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Explicit solutions for the modeling of laminated composite plates
with arbitrary stacking sequences

P. Vidal ⇑, L. Gallimard, O. Polit
Laboratoire Energétique, Mécanique, Electromagnétisme – EA4416, Université Paris Ouest Nanterre-La Défense, 50 rue de Sèvres, 92410 Ville d’Avray, France

a b s t r a c t

In this paper, a method to compute explicit solutions for laminated plate with arbitrary stacking
sequences is presented. This technique is based on the construction of an a posteriori Reduced-Order
Model using the so-called Proper Generalized Decomposition. The displacement field is approximated
as a sum of separated functions of the in-plane coordinates x; y, the transverse coordinate z and the ori-
entation of each ply hi. This choice yields to an iterative process that consists of solving a 2D and some 1D
problems successively at each iteration. In the thickness direction, a fourth-order expansion in each layer
is considered. For the in-plane description, classical Finite Element method is used. The functions of hi are
discretized with linear interpolations. Mechanical tests with different numbers of layers are performed to
show the accuracy of the method.

1. Introduction

Composite and sandwich structures are widely used in the
industrial field due to their excellent mechanical properties, espe-
cially their high specific stiffness and strength. In this context,
they can be subjected to severe mechanical loads. For laminated
composite design, accurate knowledge of displacements and
stresses is required. Moreover, the choice of the stacking se-
quences has an important influence on the behavior of the struc-
tures. The classical way consists in performing different
computations with a fixed value of each orientation of the plies.
The present approach based on the Proper Generalized Decompo-
sition (PGD) aims at building the explicit solutions with respect to
any stacking sequences avoiding the computational cost of
numerous computations.

According to published research, various theories in mechanics
for the modeling of composite structures have been developed. On
the one hand, the Equivalent Single Layer approach (ESL) in which
the number of unknowns is independent of the number of layers, is
used. But, the transverse shear and normal stresses continuity on
the interfaces between layers are often violated. We can distin-
guish the classical laminate theory [1] (unsuitable for composites
and moderately thick plates), the first order shear deformation
theory [2], and higher order theories with displacement [3–10]
and mixed [11,12] approaches. On the other hand, the Layerwise

approach (LW) aims at overcoming the restriction of the ESL con-
cerning the discontinuity of out-of-plane stresses on the interface
layers and taking into account the specificity of layered structure.
But, the number of degrees of freedom (dofs) depends on the num-
ber of layers. We can mention the folllowing contributions [13–17]
within a displacement based approach and [18,11,19] within a
mixed formulation. As an alternative, refined models have been
developed in order to improve the accuracy of ESL models avoiding
the additional computational cost of LW approach. So, a family of
models, denoted zig-zag models, was derived in [20–22] from
the studies described in [23,24]. Note also the refined approach
based on the Sinus model [25–27]. This above literature deals with
only some aspects of the broad research activity about models for
layered structures and corresponding finite element formulations.
An extensive assessment of different approaches has been made in
[28–32].

Over the past years, the so-called Proper Generalized Decompo-
sition (PGD) [33] has shown interesting features in the reduction
model framework. A separated representation of variables called
radial approximation was also introduced in the context of the LA-
TIN method [34] for reducing computational costs and used to
solve parametric problems [35]. For the scope of our study, the
PGD has been successfully applied for the modeling of composite
beams and plates [36–38]. The principle of the method consists
in using separated representation of the unknown fields to build
an approximate solution of the partial differential equations. A first
attempt to obtain analytical solutions for composite plate based on
a Navier-type solution with a separation of variables can also be
found in [39].
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This work aims at modeling composite plate structures regard-
less of the stacking sequences. For this purpose, the present
approach is based on the separation representation where the dis-
placements are written under the form of a sum of products of (i)
bidimensional polynomials of (x, y), (ii) unidimensional polynomi-
als of z and (iii) unidimensional polynomials of the orientations of
the plies hi. As in [38], a piecewise fourth-order Lagrange polyno-
mial of z is chosen as it is particularly suitable to model composite
structures. As far as the variation with respect to the in-plane coor-
dinates is concerned, a 2D eight-node quadrilateral Finite Element
(FE) is employed. The functions of the orientations of each ply are
piecewise linear. Finally, the deduced non-linear problem implies
the resolution of NC þ 2 linear problems alternatively (NC is the
number of layers). This process yields to a 2D and 1D problems
in which the number of unknowns is smaller than in a Layerwise
approach. Finally, the solution depends explicitly on the fibers ori-
entation of each ply.

We now outline the remainder of this article. First, the reference
mechanical formulation is recalled. Then, the resolution of the
parametrized problem by the PGD is described. The particular
assumption on the displacements yields a non-linear problem
which is solved by an iterative process. Then, the FE approxima-
tions are described. Finally, numerical tests are performed. A
one-layer case is first considered to assess and illustrate the
behavior of the method. The influence of the discretization of the
functions depending on the orientation of the plies is shown.
Two-layer and four-layer configurations are also addressed. The
accuracy of the results is evaluated by comparison with reference
solutions issued from PGD solutions with different fixed stacking
sequences using the work developed in [38].

2. Reference problem description

2.1. The governing equations

Let us consider a plate occupying the domain V ¼ X�Xz

bounded by @X with Xz ¼ � h
2 ;

h
2

� �
in a Cartesian coordinate system

ðx; y; zÞ. The plate is defined by an arbitrary region X, in the ðx; yÞ
plane, located at the midplane z ¼ 0, and by a constant thickness
h. See Fig. 1.

2.1.1. Constitutive relation
The plate can be made of NC perfectly bonded orthotropic layers

of the same material. Using matrix notation, the three dimensional
constitutive law in the material coordinate is given by:

rm ¼ eCem ð1Þ

where the stress vector rm, the strain vector em and eC are written in
the material coordinate. eC is defined as:

eC ¼
eC11

eC12
eC13 0 0 0eC22
eC23 0 0 0eC33 0 0 0eC44 0 0

sym eC55 0eC66

26666666664

37777777775
ð2Þ

The stiffness coefficients eCij are not reported for brevity reason
(see [40] for more details). For each layer ðkÞ, a rotation matrix RðkÞ

is defined to obtain the constitutive law in the global coordinate
system. So, we have:

rðkÞ11

rðkÞ22

rðkÞ33

rðkÞ23

rðkÞ13

rðkÞ12

266666666664

377777777775
¼

CðkÞ11 CðkÞ12 CðkÞ13 0 0 CðkÞ16

CðkÞ22 CðkÞ23 0 0 CðkÞ26

CðkÞ33 0 0 CðkÞ36

CðkÞ44 CðkÞ45 0

sym CðkÞ55 0

CðkÞ66

266666666664

377777777775

eðkÞ11

eðkÞ22

eðkÞ33

cðkÞ23

cðkÞ13

cðkÞ12

266666666664

377777777775
i:e: rðkÞ ¼ CðkÞeðkÞ ð3Þ

with CðkÞ ¼ RðkÞeCRðkÞ
T

and

RðkÞ ¼

cos2 hk sin2 hk 0 0 0 �2sinhk coshk

sin2 hk cos2 hk 0 0 0 2sinhk coshk

0 0 1 0 0 0
0 0 0 coshk sinhk 0
0 0 0 �sinhk coshk 0

sinhk coshk �sinhk coshk 0 0 0 cos2 hk� sin2 hk

26666666664

37777777775
ð4Þ

We denote the stress vector rðkÞ, the strain vector eðkÞ, the fibers
orientation hk (Fig. 1) and CðkÞij the three-dimensional stiffness coef-
ficients of the layer ðkÞ in the global coordinate system.

2.1.2. The classical weak form of the boundary value problem
The plate is submitted to a surface force density t defined over a

subset CN of the boundary and a body force density b defined in X.
We assume that a prescribed displacement u ¼ ud is imposed on
CD ¼ @X� CN .

The classical formulation of the elastic problem is recalled: find
a displacement field u and a stress field r defined in V which
verify:

� the kinematic constraints:

u 2 U ð5Þ

� the equilibrium equations:

r 2 S and 8u� 2 U�

�
Z
V
r : eðu�ÞdV þ

Z
V

b:u� dV þ
Z

CN

t:u�dC ¼ 0
ð6Þ

� the constitutive relation:

r ¼ CeðuÞ ð7Þ

U ¼ fu ju 2 ðH1ðVÞÞ3; u ¼ ud on CDg is the space in which the
displacement field is being sought, S ¼ L2½V�3 the space of the
stresses, and eðuÞ denotes the linearized strain associated with
the displacement.

3. Application of the Proper Generalized Decomposition to plate
with any stacking sequences

The Proper Generalized Decomposition (PGD) was introduced in
[33] and is based on an a priori construction of separated variablesFig. 1. Geometry of the plate and orientation of the fibers of the laminated plate.



representation of the solution. The following sections are dedicated
to the introduction of the PGD to build a parametric solution for
composite plate with any stacking sequences. An illustration is pro-
posed in [37]. We consider the problem defined by Eqs. (5)–(7) as a
parametrized problem where the orientation of each ply hk is in a
bounded interval I k ¼ ½hk

m; hk
M �. The solution of Eqs. (5)–(7) for a

point M of the structure depends on the values of these angles and
is denoted uðM; h1; h2; . . . hNCÞ, and the stress is linked with the strain
by a parametrized constitutive law CðkÞðhkÞ.

3.1. The parametrized problem

The displacement solution u is constructed as the sum of N
products of separated functions (N 2 N is the order of the
representation)

uðx; y; z; h1; h2; . . . hNCÞ ¼
XN

i¼1

gi
1ðh1Þgi

2ðh2Þ . . . gi
NCðhNCÞ fiðzÞ � viðx; yÞ

ð8Þ

where gi
kðhkÞ; fiðzÞ and viðx; yÞ are unknown functions which must

be computed during the resolution process. gi
kðhkÞ; fiðzÞ and

viðx; yÞ are defined on I k; Xz and X respectively. The ‘‘�’’ operator
in Eq. (8) is Hadamard’s element-wise product. We have:

f i � vi ¼ vi � f i ¼
f i
1ðzÞv i

1ðx; yÞ
f i
2ðzÞv i

2ðx; yÞ
f i
3ðzÞv i

3ðx; yÞ

264
375 with vi ¼

v i
1ðx; yÞ

v i
2ðx; yÞ

v i
3ðx; yÞ

264
375f i ¼

f i
1ðzÞ

f i
2ðzÞ

f i
3ðzÞ

264
375
ð9Þ

Note that the in-plane coordinates and the transverse coordi-
nate are separated in the expression of the displacements as in
[38].

For sake of clarity, the body forces are neglected in the develop-
ments and the new problem to be solved is written as follows: find
u 2 U (space of admissible displacements) such that

aðu;u�Þ ¼ bðu�Þ 8u� 2 U� ð10Þ

with

aðu;u�Þ ¼
Z

X�Xz�I1�I2 ...�INC

CeðuÞ : eðu�ÞdXdXz dh1 . . . dhNC

bðu�Þ ¼
Z

CN�I1�I2 ...�INC

t:u�dCdh1 . . . dhNC

ð11Þ

where X�Xz � I1 � I2 . . .� INC is the integration space associated
with the geometric space domain X�Xz and the parameters do-
main of the laminae orientation I1 � I2 . . .� INC . For the present
work, CN is considered as the top or bottom surfaces of the plate,
that is z ¼ zF with zF ¼ �h=2.

The strain derived from Eq. (8) is

eðuÞ ¼
XN

i¼1

gi
1ðh1Þgi

2ðh2Þ . . . gi
NCðhNCÞ

f i
1 v i

1;1

f i
2 v i

2;2

f i
3

� �0 v i
3

f i
2

� �0 v i
2 þ f i

3 v i
3;2

f i
1

� �0 v i
1 þ f i

3 v i
3;1

f i
1 v i

1;2 þ f i
2 v i

2;1

266666666664

377777777775
ð12Þ

where the prime stands for the classical derivative f 0i ¼
dfi
dz

� �
, and ðÞ;a

for the partial derivative. The dependance with respect to the space
coordinates is omitted.

3.2. decomposition of the parametrized problem

We assume that a sum of n < N products of separated functions
have been already computed. Therefore, we have:

unðx; y; z; h1; h2; . . . hNCÞ ¼
Xn

i¼1

gi
1ðh1Þgi

2ðh2Þ . . . gi
NCðhNCÞfiðzÞ � viðx; yÞ

ð13Þ

and the solution at step nþ 1 is sought as the sum of un and a
product

gnþ1
1 ðh1Þgnþ1

2 ðh2Þ . . . gnþ1
NC ðhNCÞ fnþ1ðzÞ � vnþ1ðx; yÞ of unknown

functions. So, unþ1 can be written as

unþ1ðx; y; z; h1; h2; . . . hNCÞ ¼ unðx; y; z; h1; h2; . . . hNCÞ
þ gnþ1

1 ðh1Þgnþ1
2 ðh2Þ . . . gnþ1

NC ðhNCÞ fnþ1ðzÞ � vnþ1ðx; yÞ
ð14Þ

Let us denote by gnþ1 the set of functions ðgnþ1
1 ; gnþ1

2 ; . . . gnþ1
NC Þ and by

piðgÞ and pðgÞ the two following products

piðgÞ ¼
YNC

j¼1
j – i

gj and pðgÞ ¼
YNC

j¼1

gj ð15Þ

The test functions are derived from Eq. (14)

u� ¼
XNC

i¼1

piðgnþ1Þg�i fnþ1 � vnþ1 þ pðgnþ1Þ vnþ1 � f�

þ pðgnþ1Þ fnþ1 � v� ð16Þ

Introducing the trial function u defined by Eq. (14) and the test
functions u� defined by Eq. (16) into the weak form (Eq. (10)) leads
to the NC þ 2 following equations, where the unknown functions
gnþ1

i ðhiÞ; gnþ1; fnþ1ðzÞ; vnþ1ðx; yÞ are denoted gi; g; f; v for sake of
clarity:

� for the test functions g�i ; i 2 f1; . . . ;NCg

a piðgÞgi f � v;piðgÞg�i f � v
� �
¼ b piðgÞ f � vg�i

� �
� a un;piðgÞg�i f � v
� �

8g�i ð17Þ

� for the test function f�

aðpðgÞ v � f;pðgÞ v � f�Þ ¼ bðpðgÞ v � f�Þ
� aðun;pðgÞ v � f�Þ 8f� ð18Þ

� for the test function v�

aðpðgÞ f � v;pðgÞ f � v�Þ ¼ bðpðgÞ f � v�Þ
� aðun;pðgÞ f � v�Þ 8v� ð19Þ

As these equations define a coupled non-linear system, a non-
linear resolution strategy has to be used. The fixed point method

is used. Starting from an initial solution ð~gð0Þ;~fð0Þ; ~vð0ÞÞ, we construct

a sequence ð~gðjÞÞjP1; ð~fðjÞÞjP1 and ð~vðjÞÞjP1 which satisfy Eqs. (17)–
(19) respectively. For each problem involving one unknown func-
tion, the two other ones are supposed to be known and come from
the previous step of the fixed point strategy. So, the PGD leads to
the algorithm given in Table 1.

In practice, only few iterations of the fixed point algorithm are

necessary to reach a good approximation ð~fðjÞ; ~vðjÞ; ~gðjÞÞ of

ðfnþ1
;vnþ1;gnþ1Þ (see [41] for more details).



3.3. discretization

To compute the solution of Eqs. (17)–(19), a discrete represen-
tation of the functions ðf;v; g1; . . . gNCÞmust be introduced. We use
a classical finite element approximation in X, and a polynomial
expansion in Xz for v and f respectively. The elementary vector
of degrees of freedom (dof) associated with one element Xe of
the mesh in X is denoted qv

e . The vector of dofs associated with
the polynomial expansion in Xz is denoted qf . The displacement
fields and the strain fields are determined from the values of qv

e

and qf by

ve ¼ Nxyqv
e ; Ee

v ¼ Bxyqv
e ; f ¼ Nzqf and Ef ¼ Bzqf ð20Þ

The matrices Nxy; Bxy; Nz, Bz contain the interpolation functions,
their derivatives and the jacobian components. Ee

v and Ef are de-
fined in Appendices A and B, respectively.

As far as the functions g1; . . . ; gNC are concerned, a piecewise lin-
ear interpolation is considered in ðI kÞ16k6NC

gkðhkÞ ¼ Ngk
ðhkÞqgk ð21Þ

where Ngk
is the matrix of the interpolation functions, qgk are the

degree of freedom.

3.3.1. Finite element problem to be solved on I k

For the sake of simplicity, the functions ~fðj�1Þ; ~vðj�1Þ and

~gðjÞi

� �
16i6NC; i – k

which are assumed to be known, will be denoted

~f; ~v and ~gnk ¼ ðgiÞ16i6NC; i – k, and the function ~gðjÞk to be computed
will be denoted gk.

The variational problem defined on I k from Eq. (17) isZ
Ik

g�kkkxyzð~gnk;~f; ~vÞgkdhk ¼
Z
Ik

g�ktkxyzð~gnk;~f; ~vÞdhk�
Z
Ik

g�krkxyzð~gnk;~f; ~v;unÞdhk ð22Þ

kkxyzð~gnk;~f; ~vÞ¼
Z

X�Xz�Ink
eð~f � ~vÞ

T
Ceð~f � ~vÞ

YNC

i¼ 1
i – k

~g2
i

266664
377775dXdzdh1 . . .dhNC ð23Þ

tkxyzð~gnk;~f; ~vÞ¼
Z

X�Ink
ð~f � ~vÞ

T
tpkð~gÞ

h i
dXdh1 . . .dhNC

�����
z¼zF

ð24Þ

rkxyzð~gnk;~f; ~v;unÞ¼
Z

X�Xz�Ink
eð~f � ~vÞ

T
CeðunÞpkð~gÞ

h i
dXdzdh1 . . .dhNC ð25Þ

with Ink ¼ I1 � I2 . . .� Ik�1 � I kþ1 . . .� INC

Note that the domain of integration in Eqs. (23)–(25) can be
splitted into the parameters domains and the geometric space
domain.

The introduction of the finite element approximation Eq. (21) in
the variational Eq. (22) leads to the linear system

Kkxyzð~gnk;~f; ~vÞqgk ¼Rgk
ð~gnk;~f; ~v;unÞ ð26Þ

where

� qgk is the vector of dofs associated with the expansion in I k,
� Kkxyzð~gnk;~f; ~vÞ is the stiffness matrix obtained by

Kkxyzð~gnk;~f; ~vÞ ¼
Z
Ik

NT
gk

kkxyzð~gnk;~f; ~vÞNgk
dhk

� Rgk
ð~gnk;~f; ~v;unÞ is the equilibrium residual obtained by

Rgk
ð~gnk;~f; ~v;unÞ ¼

Z
Ik

NT
gk

tkxyzð~gnk;~f; ~vÞdhk

�
Z
Ik

NT
gk
rkxyzð~gnk;~f; ~v;unÞdhk

3.3.2. Finite element problem to be solved on X and Xz

The Finite Element problems on X and Xz are a straightforward
extension of the formulation given in [38] to the parametrized
problem involving hk. However, for the sake of completeness, their
formulations are given in Appendices A and B.

4. Numerical results

In this section, an eight-node quadrilateral FE based on the
classical Serendipity interpolation functions [10] is used for the un-
knowns depending on the in-plane coordinates. A Gaussian numer-
ical integration with 3 � 3 points is used to evaluate the
elementary matrices. A fourth-order Layerwise z-expansion is also
considered. Concerning the functions associated to the orientations
of the plies hk, a piecewise linear function is chosen. An analytical
integration of the functions with respect to hk and the transverse
coordinate is performed. In the following, the plate is discretized
with Nx � Ny elements. The total number of numerical layer is
denoted Nz. The numbers of dofs are also precised for the three
problems associated to ðgj

nÞ
16j6NC

; vn and fn. They are denoted

Ndofhj
; Ndofxy and Ndofz respectively.

First, a one-layer plate is considered to show the accuracy of the
method. The influence of the discretization of the function g1ðh1Þ is
studied. Then, the method is assessed on two and four-layer plate
configurations. The results are compared with reference results
issued from PGD computations without introducing the laminae
orientations as parameters. Indeed, the performance of this latter

100 101
10−2

10−1

100

Fig. 2. Local error indicator with respect to the PGD iterations – S = 4 – 1 layer –
h1 2 ½�90;90�.

Table 1
Proper Generalized Decomposition algorithm.

� for n ¼ 1 to Nmax

Initialize ~fð0Þ; ~vð0Þ and ~gð0Þi for i 2 f1; . . . NCg
for j ¼ 1 to jmax

for i ¼ 1 to NC

Compute ~gðjÞi from Eq. (17), ~gðjÞp (p < iÞ; ~gðj�1Þ
p (p > iÞ; ~fðj�1Þ and ~vðj�1Þ

being known
end for

Compute ~fðjÞ from Eq. (18), ~gðjÞ and ~vðj�1Þ being known

Compute ~vðjÞ from Eq. (19), ~gðjÞ and ~fðjÞ being known
Check for convergence

end for

Set fnþ1 ¼ ~fðjÞ; vnþ1 ¼ ~vðjÞ and gnþ1 ¼ ~gðjÞ

Set unþ1 ¼ un þ pðgnþ1Þ fnþ1 � vnþ1

Check for convergence
� end for



has been shown in [38] and can be considered as a reference
solution.

All the following tests involve a simply-supported plate submit-
ted to a sinusoidal pressure. They are described below:

geometry: rectangular composite plate with b ¼ 3a. All layers
have the same thickness S ¼ a

h ¼ 4.
boundary conditions: cylindrical bending of a plate submitted
to a sinusoidal pressure qðx; yÞ ¼ q0 sin px

a .
material properties: EL ¼ 25 GPa; ET ¼ 1 GPa; GLT ¼ 0:2 GPa;
GTT ¼ 0:5 GPa; mLT ¼ mTT ¼ 0:25 where L refers to the fiber direc-
tion, T refers to the transverse direction.

mesh: Nx ¼ Ny ¼ 16 and the whole plate is meshed.
number of dofs: Ndofxy ¼ 2499 and Ndofz ¼ 3ð4� NC þ 1Þ.
results: The results are made non-dimensional using:

�u ¼ u1ð0; b=2; zÞ ET

hq0S3 ; �w ¼ u3ða=2; b=2; zÞ100ET

S4hq0

�raa ¼
raaða=2; b=2; zÞ

q0S2 ; �r12 ¼
r12ð0;0; zÞ

q0S2

�r13 ¼
r13ð0; b=2; zÞ

q0S
; �rzz ¼

rzzða=2; b=2; zÞ
q0
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Fig. 5. 16 First functions giðhiÞ – S = 4 – 2 layers – hi 2 ½�90;90�; i ¼ 1;2.
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Fig. 4. Distribution of maxð�uÞ; maxð �wÞ; maxð�r11Þ, and maxð�r13Þ with respect to the orientation h1 – Ndofh1 ¼ 30 ðleftÞ; 50 ðmiddleÞ; 150 ðrightÞ – S = 4 – 1 layer –
h1 2 ½�90�;90��.
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4.1. One-layered plate

The approach is first assessed on a one-layered plate where the
orientation of the ply belongs to the interval I1 ¼ ½�90�;90��. It
allows us to consider the most general case. For a fixed value of
h1, a local error indicator between a reference solution uref and a
separated variables solution un of order n is introduced as

�n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aerrðun � uref ;un � uref Þ

aerrðuref ;uref Þ

s

with aerrðu;vÞ ¼
Z

X�Xz

CeðuÞ : eðvÞdXdXz

ð27Þ

The variation of this error indicator with respect to the number of
PGD iterations is represented on Fig. 2 for h1 ¼ 0�;45�;68�;90�.
The trend of these four configurations is rather similar. For further
investigations, Fig. 3 shows the error rate on the maximum values
of displacements and stresses along with the number of couples
for different orientations. These errors are computed with respect
to the PGD results using the fixed value of h1 [38]. Only few couples
allow to decrease significantly the error rate for the three values of
h1. Then, the convergence rate is slower. Nevertheless, the accuracy
of the results is very satisfactory. For n ¼ 40 couples, the error rate
is less than 2.5% for both displacements and stresses. We also notice
that the convergence rate is higher for the stiffest case (i.e. h1 ¼ 0�).
Moreover, it can be inferred from this figure that the estimation of
the transverse shear stress is the most expensive, while only 10
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couples are needed to recover displacements with an error of less
than 2.8%.

Once the computation is completed, the approach gives directly
the explicit solution with respect to the orientation of the ply. Fig. 4
presents the variation of the in-plane, transverse displacements,
the in-plane and transverse shear stresses with respect to this
parameter h1 on the interval ½�90�;90�� for different values of
Ndofh1 . Due to the symmetry, only the interval ½0�;90�� is presented
in Fig. 4. The results are compared with the reference solution [38]

using eight fixed values of h1 (circle symbols on Fig. 4). On the one
hand, this figure illustrates the accuracy and the interest of the
present approach. On the other hand, the influence of the discret-
isation of the function g1 is shown. From Fig. 4, Ndofh1 ¼ 150 seems
to be sufficient to approximate the solution on the whole interval
½�90�;90�� and to recover the extrema. Only Ndofh1 ¼ 30 is needed
if the quantity of interest is the displacement.

Finally, we show that the parametrized solution obtained from
the PGD algorithm allows us to represent the variation of displace-
ments and stresses for a wide range of h. We can deduce for in-
stance that the minimal value of the transverse shear stress
occurs for a value of h1 of around 68� for this case.

4.2. 2-layered plate

A two-layered case is carried out with I i ¼ ½�90�;90��; i ¼ 1;2,
which allow us to consider all stacking sequences. For illustration,
the sixteen first functions giðhiÞ; i ¼ 1;2 are given in Fig. 5. All the
displacements and stresses are presented in Figs. 6–8. Four differ-
ent stacking sequences are shown and the results issued from the
PGD are compared with reference solution, denoted Ref ½h1; h2�. 50
couples are needed to obtain the solution. We notice that the re-
sults are rather accurate with respect to the reference regardless
of the configurations. For the transverse shear stress, the maximum
value is well-estimated. The distribution of the transverse normal
stress which is the most difficult to compute is rather correct.

Owing to the explicit solution, the influence of the orientation
of the two plies on the transverse displacement can be easily
shown (Cf. Fig. 9). The stiffest and the most flexible configurations

−80 −60 −40 −20 0 20 40 60 80

−80

−60

−40

−20

0

20

40

60

80

Fig. 9. wðh1; h2Þ – S = 4 – 2 layers – h1 2 ½�90;90�; h2 2 ½�90;90�.

−0.1 −0.05 0 0.05 0.1 0.15
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

3 4 5 6 7 8 9 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 11. Distribution of �u1 (left) and �u3 (right) along the thickness – S = 4 – 4 layers – hi 2 ½�90;90�.

100 101 102

10−0.8

10−0.7

10−0.6

10−0.5

10−0.4

10−0.3

Fig. 10. Local error indicator – S = 4 – 4 layers – hi 2 ½�90;90�; i ¼ 1;2;3;4.



can be deduced. A ratio of five between these ones can be
estimated.

4.3. 4-layered plate

A 4-layered plate is now considered to increase the number of
layers and assess the present approach. Fig. 10 illustrates the con-
vergence of the PGD algorithm for four stacking sequences with the
local error indicator introduced in Eq. (27). 92 couples are built to
compute the solution. For further assessment, the distributions of
the in-plane and transverse displacements, the in-plane, transverse
shear and normal stresses are shown in Figs. 11–14. It can again be
inferred from these figures that the results are in good agreement
with the reference solution. In particular, the distribution of the
transverse shear stress which can be completely different for var-
ious stacking sequences is rather well estimated. It is recalled that
it is computed from the constitutive equation.

From the couples built by the PGD algorithm, we are able to
represent explicitly the influence of the orientation of the plies
on the transverse displacements for instance. Fig. 15 shows the
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variation of this displacement with respect to h2 and h3 for a fixed
value of h1 and h4. As expected, the ½0�=0�=0�=0�� structure is the
stiffest one.

5. Conclusion

In this work, the PGD is applied to derive an explicit solution for
the modeling of composite plate structures with any stacking se-
quences. Indeed, the displacements are expressed as functions of
separated variables which involves NC functions depending on
the orientation of each ply, and two functions depending on the
space coordinates. The construction of these functions is based
on greedy type algorithm.

The approach is assessed on various configurations and the re-
sults are rather accurate. Moreover, the solution allows us to study
directly the influence of the stacking sequences without any addi-
tional computational cost, because it does not require the compu-
tations of many configurations with fixed laminae orientations. So,
the approach can be advantageously used for parametric problems
such as optimization, inverse problems and reliability. In fact,
these problems require numerous evaluations of the solution as
in Monte-Carlo approach. Moreover, the sensitivity of the solution
with respect to the angle parameters can be calculated explicitly
using the present approach. The added computational cost is neg-
ligible. It is the subject of future investigations.

Appendix A. Finite element problem to be solved on

The functions which are assumed to be known, are denoted ~g
and ~f while the function to be computed is denoted v. The strain
from Eq. (12) is defined in matrix notations as

eð~f � vÞ ¼ Rzð~fÞEv ðA:1Þ

with

Rzð~fÞ ¼

0 ~f 1 0 0 0 0 0 0 0

0 0 0 0 0 ~f 2 0 0 0

0 0 0 0 0 0 ~f 03 0 0

0 0 0 ~f 02 0 0 0 0 ~f 3

~f 01 0 0 0 0 0 0 ~f 3 0

0 0 ~f 1 0 ~f 2 0 0 0 0

266666666664

377777777775
ðA:2Þ

ET
v ¼ v1 v1;1 v1;2 v2 v2;1 v2;2 v3 v3;1 v3;2½ �

The variational problem defined on X from Eq. (19) isZ
X
E�v

T khzð~g;~fÞEvdX ¼
Z

X
v�T thzð~g;~fÞdX

�
Z

X
E�v

Trhzð~g;~f;unÞdX ðA:3Þ

with

khzð~g;~fÞ¼
Z

Xz�I1�I2 ...�INC

Rzð~fÞ
T
CRzð~fÞ

YNC

j¼1

~g2
j

" #
dzdh1 . . .dhNC ðA:4Þ

thzð~g;~fÞ¼
Z
I1�I2 ...�INC

~f �t pð~gÞ
h i

dh1 . . .dhNC

����
z¼zF

ðA:5Þ

rhzð~g;~f;unÞ¼
Z

Xz�I1�I2 ...�INC

Rzð~fÞ
T
CeðunÞpð~gÞ

h i
dzdh1 . . .dhNC ðA:6Þ

The introduction of the finite element approximation Eq. (20) in
the variational Eq. (A.3) leads to the linear system

Khzð~g;~fÞqv ¼Rvð~g;~f;unÞ ðA:7Þ

where

� qv is the vector of the nodal displacements associated with the
finite element mesh in X,
� Khzð~g;~fÞ is the stiffness matrix obtained by summing the ele-

ments’ stiffness matrices Ke
hzð~g;~fÞ ¼

R
Xe

BT
xykhzð~g;~fÞBxydXe

� Rv ð~g;~f;unÞ is the equilibrium residual obtained by summing
the elements’ residual load vectors Re

v ð~g;~f;unÞ ¼R
Xe

NT
xythzð~g;~fÞdXe �

R
Xe

BT
xyrhzð~g;~f;unÞdXe

Appendix B. Finite element problem to be solved on z

In this section, the functions which are assumed to be known,
are denoted ~g and ~v while the function to be computed is denoted
f. The strain from Eq. (12) is defined in matrix notations as

eð~v � fÞ ¼ Rxyð~vÞEf ðB:1Þ

with

Rxyð~vÞ ¼

~v1;1 0 0 0 0 0
0 0 ~v2;2 0 0 0
0 0 0 0 0 ~v3

0 0 0 ~v2 ~v3;2 0
0 ~v1 0 0 ~v3;1 0

~v1;2 0 ~v2;1 0 0 0

2666666664

3777777775
and Ef ¼

f1

f 01
f2

f 02
f3

f 03

2666666664

3777777775
ðB:2Þ
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The variational problem defined on Xz from Eq. (18) isZ
Xz

E�f
T khxyð~g; ~vÞEf dz ¼ f�T thxyð~g; ~vÞ

���
z¼zF

�
Z

Xz

E�f
Trxyð~g; ~v;unÞdz ðB:3Þ

with

khxyð~g; ~vÞ ¼
Z

X�I1�I2 ...�INC

Rxyð~vÞT CRxyð~vÞ
YNC

j¼1

~g2
j

" #
dh1 . . . dhNC dX ðB:4Þ

thxyð~g; ~vÞ ¼
Z

X�I1�I2 ...�INC

~v � t pð~gÞ½ � dh1 . . . dhNC dX ðB:5Þ

rxyð~g; ~v;unÞ ¼
Z

X�I1�I2 ...�INC

Rxyð~vÞT CeðunÞ pð~gÞ
h i

dh1 . . . dhNC dX ðB:6Þ

The introduction of the finite element discretization Eq. (20) in
the variational Eq. (B.3) leads to the linear system

Khxyð~g; ~vÞqf ¼Rf ð~g; ~v;unÞ ðB:7Þ

where qf is the vector of degree of freedom associated with the
polynomial expansion in Xz, Khxyð~g; ~vÞ is a stiffness matrix defined
by Eq. (B.8) and Rf ð~g; ~v;unÞ an equilibrium residual defined by
Eq. (B.9)

Khxyð~g; ~vÞ ¼
Z

Xz

BT
z khxyð~g; ~vÞBzdz ðB:8Þ

Rf ð~g; ~v;unÞ ¼ NT
z thxyð~g; ~vÞ

���
z¼zF

�
Z

Xz

BT
z rxyð~g; ~v;unÞdz ðB:9Þ
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