0.5384 (0.2%) %0.1804 (0.2%) %0.0213 (0.2%) 0.1416 (64.1%) 0.0586 (29.3%)
CLT %0.0068 (0.1%) 0.0068 (0.7%) 0.4313 (0.8%) 0.5387 (0.1%) %0.1796 (0.7%) %0.0213 (0.4%) %0.0000

(100.0%)
%0.0000
(100.0%)

Exact %0.0068 0.0068 0.4347 0.5393 %0.1808 %0.0214 0.3947 0.0828

Table 7
Results for simply supported sandwich square plate – b ¼ a.

S U1ð%h=2Þ U2ð%h=2Þ U3ð0Þ !r11ðh=2Þ !r22ð%h=2Þ !r12ð%h=2Þ !r13(0) !r23(0)

2 SinRefc-11p 0.0325 (0.2%) 0.1196 (2.8%) 22.2375 (0.6%) 3.2375 (1.2%) %0.4135 (5.5%) 0.2389 (2.2%) 0.1841 (0.4%) 0.1404 (0.4%)
Sinc 0.0385

(18.2%)
0.1209 (3.9%) 22.2987 (0.9%) 3.1227 (4.7%) %0.4109 (4.9%) 0.2503 (7.1%) 0.1996 (8.0%) 0.1562 (11.7%)

Sin 0.0336 (3.3%) 0.1168 (0.5%) 21.2125 (4.0%) 2.7375
(16.5%)

%0.3944 (0.6%) 0.2363 (1.1%) 0.2259 (22.2%) 0.1631 (16.6%)

FSDT 0.0087
(73.4%)

0.0717
(38.3%)

14.9287
(32.5%)

0.7378
(77.5%)

%0.2328
(40.6%)

0.1263
(46.0%)

0.0903 (51.1%) 0.0651 (53.5%)

CLT 0.0138
(57.6%)

0.0138
(88.1%)

0.8782 (96.0%) 1.0970
(66.5%)

%0.0543
(86.1%)

0.0433
(81.5%)

%0.0000
(100.0%)

%0.0000
(100.0%)

Exact 0.0325 0.1163 22.1029 3.2781 %0.3919 0.2338 0.1848 0.1399

4 SinRefc-11p 0.0183 (0.6%) 0.0760 (0.2%) 7.5883 (0.1%) 1.5532 (0.2%) %0.2608 (3.0%) 0.1481 (0.0%) 0.2377 (0.4%) 0.1079 (0.6%)
Sinc 0.0190 (3.2%) 0.0756 (0.3%) 7.6098 (0.2%) 1.5589 (0.2%) %0.2530 (0.1%) 0.1486 (0.4%) 0.2573 (7.8%) 0.1198 (11.7%)
Sin 0.0175 (5.0%) 0.0713 (6.0%) 7.0928 (6.6%) 1.4359 (7.7%) %0.2382 (5.9%) 0.1395 (5.8%) 0.2832 (18.6%) 0.1211 (13.0%)
FSDT 0.0109

(41.1%)
0.0469
(38.1%)

4.7666 (37.3%) 0.8918
(42.7%)

%0.1562
(38.3%)

0.0907
(38.7%)

0.1024 (57.1%) 0.0448 (58.2%)

CLT 0.0138 0.0138 0.8782 (88.4%) 1.0970 %0.0543 0.0433 %0.0000 %0.0000

(continued on next page)



Table 8
Results for simply supported sandwich square plate.

S Nb fcts !r11ðh=2Þ !r13(0)

2 SinRefc-11p 11 3.2375 (1.2%) 0.1841 (0.4%) H
ED3 12 3.0752 (6.2%) –
EDZ3 12 3.1623 (3.5%) 0.18301a (0.9%) E Eq
LD2 21 3.2259 (3.2%) 0.17834 (3.5%) E Eq
Exact – 3.2781 0.1848

4 SinRefc-11p 11 1.5532 (0.2%) 0.2377 (0.4%) H
ED3 12 – –
EDZ3 12 – 0.23751a (0.5%) E Eq
LD2 21 – 0.22778 (4.5%) E Eq
Exact – 1.5558 0.2387

10 SinRefc-11p 11 1.1523 (0.1%) 0.2991 (0.2%) H
ED3 12 1.1452 (0.7%) –
EDZ3 12 1.1484 (0.4%) 0.29905a (0.2%) E Eq
LD2 21 1.1322 (1.8%) 0.28019 (6.5%) E Eq
Exact – 1.1531 0.2998

20 SinRefc-11p 11 1.1087 (0.1%) 0.3169 (0.2%) H
ED3 12 – –
EDZ3 12 – 0.31678a (0.2%) E Eq
LD2 21 – 0.29595 (6.7%) E Eq
Exact – 1.1098 0.3174

50 SinRefc-11p 11 1.0979 (0.1%) 0.3227 (0.1%) H
ED3 12 1.0706 (2.6%) –
EDZ3 12 1.0712 (2.5%) 0.32261a (0.1%) E Eq
LD2 21 1.0785 (1.9%) 0.30177 (6.6%) E Eq
Exact – 1.0990 0.3231

a Analytical closed-form solution.

Table 7 (continued)

S U1ð%h=2Þ U2ð%h=2Þ U3ð0Þ !r11ðh=2Þ !r22ð%h=2Þ !r12ð%h=2Þ !r13(0) !r23(0)

(25.2%) (81.8%) (29.5%) (78.6%) (70.7%) (100.0%) (100.0%)
Exact 0.0184 0.0758 7.5962 1.5558 %0.2533 0.1480 0.2387 0.1072

10 SinRefc-11p 0.0142 (0.5%) 0.0313 (0.1%) 2.1946 (0.3%) 1.1523 (0.1%) %0.1131 (2.9%) 0.0715 (0.2%) 0.2991 (0.2%) 0.0532 (1.1%)
Sinc 0.0144 (0.3%) 0.0311 (0.8%) 2.1977 (0.1%) 1.1555 (0.2%) %0.1091 (0.7%) 0.0713 (0.4%) 0.3225 (7.6%) 0.0589 (11.9%)
Sin 0.0141 (1.5%) 0.0293 (6.4%) 2.0681 (6.0%) 1.1337 (1.7%) %0.1034 (5.9%) 0.0682 (4.8%) 0.3465 (15.6%) 0.0598 (13.5%)
FSDT 0.0131 (8.8%) 0.0221

(29.5%)
1.5604 (29.1%) 1.0457 (9.3%) %0.0798

(27.4%)
0.0552
(23.0%)

0.1145 (61.8%) 0.0245 (53.6%)

CLT 0.0138 (3.6%) 0.0138
(55.9%)

0.8782 (60.1%) 1.0970 (4.9%) %0.0543
(50.6%)

0.0433
(39.5%)

%0.0000
(100.0%)

%0.0000
(100.0%)

Exact 0.0143 0.0313 2.2004 1.1531 %0.1099 0.0717 0.2998 0.0527

20 SinRefc-11p 0.0139 (0.4%) 0.0187 (0.2%) 1.2228 (0.3%) 1.1087 (0.1%) %0.0722 (3.2%) 0.0511 (0.3%) 0.3169 (0.2%) 0.0365 (1.2%)
Sinc 0.0139 (0.1%) 0.0187 (0.4%) 1.2254 (0.1%) 1.1104 (0.1%) %0.0697 (0.4%) 0.0512 (0.2%) 0.3412 (7.5%) 0.0405 (12.3%)
Sin 0.0139 (0.4%) 0.0181 (3.3%) 1.1891 (3.0%) 1.1049 (0.4%) %0.0680 (2.8%) 0.0502 (2.0%) 0.3640 (14.7%) 0.0421 (16.8%)
FSDT 0.0136 (2.2%) 0.0160

(14.4%)
1.0524 (14.2%) 1.0831 (2.4%) %0.0612

(12.5%)
0.0466 (9.2%) 0.1174 (63.0%) 0.0195 (45.9%)

CLT 0.0138 (0.8%) 0.0138
(26.4%)

0.8782 (28.4%) 1.0970 (1.2%) %0.0543
(22.4%)

0.0433
(15.5%)

%0.0000
(100.0%)

%0.0000
(100.0%)

Exact 0.0139 0.0187 1.2264 1.1098 %0.0699 0.0513 0.3174 0.0361

40 SinRefc-11p 0.0138 (0.3%) 0.0150 (0.3%) 0.9635 (0.3%) 1.0990 (0.1%) %0.0603 (3.3%) 0.0452 (0.3%) 0.3220 (0.1%) 0.0316 (1.3%)
Sinc 0.0138 (0.0%) 0.0150 (0.1%) 0.9662 (0.0%) 1.1002 (0.0%) %0.0583 (0.1%) 0.0454 (0.1%) 0.3467 (7.5%) 0.0351 (12.5%)
Sin 0.0138 (0.1%) 0.0149 (1.1%) 0.9569 (1.0%) 1.0989 (0.1%) %0.0578 (0.9%) 0.0451 (0.6%) 0.3690 (14.4%) 0.0370 (18.7%)
FSDT 0.0137 (0.6%) 0.0144 (4.7%) 0.9220 (4.6%) 1.0934 (0.6%) %0.0561 (3.9%) 0.0442 (2.7%) 0.1182 (63.3%) 0.0182 (41.8%)
CLT 0.0138 (0.2%) 0.0138 (8.5%) 0.8782 (9.1%) 1.0970 (0.3%) %0.0543 (6.9%) 0.0433 (4.5%) %0.0000

(100.0%)
%0.0000
(100.0%)

Exact 0.0138 0.0151 0.9665 1.1001 %0.0583 0.0454 0.3225 0.0312

100 SinRefc-11p 0.0138 (0.3%) 0.0140 (0.3%) 0.8895 (0.3%) 1.0964 (0.1%) %0.0568 (3.3%) 0.0435 (0.3%) 0.3236 (0.1%) 0.0301 (1.3%)
Sinc 0.0138 (0.0%) 0.0140 (0.0%) 0.8923 (0.0%) 1.0975 (0.0%) %0.0549 (0.0%) 0.0437 (0.0%) 0.3483 (7.5%) 0.0335 (12.6%)
Sin 0.0138 (0.0%) 0.0140 (0.2%) 0.8908 (0.2%) 1.0973 (0.0%) %0.0549 (0.2%) 0.0436 (0.1%) 0.3705 (14.4%) 0.0355 (19.4%)
FSDT 0.0138 (0.1%) 0.0139 (0.8%) 0.8852 (0.8%) 1.0964 (0.1%) %0.0546 (0.7%) 0.0435 (0.5%) 0.1185 (63.4%) 0.0178 (40.3%)
CLT 0.0138 (0.0%) 0.0138 (1.5%) 0.8782 (1.6%) 1.0970 (0.0%) %0.0543 (1.2%) 0.0433 (0.8%) %0.0000

(100.0%)
%0.0000
(100.0%)

Exact 0.0138 0.0140 0.8924 1.0975 %0.0550 0.0437 0.3240 0.0297



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

σ11/q0

 z
/h

SinRefc−11p
exact

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

σ22/q0
 z

/h

SinRefc−11p
exact

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

σ12

 z
/h

SinRefc−11p
exact

Fig. 13. distribution of !r11 (left), !r22 (middle) and !r12 (right) along the thickness – S = 4 – sandwich – SinRefc-11p.
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Fig. 14. Distribution of !r13 (left), !r23 (middle) and !r33 (right) along the thickness – S = 4 – sandwich – SinRefc-11p.
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Fig. 15. Distribution of U1 (left), U2 (middle), U3 (right) along the thickness – S = 4 – sandwich – SinRefc-11p.

Table 9
Results for simply-supported square plate – two layers (0"/90") – thermo-mechanical – b ¼ a.

S Model !uðh=2Þ !vð%h=2Þ !wð0Þ !r11ð%h=2Þ !r22ðh=2Þ !r12ðh=2Þ !r13max !r23max

4 SinRefc-11p %123.7700 123.7700 31.8975 %1459.0000 1459.0000 %227.7200 110.2700 110.2700
Error 0.2% 0.2% 0.4% 3.0% 3.0% 0.6% 0.3% 0.3%
Exact %123.5019 123.5019 32.0251 %1416.6715 1416.6715 %226.4439 110.5875 110.5875

10 SinRefc-11p %94.1320 94.1320 34.7980 %1610.8000 1610.8000 %184.6300 57.5410 57.5410
Error 0.0% 0.0% 0.0% 0.4% 0.4% 0.1% 1.3% 1.3%
Exact %94.0877 94.0877 34.8032 %1605.0925 1605.0925 %184.4612 58.2761 58.2761

100 SinRefc-11p %86.6050 86.6050 35.2400 %1666.8000 1666.8000 %174.0300 6.1086 6.1087
Error 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 1.7% 1.7%
Exact %86.6112 86.6112 35.2424 %1665.8188 1665.8188 %174.0461 6.2142 6.2142



Table 10
Results for simply-supported square plate - three layers (0"/90"/0") – thermo-mechanical – b ¼ a.

S Model !uðh=2Þ !vð%h=2Þ !wðh=2Þ !r11ðh=2Þ !r22ðh=2Þ !r12ðh=2Þ !r13ð0Þ !r13ðh=6Þ !r23ð0Þ !r23ðh=6Þ

4 SinRefc-11p %18.2670 81.8300 42.6475 1198.8000 %853.4100 %157.2300 61.9790 83.0810 %47.0930 %129.4100
Error 0.9% 0.0% 0.1% 1.3% 0.3% 0.2% 0.2% 2.0% 2.2% 0.5%
Exact %18.1083 81.8293 42.6863 1183.2018 %856.0937 %156.9817 62.1240 84.8143 %48.1399 %128.7034

10 SinRefc-11p %16.6200 31.9520 17.3900 1027.6000 %1013.7000 %76.2930 51.6000 60.3690 %49.3640 %66.1170
Error 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.3% 0.1% 0.2%
Exact %16.6144 31.9517 17.3920 1026.3029 %1014.3577 %76.2875 51.6185 60.5410 %49.4115 %66.0084

100 SinRefc-11p %15.9980 16.1700 10.2600 965.3700 %1064.5000 %50.5300 6.1868 7.0733 %6.1866 %7.0776
Error 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Exact %15.9983 16.1703 10.2598 965.3674 %1064.5458 %50.5303 6.1875 7.0732 %6.1848 %7.0797
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Fig. 16. Distribution of !u1 (left), !u2 (middle) and !u3 (right) along the thickness – S = 4 – 3 layers – thermo-mechanical – SinRefc-11p.

−1500 −1000 −500 0 500 1000 1500
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 z
/h

SinRefc−11p
exact

−1500 −1000 −500 0 500 1000 1500
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 z
/h

SinRefc−11p
exact

−200 −150 −100 −50 0 50 100 150 200
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 z
/h

SinRefc−11p
exact

Fig. 17. Distribution of !r11 (left), !r22 (middle) and !r12 (right) along the thickness – S = 4 – 3 layers – thermo-mechanical – SinRefc-11p.
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Fig. 18. Distribution of !r13 (left), !r23 (middle) and !r33 (right) along the thickness – S = 4 – 3 layers – thermo-mechanical – SinRefc-11p.



The numerical results for deflection, in-plane displacement,
shear stresses, and in-plane stresses are given in Tables 9 and 10
for two and three layers, respectively.

It should be noted that the results issued from the SinRefc-11p
model are in excellent agreement with the exact solution. The error
is less than 3% regardless of the length-to-thickness ratio for both
displacements and stresses, including the transverse shear stresses
deduced from the constitutive relation. For S 6 10, the maximum
error rate becomes lower than 1.7%. Moreover, Figs. 16–18 show
that the distribution of these quantities are similar to the reference
solution for the three-layer thick plate. These results show the
capability of the model to well represent coupled thermal
problems.

5. Conclusion

In this paper, a new six-node multilayered triangular finite ele-
ment has been presented and applied to the analysis of composite
laminates and sandwich plates.

This FE is based on an original plate theory involving 11 un-
known parameters. The employed sinus theory includes a third-or-
der kinematic per layer for the in-plane displacements and a
parabolic distribution of the transverse displacement. The trans-
verse normal stress is introduced in this plate theory. The number
of unknowns is independent of the number of layers and all inter-
face and boundary conditions are exactly satisfied. Therefore, this
approach has a strong physical meaning.

A conforming FE method is used and high order FE approxima-
tions are chosen. The field compatibility for transverse shear
strains is assured. It is free of numerical illness such as transverse
shear and Poisson lockings, oscillation and spurious mechanics.

The evaluation has been conducted for two- and three-layered
plates and a sandwich one under mechanical and thermal loads.
The results are in very good agreement with reference solutions.
Comparisons with original sinus theory, classical models (FSDT,
CLT) and other models available in open literature (ESL and LW)
are also given.

In this first attempt to develop a robust and efficient FE for the
refined sinus theory, several features have been highlighted: (i) it
allows to calculate the transverse shear stresses directly by the
constitutive relation with a good accuracy, (ii) it entails a very good
compromise between cost and accuracy for displacements and
stresses (a mesh with only 2 FE gives the converged value of the
transverse displacement), and (iii) by virtue of the new refined
kinematics, this FE can be applied to thin to very thick plates under
mechanical and thermal loads.

Future works will be focused on shell finite element develop-
ments of this refined theory.

Appendix A. Relation between the generalized displacements

Using the notations introduced in Eqs. (4) and (6), the condi-
tions (8)–(11) can be written under the following form:

½A&fvg ¼ fb1gu1
31ðx1; x2Þ þ fc1gðh2ðx1; x2Þ þw0;1ðx1; x2ÞÞ

þ fd1gðu1ðx1; x2Þ þw0;1ðx1; x2ÞÞ þ fe1gw1;1ðx1; x2Þ

þ ff1gw2;1ðx1; x2Þ þ fb2gv1
31ðx1; x2Þ þ fc2g

#ðw0;2ðx1; x2Þ % h1ðx1; x2ÞÞ þ fd2gðv1ðx1; x2Þ
þw0;2ðx1; x2ÞÞ þ fe2gw1;2ðx1; x2Þ þ ff2gw2;2ðx1; x2Þ; ðA:1Þ

where ½A& is a ð6 ) NC % 2Þ # ð6 ) NC % 2Þ matrix,
fvgT ¼ fu1

32u1
33 + + +u

j
31uj

32uj
33 + + +uNC

31 uNC
32 uNC

33 v1
32v1

33 + + +v
j
31v

j
32v

j
33 + + +

vNC
31 vNC

32 vNC
33 g

T , and fbag; fcag; fdag; feag; ffag are vectors with
ð6 ) NC % 2Þ components.

From the resolution of this linear system, relations between
uj

31ðj – 1Þ; uj
32; uj

33; v j
31ðj – 1Þ; v j

32; v j
33; j ¼ 1; . . . ;NC and the

other generalized unknowns can be deduced for a cross-ply com-
posite plate. This relation can be written under the following form:

uj
3iðx1;x2Þ¼ bj

uiðh2ðx1;x2Þþw0;1ðx1;x2ÞÞþgj
uiðu1ðx1;x2Þþw0;1ðx1;x2ÞÞ

þdj
uiu

1
31ðx1Þþkj

uiw1;1ðx1;x2Þþlj
uiw2;1ðx1;x2Þ

v j
3iðx1;x2Þ¼bj

v iðw0;2ðx1;x2Þ%h1ðx1;x2ÞÞþgj
v iðv1ðx1;x2Þþw0;2ðx1;x2ÞÞ

þdj
viv1

31ðx1Þþkj
viw1;2ðx1;x2Þþlj

viw2;2ðx1;x2Þ; j¼1; . . . ;NC
i¼1;2;3
with d1

#1¼1; b1
#1¼g1

#1¼ k1
#1¼l1

#1¼ 0;

8
>>>>>>>>>><

>>>>>>>>>>:

ðA:2Þ

where bj
#i; dj

#i; kj
#i; lj

#i, and gj
#i (i ¼ 1;2;3;# ¼ fu;vg) are the coef-

ficients deduced from Eq. (A.1). Note that the expressions of uj
3i and

v j
3i are coupled for an angle-ply structure.

Finally, the 11 unknowns become u0;v0;w0; h1; h2;u1;v1;
w1;w2;u1

31 and v1
31.

In Eqs. (13) and (14), a matrix notation is introduced for the dis-
placement and the strain. In these equations, FuðzÞ½ & depends on the
normal coordinate z according to

FuðzÞ½ & ¼
1 0 0 Fu4ðzÞ 0 0 Fu7ðzÞ Fu8ðzÞ 0 . . .

0 1 0 0 Fv 5ðzÞ Fv 6ðzÞ 0 0 Fv 9ðzÞ . . .

0 0 1 0 0 0 0 0 0 . . .

2

64

0 Fu11ðzÞ 0 0 Fu14ðzÞ 0 Fu16ðzÞ 0
0 0 Fv 12ðzÞ 0 0 Fv 15ðzÞ 0 Fv 17ðzÞ
z 0 0 z2 0 0 0 0

3

75;

ðA:3Þ

where

Fu4ðzÞ ¼ f ðzÞ þ SubðzÞ þ SugðzÞ Fv 5ðzÞ ¼ f ðzÞ þ SvbðzÞ þ SvgðzÞ;
Fu7ðzÞ ¼ f ðzÞ þ SubðzÞ Fv 6ðzÞ ¼ %f ðzÞ % SvbðzÞ;
Fu8ðzÞ ¼ zþ SugðzÞ Fv 9ðzÞ ¼ zþ SvgðzÞ;
Fu11ðzÞ ¼ SukðzÞ Fv 12ðzÞ ¼ SvkðzÞ;
Fu14ðzÞ ¼ SulðzÞ Fv 15ðzÞ ¼ SvlðzÞ;
Fu16ðzÞ ¼ SudðzÞ Fv 17ðzÞ ¼ SvdðzÞ

and

S!#ðzÞ¼
XNC

k¼1

fk#k
!1þ %1

2
þ3f2

k

2

!

#k
!2þ %3fk

2
þ5f3

k

2

!

#k
!3

 !

DHðk;kþ1Þ

with ! ¼ fu; vg; # ¼ fb; d;g; k;lg and DHðk; kþ 1Þ ¼
Hðz% zkÞ % Hðz% zkþ1Þ.
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