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NURBS-based isogeometric analysis of laminated composite beams

using refined sinus model
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2 Faculty of Civil Engineering, Hakim Sabzevari University, Sabzevar, Iran
b | EME — EA 4416, Université Paris Ouest, 50 rue de Sevres, 92410 Ville d'Avray, France

ABSTRACT

An isogeometric formulation based on non-uniform rational B-spline (NURBS) basis functions is pre-
sented for the analysis of laminated composite beams. A refined sinus model is considered in deriving
the governing equations using the principle of virtual work. This refined sinus model does not require
shear correction factor and ensures continuity conditions for displacements, transverse shear stresses as
well as boundary conditions on the upper and lower surfaces of the laminated beam. It is important to
notice that the number of the mechanical unknowns is independent of the number of layers. The pro-
posed isogeometric finite element does not suffer from shear locking. Both static and vibration me-
chanical tests for thin and thick laminate beams are presented in order to validate the capability of the
proposed isogeometric formulation. For different boundary conditions, fiber orientations and lay-up
number, excellent agreement is found between the results obtained from the present formulation and

reference results from open literature or finite element reference solutions.

1. Introduction

Due to their high specific strength and stiffness to weight ratios,
laminated composite structures have been widely used in a wide
range of engineering structures and modern industries. In order to
avoid local failure phenomena such as delamination, matrix
breakage, and local excessive plastic deformations, local variations
of the stress distribution in the composite structures have to be
determined accurately. Consequently, choosing an adequate
mathematical model to accurately predict the local behaviors and
performances of the mentioned structures under various environ-
ments is a key issue. According to published researches, various
theories have been developed for composite or sandwich struc-
tures. The most accurate approach to analyze the laminated plates/
beams is solving the governing differential equations of the three-
dimensional (3D) elasticity (Pagano, 1969, 1970; Pagano and
Hatfield, 1972). However, development of these solutions is a
difficult task and the resulted solution cannot be expressed in a
closed form for the general case of arbitrary geometry, boundary
and loading conditions. These drawbacks encouraged some re-
searchers to employ the two-dimensional (2D) models, prescribing
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variations of the displacement components in the transverse di-
rection. Until now, many 2D theories have been introduced by re-
searchers for the analysis of laminated structures. In 2D equivalent
single layer theories (ESLTs), the number of the unknowns is in-
dependent of the number of layers. But, the transverse shear stress
continuity in the interfaces of the layers is not guaranteed. Thus, in
some circumstances, classical (Stavsky and Loewy, 1971), Reiss-
ner—Mindlin-type, first-order shear-deformation (FSDT) (Reissner,
1945; Mindlin, 1951), and third-order shear deformation
(Whitney, 1969a) theories which are variants of the ESLT, may lead
to inaccurate results. In order to overcome the drawbacks of the
ESLT, the LayerWise (LWT) or discrete-layer theories were pre-
sented by some researchers (Reddy, 2004, 1987; Reddy et al., 1989;
Barbero et al., 1990; Robbins and Reddy, 1993). The displacement
field along the thickness of each ply is approximated by a piecewise
continuous function. Nevertheless, the number of unknowns is
dependent on the number of the layers which in turn, increases the
computational cost. In order to improve the accuracy of the results
and reduce the number of the unknowns for the multilayered
composites, zigzag (ZZ) theories were proposed by some re-
searchers. These theories are able to reproduce piecewise contin-
uous displacement and transverse stress fields in the thickness
direction of the laminated structures (Lekhnitskii, 1935; Ren, 1986;
Ren and Owen, 1989; Ambartsumian, 1969; Whitney, 1969b; Icardi,
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1998, 2001a, 2001Db; Reissner, 1986; Murakami, 1984, 1986; Carrera,
1999; Carrera, 2000). The 2D global—local higher-order plate the-
ories (Li and Liu, 1997; Shariyat, 2010a, 2010b, 2010c; Lezgy-
Nazargah et al.,, 2011; Beheshti-Aval and Lezgy-Nazargah, 2012,
2013; Beheshti-Aval et al., 2013) are also capable of giving accurate
results. For a comprehensive overview on theories and computa-
tional models for laminated composite structures, readers can refer
to Carrera and Brischetto (2009), Zhang and Yang (2009), and Hu
et al. (2008).

In the literature, different analytical (Pagano, 1969, 1970; Pagano
and Hatfield, 1972; Srinivas et al., 1970; Srinivas and Rao, 1970;
Jiarang and Jianqgiao, 1990; Vel and Batra, 1999; Leissa and Kang,
2002; Kang and Shim, 2004) and numerical approaches have
been introduced for the analysis of laminated composite structures.
The finite element method (Shariyat, 2010a, 2010b, 2010c; Lezgy-
Nazargah et al.,, 2011; Beheshti-Aval and Lezgy-Nazargah, 2012,
2013; Beheshti-Aval et al.,, 2013), the finite difference method
(Numayr et al., 2004; Wu et al., 2008), the meshfree methods (Bui
et al., 2011), the differential quadrature methods (Alibeigloo and
Madoliat, 2009), the Ritz methods (Liew, 1996; Venini and
Mariani, 1997; Hu et al., 2004; Chen et al., 1997), the strip
element method (Wang et al., 2001, 2000), etc. are also some of
typical numerical methods which were successfully applied for the
analysis of laminated composite structures. Among these methods,
the finite element approach is one of the most powerful and reli-
able approaches for solving such problems. However, it has some
inherent drawbacks due to the use of the so-called meshing process
for obtaining a discretized geometry. This process often leads to
geometrical errors. Moreover, mesh generation, re-meshing and
achieving the smoothness with arbitrary continuity order between
the elements are the cumbersome tasks and time-consuming
procedures in the traditional finite element analysis. To overcome
these drawbacks, a new powerful computational method, the so-
called isogeometric approach, is recently introduced by Hughes
et al. (2005). The conventional NURBS-based Computer Aided
Design (CAD) tool is directly integrated into the finite element
analysis. Indeed, isogeometric approach tries to overcome the gap
between CAD and finite element analysis. Therefore, the same
geometric definition of non-uniform rational B-spline basic func-
tions is used to represent the field variable approximations of the
structures as well as the geometry of structure. Isogeometric
analysis based on NURBS basic functions can preserve exact ge-
ometries and enhance the accuracy of the traditional finite ele-
ments significantly. As well known, the NURBS basic functions can
provide higher continuity of derivatives than that of Lagrange and
Hermite interpolation functions that has been widely used in finite
element formulation. In addition, the order of NURBS basic func-
tions can be easily increased without changing the geometry or its
parameterization (Rogers, 2001). Thanks to these features, iso-
geometric analysis has been used for solving different solid and
fluid mechanics problems (Bazilevs and Hughes, 2008; Bazilevs
et al., 2008; Wall et al., 2008; Qian, 2010; Verhoosel et al., 2011;
Cottrell et al.,, 2006; Elguedj et al., 2008). However, few works are
available in the literature which employ the isogeometric formu-
lations for the analysis of laminated composite structures based on
the advanced and refined theories. Thai et al. (2013) developed an
isogeometric finite element method for static, free vibration and
buckling analysis of laminated composite and sandwich plates
based upon layer-wise theory. Shojaee et al. (2012) have introduced
an isogeometric finite element formulation for natural frequencies
and buckling analysis of thin symmetrically laminated composite
plates based upon the classical plate theory (CPT). Kapoor and
Kapania (2012) developed geometrically nonlinear NURBS iso-
geometric formulations for the bending analysis of laminated
composite plates in conjunction with first-order shear-deformable

theory. Thai Chien et al. (2012) studied free vibration and buckling
problem of laminated composite Reissner—Mindlin plates using
isogeometric analysis. Benson et al. (2010) studied Reiss-
ner—Mindlin shell problems using isogeometric analysis.

In the present study, an isogeometric approach for the develop-
ment of a new beam element based on a refined sinus model is
introduced for static and free vibration of laminated composite and
sandwich beams. The employed refined sinus model is computa-
tionally low cost, efficient and simple to use. This sinus model was
introduced first by Touratier (1991). Then, it was extended to take
into account the interlaminar continuity of the transverse shear
stresses by Polit and Touratier (2000) for plates, and by Dau et al.
(2004) for shells. The original sinus model has been enriched by
Vidal and Polit (2008) by introducing a layer refinement in the ki-
nematics, and then extended to thermal and piezoelectric effects
(Vidal and Polit, 2009; Beheshti-Aval et al., 2011; Beheshti-Aval and
Lezgy-Nazargah, 2010; Lezgy-Nazargah et al,, 2013). In this frame-
work, this study is focused on the integrating of these last works into
the isogeometric analysis. The NURBS basic functions are used to
represent both geometric and field variable approximations. The
accuracy and the effectiveness of the proposed method are justified
through several numerical examples. The numerical results exhibit
good agreements with the available published finite element results.

2. Formulation of the mechanical problem
2.1. Geometry, coordinate system

The laminated beam of length L has a rectangular uniform cross
section, width b, height h, and is made of NC layers. The geometric

parameters and the chosen Cartesian coordinate system (x1, X2, X3)
are shown in Fig. 1. The slenderness ratio is defined as S = L/h.

2.2. Constitutive equations

The 3D linear constitutive equations of the kth layer in its global
material coordinate system can be expressed as:
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where oj; and ¢; denote the stress and the infinitesimal strain
tensor components respectively. ¢, are the elastic material con-
stants. In a laminated composite beam with small width, the
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Fig. 1. Laminated composite beam: Cartesian coordinate system and geometric
parameters.




introduction of the classical plane stress conditions leads to the 1D
constitutive relation (2):

o=Cst (2)
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2.3. Weak formulation

The governing equations of motion are derived based on the
principle of virtual work. This principle for a laminated composite
structure on a volume @ and regular boundary surface I' can be
written as follows. We search the displacement such that

oI =o6U — oW
- / delodQ+ / Su'Fsdr+ / su'F,do— / pduidQ=0
Q T Q Q

(3)

where Fs, Fy , and p are surface force vector, mechanical body force
vector and mass density, respectively. 6u denote admissible virtual
displacements.

2.4. Displacement and strain fields

The displacement field used in the present study is given by
Vidal and Polit (2008):

Uy (X1, %2, X, ) = (X1, £) = X3W(x1, 0) 1 + (03(x1,0) + Wlx1,0) 1)
x F(x3) + S(x3)uds (%1, 1)
)

U3(X1,X27X3,t) = W(X],t)

where the functions uq(xq,x,x3,t) and u3(xq,Xy,X3,t) represent
the axial and transverse displacement components, respectively. t
is the time u(xq, t) and w(x,, t) are the displacement components of
the central line. ws3(xq,t) denotes the shear-bending rotation
around the x, axis. ul;(x1,t) is an additional unknown function
associated with the refinement per layer. In the context of the
refined sinus model, we also have:

h . mxgy S _ 1 3z
F(xﬁ:;sm(%%—z zkﬁ’{+ —§+—">ﬁz

3z, 5z,

n _7+_>ﬁ3>( (x3 —2z) —H(X3 —241))

NC
= 1 3z 3z, 5z
S X — Z 6’( + _ k 6k _ k k 6k
( 3) l;:] k1 2 2 2 2 (5)
x (H(x3 —2z) —H(X3 = 211))

where Z = qiX3 — by, @ = 725, by = 2212 with X3 € (25 2441 -

In the above equations, H is the I—Ieav151des function.
6’1‘,6’5,6’;6’1‘,6’5 and 6’3‘ are coefficients deduced from the inter-
laminar continuity conditions of the transverse shear stress on
the interfaces between the layers, and the boundary conditions on
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the upper and lower surfaces of the beam. It is worthy to note that
these coefficients depend only on the material properties and the
global coordinates of the layers. It is seen from Eqs. (6)—(7) that the
refined sinus model includes only four mechanical generalized
unknowns u, w, w3 and “%1- For further details on the formulations,
the interested readers can refer to Vidal and Polit (2008).

The strain equations can be derived from the displacement field:

e = Uy — (x3)W11 + (w31 +W11)F(x3) + S(X3)u3; 4

(6)

Y13 = 2613 = (w3 + W1)F(x3) 3 + S(x3) 313,

3. Isogeometric approximation
3.1. NURBS basis functions

NURBS curves are constructed by taking a linear combination of
NURBS basis functions. The coefficients of the basis functions are
referred to as control points. These are somewhat analogous to
nodal points in the traditional finite element analysis. Piecewise
linear interpolation of the control points gives the so-called control
polygon. A NURBS curve of order k—1 is defined as:

n+1
=Y BRik(!) fmin <E<fmax,2<k<n+1
i=1

(7)

where B; are the coordinate position of n+ 1 control points and
R; 1 (¢) are the NURBS basis functions which are defined as:

hiN; i ()

Y (8)
Z?;ll hiNiﬁk(E)

Rik(§) =

where h; are a set of n+ 1 homogenous weighting factors corre-
sponding to the control points and N; represents the ith normal-
ized B-spline basis functions of order k—1 which are defined by the
following Cox-de Boor recursion formulas (Rogers, 2001):

1 ifg <&<éig

0 otherwise (9-a)

N;i1(6) = {
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The values of ¢; are elements of a knot vector satisfying the
relation £; < ¢;,¢. A knot vector in one dimension is a set of co-
ordinates in the parametric space, written
E={&1, &2, -y Eniki1}, Where is & eR. Knots divide the para-
metric space into knot spans or elements. They are somewhat
analogous to elements in the traditional finite element analysis.
Fundamentally, two types of knot vector are used, periodic and
open, in two manners, uniform and non-uniform. If knots are
equally-spaced in the parametric space, they are said to be uni-
form. If they are unequally spaced, they are non-uniform. More
than one knot can be located at the same coordinate in the
parametric space. These are referred to as repeated knots. An open
knot vector has multiplicity of knot values at the ends equal to k.
In the isogeometric analysis, with the purpose of satisfying the
Kronecker delta property at boundary points, an open knot vector,
i.e., a knot vector with k repeated knots at the ends, is used (Roh
and Cho, 2004). In one dimension, basis functions formed from
open knot vectors are interpolatory at the ends of the parametric
space interval, {£1, &,.x.1}, but they are not, in general, inter-
polatory at interior knots. This is a distinguishing feature between
knots and “nodes” in finite element analysis.

The important properties of the NURBS basis functions can also
be summarized as follows:

T {iq il Ui Wy W Wni1t (@3); (@3);
Ri1 Riz Ry O 0O -0 0 O
0 0 - 0 Ry Rp Rin,1 0 O
R= 0o 0 - o0 0 0 - 0 Ry R
0 o - 0 0 o - 0 0 0

(1) They are polynomial of degree k—1 on each interval &; <& <%;, 1.

(2) They have continuous derivatives of degree k—2 in the
absence of repeated knots or control points.

(3) Repeating a knot or control point m times decreases the
number of continuous derivatives by m.

It is worthy to note that what we refer to as “order” in the usual
terminology in the finite element literature, is usually referred to as
“degree” in the computational geometry literature. For more details
about NURBS basis functions, readers can refer to Rogers (2001).

3.2. Approximation of the boundary value problem

In this section, the NURBS basis function is employed for both
the parameterization of the geometry and the approximation of the
mechanical variables of Eq. (4) as follow:

n+1

X1(8) = > XiRi (%)

i=1

n+1 n+l
uxq(8)) = X% UiR;k(£), W(x1(8)) =D _ WiR; (%) (10)
i= p
n+1 n+1

w3(x1(9) =D O3iRik(@), udi(x1(8) = > U3yR;(8)
i=1 i=1

In Eq. (10), ¢ is the parametric coordinate, x;(£) is the physical
coordinate, X; represents the physical coordinate position of ith
control point of an n + 1 control mesh. t;, w;, 3 and 11%11- represents
the values of the unknown displacement variables u, w, w3 and ul,
at each control point (control variables), respectively. R;  (¢£) denote
the NURBS basis functions of order k—1.

Based on Eqgs. (4) and (6), displacements and strain components
can be expressed under the following matrices form:

{u} = [A{uu} {e} = [Ll{uu}

T
where u = [u4 u3]T,uu:[u W ow3 uél] ,e=e1; v13)",and

(11)

d d
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Using Eq. (10), the vector of displacement components u, may
be expressed in terms of the unknown control variables u, as

follows:
{uu} = [R]{uy} (12)

where

0 0 0
0 0 0
Rin,1 0 O
0 Ri1 R Rins

Using Eqgs. (11) and (12), the displacements and strain vectors
can be expressed as follows:
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Fig. 2. Transverse displacement versus the aspect ratio for the cantilever beam (n = 7).



25, 25
— without field compatibility
-8 with field compatibility
20~ 20~
S=100 S$=10000
157 151
g
]
H
w |
10} 10
5 5
o 0 A—;L&Be-a-e-a&&&sﬁe-a-aﬁﬂ
0 5 10 15 20 0 5 1 rtl) 15 20
n

Fig. 3. Convergence of the transverse displacement of the cantilever beam for two
values of length-to-thickness ratio; (k = 3).

{up = {w} , {e} =2 {u} (13)
with
= [A][R] and % = [L][R] (14)

Substituting Eqs. (2) and (13) into Eq. (3), and assembling the
elementary matrices yield the following dynamical discrete
equation:

Mq(t) + Kq(t) = F(t) (15)

where q(t) denotes the vector of unknown displacement variables at
the control points. The matrices and vectors in the above equation

are the global mass matrix M= [ o TrdQ, the global stiffness
Q
matrix K= [#7C.»d0, and loads vector F(t)= [.#TFydo+
Q Q

[ TFsdr.
J

4. Results and discussions

In the present section, static and free vibration analyses of
isotropic, laminated composite and sandwich beams with different
stacking sequences and boundary conditions are considered to
evaluate the efficiency and the accuracy of the present isogeometric
formulation. Results of the present formulation are compared with
either previously published results of well-known references or
with the finite element results obtained with commercial codes
(ANSYS and ABAQUS solutions).

Table 1

4.1. Static analysis

4.1.1. Shear locking

First, the shear locking phenomenon is addressed on an
isotropic cantilever beam submitted to a point load. The material
properties are such as E = 210000 MPa and v = 0.3. Variations of
the normalized deflection versus the aspect ratio are shown in
Fig. 2. Comparison of the present results with results of the
Euler—Bernoulli beam theory reveals that a shear locking occurs for
the quadratic (k = 3) NURBS basis function. This phenomenon
disappears for higher order functions (see Fig. 2 for k = 4) as it has
already been shown in Echter and Bischoff (2010). Note that the
approximation using the linear basis functions (k = 2) is not
considered as it is the same one in the Finite Element method.

Nevertheless, the shear locking can be avoided using the field
compatibility approach developed in Polit et al. (2012) and
extended in the present work. For k = 3, it can be inferred from
Fig. 2 that the shear locking is avoided using this methodology.

A convergence study using different values of n is also presented
in Fig. 3 for S = 100 and S = 105 with respect to the
Euler—Bernoulli solution. A comparison is given between the iso-
geometric approximation and the field compatibility methodology.
For a thin plate (S = 10°5), the locking disappears. Moreover, the
convergence rate is independent of the length to thickness ratio.

4.1.2. Properties of the isogeometric approach

In this section, a three-layered [0°/90°/0°] simply supported
composite beam with various values of length to thickness ratio is
analyzed using the proposed isogeometric formulation. The beam
is made of carbon/epoxy with the following material properties:

(Er,Er,Gir,Gr) = (172.4,6.895,3.448,1.379)GPa,
(vir, vr7) = (0.25,0.25)

L and T denote directions parallel and normal to the fibers,
respectively. All layers of the beam have equal thickness. The beam
is subjected to a sinusoidal pressure p(x;) = pg sin(wx1 /L) on its top
surface. Accuracy of the results of the present isogeometric
formulation is assessed by comparing with those of Pagano (1969).
This three-layered composite beam has been also studied by Vidal
and Polit (2008) using refined sinus finite element model. The
present results are also compared with this one. The following
normalized quantities are used:

(w1, u3) = Er (11 /h po, 100u3 /15°po ).

(@11,713) = (911, 713)/Po

4.1.2.1. Convergence study. A convergence study varying the num-
ber of control points and for different orders of NURBS basis func-
tions is carried out. Table 1 shows results of the convergence study
using different orders of NURBS basis functions with the linear
parameterization and a fixed number of control points/nodes

Results of the convergence study for the three-layer [0°/90°/0°] beam using various orders of NURBS basis functions; n = 7; (S = 4).

No. elements No. dof 113(0.5L, 0) 11;(0,0.5h) 713(0,0)(C) 713(0,0) (E) 711(0.5L,0.5h)
k=2 7 32 52589 2.5603 21778 0 14.10
k=3 6 32 2.8841 0.9602 1.4913 0.6937 17.63
k=4 5 32 2.9091 0.9439 1.4229 1.2861 18.17
k=5 4 32 2.9097 0.9435 1.4212 15699 18.49
k=6 3 32 2.9099 0.9437 1.4221 1.4869 18.51
k=7 2 32 2.9101 0.9437 1.4220 1.4295 18.53
k=8 1 32 2.9101 0.9437 1.4220 1.4326 18.53




Table 2

Results of the convergence study for the three-layer [0°/90°/0°] beam; various orders of NURBS basis functions versus different numbers of elements; (S = 4).

No. elements No. control points No. dof u3(0.5L, 0) u1(0,0.5h) 713(0,0)(C) 713(0,0)(E) @11(0.5L,0.5h)
k=3 2 3 12 2.7466 0.9996 1.6457 0.8645 18.44
4 5 20 2.8483 0.9708 1.5339 0.5969 16.73
8 9 36 2.8967 0.9555 1.4720 0.7748 18.09
16 17 68 2.9077 0.9483 1.4420 0.9680 18.46
32 33 132 2.9096 0.9456 1.4302 1.0625 18.51
k=4 2 4 16 2.9091 0.9535 1.4628 0.8160 21.28
4 6 24 29104 0.9440 1.4235 1.2000 19.61
8 10 40 2.9102 0.9437 1.4222 1.3751 18.79
16 18 72 29101 0.9437 1.4219 1.4201 18.50
32 34 136 29101 0.9437 1.4219 1.4299 18.53
k=5 2 5 20 2.9071 0.9419 1.4141 1.5186 18.49
4 7 28 2.9097 0.9435 1.4212 1.5699 18.49
8 11 44 29101 0.9436 1.4219 1.4647 18.53
16 19 76 2.9101 0.9437 1.4219 1.4341 18.53
32 35 140 2.9101 0.9437 1.4219 1.4341 18.53
k=7 2 7 28 29101 0.9437 1.4220 1.4295 18.53
4 9 36 29101 0.9437 1.4219 1.4284 18.53
8 13 52 2.9101 0.9437 1.4219 1.4325 18.53
16 21 84 29101 0.9437 1.4219 1.4325 18.53
32 37 148 2.9101 0.9437 1.4219 1.4325 18.53
Exact - - - 2.8872 0.9396 1.4318 1.4318 18.8
Table 3 Table 5
The coordinates of different sets of control points employed in the static tests. The different sets of weighting factors corresponding to the control points consid-
- ered for the three-layers [0°/90°/0°] beam with n = 7.
i 1 2 3 4 5 6 7 8
0 007L 020L 040L 060L 0.80L 093L L Casea 2z 3 4 5 8 78
% 0 014L 028L 050L 064L 079L 086L L Caseb % 0 0.14L 028L 043L 057L 071L 086L L
0 026L 029L 043L 057L 071L 094L L Casec 1 1 1 1 1 1 1 1 Case 1
0 014L 028L 043L 057L 071L 086L L Cased 1 1 1 ) ) 1 ; 1 Case 2
1 1 1 15 15 1 1 1 Case 3
1 1 1 075 075 1 1 1 Case 4
(n = 7). Note that the transverse shear stress is calculated using two } } } ?2 (1’5 } } } Ease 2
different methods: (i) employing the constitutive equations; (ii) o1 1 51 h 51 b cgzz ;
integrating the elasticity equilibrium equations, along the thickness 1 13 17 2 2 17 13 1 Case 8
of laminates. Results of these two approaches are denoted by (C) 1 1.1 1.3 1.5 1.5 1.3 1.1 1 Case 9
and (E), respectively. It is seen that the displacement components 15 13 11 1 1 1.1 13 1.5 Case 10
are less sensitive to the orders of NURBS basis functions than the 1 1 1 1 1 L1 13 15 Casell
d th locity is high 1 2 2 2 2 2 2 1 Case 12
stress components an e convergence velocity is high. 5 1 1 1 1 1 1 5 Case 13

Different numbers of elements are also considered with a fixed
expansion order for the NURBS basis functions. Results are sum-
marized in Table 2. In this table, the number of degrees of freedom
are also given. It should be noticed that the convergence rate is
better for the higher order expansion of NURBS basis functions.
Considering the number of dofs, the use of k = 7 with two elements
is suitable for the static analysis and drives to only 32 dofs. This is
much lower than the corresponding results with classical FE
approach (136 dofs). It can be also mentioned that the order of
NURBS basis functions can be increased without increasing the
number of nodes. This property is an advantage of the isogeometric
analysis.

4.1.2.2. Influence of the parameterization. Different parameteriza-
tions can be used for the geometry and the sensitivity of the results
can be compared. To this end, the three-layered [0°/90°/0°]

Table 4
The effect of different parameterization on the bending static results; three-layers
[0°/90°/0°] beam with S = 4; (n =7, k = 4).

3(0.5L, 0) 1 (0,0.5h) 713(0,0)(C) 711(0.5L,0.5h)
Casea 29091 (0.76%) 09439 (0.46%)  1.4229 (0.62%)  18.17 (3.35%)
Caseb 2.8512(1.25%) 0.9460 (0.68%) 1.4332(0.10%)  19.85 (5.6%)
Casec 2.8925(0.18%) 0.8645(8.00%) 1.2122 (15.34%) 19.24 (2.33%)
Cased 2.9036 (0.57%) 0.9439 (0.46%) 1.42605 (0.40%)  18.38 (2.24%)

composite beam is modelized using cubic NURBS basis functions
with different sets of control points. Data of different control points
are given in Table 3. A linear parameterization (case a) is compared
with different non-linear ones (case b, ¢, d). The obtained bending
numerical results are shown in Table 4. It can be observed that the

Table 6
The effect of different weights of control points on the static bending results; three-
layers [0°/90°/0°] beam with S = 4; (n = 7, k = 3).

113(0.5L, 0) 1;(0,0.5h) 713(0,0) (C) 711(0.5L, 0.5h)
Case1 2.8922(0.17%) 0.9441 (048%) 1.4242(0.53%) 17.90 (4.76%)
Case2 2.6771(7.28%) 0.8914 (5.13%) 1.3422(6.26%) 18.57 (1.20%)
Case3 2.8174(242%) 0.9340 (0.60%) 14139 (1.25%) 18.30 (2.65%)
Case4d 2.8803 (0.24%) 0.9634 (2.53%) 1.5262(6.59%) 17.48 (7.02%)
Case5 2.8200(233%) 0.9544 (1.58%) 1.5503 (8.28%) 18.25 (2.95%)
Case 6  2.8354(1.79%) 0.9347 (0.52%) 14218 (0.70%) 15.84 (15.74%)
Case7 2.6811(7.14%) 0.8935(4.91%) 1.3631(4.80%) 13.56 (27.86%)
Case8 2.7470 (4.86%) 0.9536 (1.49%) 1.5747(9.98%) 15.51 (17.43%)
Case9 2.8225(224%) 0.9588 (2.04%) 1.5095 (5.43%) 16.33 (13.12%)
Case 10 2.9154(0.98%) 0.9219 (1.88%) 1.3520 (5.57%) 19.17 (1.99%)
Case 11 2.9000 (0.44%) 0.9598 (2.15%) 1.4890 (3.99%) 19.74 (4.98%)
Case 12 2.2949 (20.51%) 0.7010 (25.39%) 1.2986 (9.30%)  15.75 (16.22%)
Case 13 2.4515 (15.09%) 0.6420 (31.67%) 0.6332 (55.78%) 15.34 (18.40%)

“The values in the parenthesis show the percent error.



Table 7
u1(0,0.5h) and 3(0.5L, 0) for different values of S- three layer [0°/90°/0°].

S u1(0,0.5h)
Present Error (%) SinRef-c Error (%) Exact
4 0.9437 0.4 0.9422 03 0.9396
20 67.0170 0.2 66.8640 <0.01 66.8696
40 519.28 0.2 518.08 <0.01 518.08
13(0.5L,0)
4 2.9101 0.8 2.9086 <1 2.8872
20 0.6187 0.2 0.6175 <0.1 0.6173
40 0.5380 0.2 0.5367 <0.01 0.5367
Table 8
713(0,0) for different values of S- three layer [0°/90°/0°].
713(0,0)
S 4 20 40
Present Direct (C) 1.4220 9.0093 18.215
Error (%) 0.7 3.0 33
Equil. eq (E) 1.4295 8.7418 17.588
Error (%) <1 <1 <1
SinRef-c Direct (C) 1.4213 9.0052 18.184
Error (%) <1 2.9 3
Equil. eq (E) 1.4236 8.6973 17.539
Error (%) <1 <1 <1
Exact 1.4318 8.7490 17.634

linear parameterization (case a) and the nonlinear parameteriza-
tion with equally spaced control points (case d) give the most ac-
curate results.

4.1.2.3. Influence of the weight. The effect of weights (Eq. (8)) of the
control points on the accuracy of the numerical results is also
studied. The control points and weights are given in Table 5. The
associated results are shown in Table 6. We notice that the selection
of non-equal weights for the control points increases the discrep-
ancy between the isogeometric and elasticity results regardless of
the weighting. Even if the distribution of the weights is symmetric,
the accuracy of the results decreases.

Based on these results, the subsequent static results are calcu-
lated using equal weights for all control points, NURBS basis
functions of order 6 (k = 7) with n = 7, and a linear parameteri-
zation of the geometry.

4.1.3. A simply supported three-layer [0°/90°/0°] beam

The numerical results for deflection, in-plane displacements,
transverse shear stress, and in-plane stress are given in Tables 7—9
for three different length to thickness ratios S = 4, 20, 40. In these
Tables, the error of the present isogeometric analysis is compared
with those obtained from the refined sinus finite element model
(denoted SinRef-c) and exact reference solution. It is seen that the
present isogeometric formulation has a good agreement with the
exact solution. The accuracy of the present isogeometric formula-
tion and refined sinus finite element (Vidal and Polit, 2008) are the
same. The variation of normalized in-plane, inter-laminar shear

Table 9
711(0.5L,0.5h) for different values of S- three layer [0°/90°/0°].

711(0.5L,0.5h)

S Present Error (%) SinRef-c Error (%) Exact

4 18.5 1.6 18.6 1 18.8
20 263.2 0 264.0 <05 263.2
40 1019.6 <0.02 1023.0 <0.5 1019.8
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Fig. 4. Through-the-thickness distribution of 711, 713 and u; for the simply supported
three-layer beam (S = 4).

stresses and in-plane displacement through the thickness (S = 4)
are presented in Fig. 4 for further comparison. In these figures, the
present numerical results are also compared with the CLT's results
(Pagano, 1969). Although the present laminated theory has only

Table 10

17(0,0.5h) and u3(0.5L, 0) for different values of S- two layer [0°/90°].
S 1;(0,0.5h)

Present Error (%) SinRef-c Error (%) Exact
4 4.80 5 4.78 5 4.55
20 487.54 0.5 486.20 0.2 485.15
40 3868.0 0.3 3858.7 <0.1 3856.3
13(0.5L,0)

4 4.7026 0.2 4.6964 <0.1 4.6950
20 2.7098 0.3 2.7035 <0.1 2.7027
40 2.6463 0.2 2.6400 <0.1 2.6398




Table 11
@13(0, —h/4) for different values of S- two layer [0°/90°].
713(0,—h/4)
S 4 20 40
Present Direct (C) 2.589 13.494 27.136
Error (%) 4 8 7
Equil. eq (E) 2.788 14.604 29.095
Error (%) 3 0.1 0.8
SinRef-c Direct (C) 2.588 13.450 26.940
Error (%) 4 8 8
Equil. eq (E) 2.768 14.555 29.165
Error (%) 2 0.5 0.5
Exact 2.706 14.620 29.324
Table 12
a11(L/2,—h/2) for different values of S- two layer [0°/90°].
a11(L/2,-h/2)
S Present Error (%) SinRef-c Error (%) Exact
4 31.8 6 319 6 30.0
20 701.2 0.2 703.5 0.5 699.7
40 2793.5 0.03 2803.1 03 2792.6

two generalized unknowns more than CLT, the results are more
accurate. It may be readily seen from Fig. 4 that the proposed iso-
geometric formulation predicts the in-plane stress very accurately.
The transverse shear stress distribution obtained from the equi-
librium equations is in better agreement with the exact solution.
However, the presented isogeometric formulation predicts the
transverse shear stress with sufficient accuracy from the constitu-
tive law.

4.14. A simply supported two-layer [0°/90°] beam

A two-layered [0°/90°] simply supported composite beam with
various values of length to thickness ratio is analyzed using the
present isogeometric approach to evaluate the accuracy of the
proposed formulation for an asymmetric lamination scheme with
an extensional-bending coupling. Material properties and load
conditions of the present example are the same as those of the
previous one. The numerical results of this test case are also
compared with both the refined sinus finite element models of
Vidal and Polit (2008), CLT's results (Pagano, 1969), and 3D exact
solution of Pagano (1969).

The results are summarized in Tables 10—12. Similar to the
previous example, the present refined sinus isogeometric formu-
lation is as accurate as the refined sinus finite element model. Fig. 5
depicts variations of the normalized in-plane displacement and
stress components along the thickness direction. The transverse
shear stress based on the equilibrium equations agrees very well
with the exact elasticity solution. The proposed isogeometric
approach also predicts the in-plane stress very accurately. Similar
to the previous case, the accuracy of the transverse shear stress
computed from the constitutive equations is satisfactory.

4.15. A four-layer cantilever beam with a symmetric lay-up

A four-layer cantilever beam with a length of L = 10m and a unit
width is analyzed using the isogeometric formulation for S = 4, 10,
and 50. The cantilever beam has a [90°/0°/0°/90°] lamination
scheme and its material properties are similar to those mentioned
in section 4.1.2. The laminated beam is subjected to a distributed
uniform pressure p = 100N/m? on its top surface. Since no exact 3D
solution is available for the considered example, a 3D finite element
analysis is performed in ABAQUS with a very refined mesh, using
the 20-node C3D20R solid element.

For different values of the length to thickness ratio, the
maximum transverse deflections are given in Table 13. The ob-
tained results have a good agreement with results obtained from
ABAQUS. It can be concluded from this table that the present iso-
geometric formulation predicts the deflection of the thin and thick
laminated beams with an error rate of less than 2.35%. To assess the
accuracy of the present isogeometric formulation in predicting the
local variations, distributions of the normalized in-plane displace-
ment and stress across the thickness are depicted in Fig. 6 for the
moderately thick beam (S = 10). These figures show that the pro-
posed isogeometric formulation performs very well in the predic-
tion of the transverse shear stress from the equilibrium equations.
The maximum error in the case of moderately thick beam is
approximately 3%. Concerning the transverse shear stress predicted
from constitutive equations, the results are also good. It may easily
seen from Fig. 6 that the depicted in-plane displacement is
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Table 13
u3 (L, 0) of the cantilever [90°/0°/0°/90°] beam for different S ratios.

S w(L,0)
ABAQUS Present Difference (%)
4 —4.5829 x 106 —4.4778 x 10~ 235
10 —5.7154 x 107> —5.6928 x 10~> 0.40
50 —~6.8017 x 103 —6.8105 x 103 0.13

correlated very well with ABAQUS results. These results show that
the present isogeometric formulation is suitable for predicting
behaviors of the composite laminated beams with different
boundary conditions.

4.1.6. A sandwich beam with a soft core

A simply supported thick sandwich beam with a soft core with
the following geometric parameters is considered:
L=10m, b=1m, hf=0.1h, h.=08h, S=4
where, the subscripts “f’ and “c’ stand for the face sheets and core,
respectively. The core is made of a DivingH60 Cell with the

following material properties:
E. = 56MPa, p. = 60kg / m3, ve=027

The face sheets are made of graphite-epoxy with the following
material properties:

(E11,E22,E33,G12,G13,Go3) =(131.1,6.9,6.9,3.588,3.088,2.3322)
GPa

(v12,713,723) = (0.32,0.32,0.49), p = 10001<g/m3

Therefore, ratio of the Young's modulus of the face sheets to
Young's modulus of the core is very high. The sandwich beam is
subjected to a uniform pressure py = —1000N/m?.
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The through-the-thickness distribution of the transverse
displacement, in-plane and transverse shear stresses are depicted
in Fig. 7. The present results are compared with 3D FE results of a
commercial code (ABAQUS). The proposed NURBS-based iso-
geometric approach predicts the transverse displacement of the
sandwich beam with an error rate of less than 2%. It may be readily
noticed that the in-plane and transverse shear stresses calculated
from the equilibrium equations are in an excellent agreement with
the 3D finite element results. These results confirm the effective-
ness of the present formulation for the bending analysis of sand-
wich beams with high face to core stiffness ratios.

4.2. Free vibration analysis

In this section, the IGA approach is assessed for free vibration
analysis. The accuracy of the method is discussed. A convergence
study and the influence of the parameterization are first addressed.
Then, different symmetric, anti-symmetric and sandwich struc-
tures are considered.

4.2.1. Properties of the isogeometric approach

A simply-supported composite cross-ply [90°/0°/0°/90°] beam
with a length to thickness ratio of S = 5 (severe case) is carried out.
The beam is made of a material with the following properties:

(E1, Er, Grr, Grr) = (181,10.3,7.17,2.87)GPa,
(vi1.v17) = (0.25,033), p= 1578kg/m3

These results are presented in terms of the following non-
dimensional natural frequency: @ = w LS(p/Er)!/?

A convergence study is first presented in Table 14 considering
different number of control points and various orders of NURBS
basis functions, using linear parameterization and one element
(k=n+1). In this table, the order of the employed basis functions
is higher than 5. However, it is seen from the first three columns of
this table that the isogeometric formulation cannot predict the
higher modes of the composite beams accurately. This problem is
due to the insufficiency in the number of employed control points.
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Fig. 6. Through-the-thickness distribution of 11 (N/m?), o13(N/m?) and u; (m) at different sections of the clamped [90°/0°/0°/90°] beam with S = 10.



Table 15

1.25
M Mesh convergence study for the four-layer [0°/90°/90° /0°] beam using the different
075 o order of NURBS basis functions; n = 15- (S = 5).
g Mode type Non-dimensional natural frequencies
<]
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S = Bend 39451 70.939 60.152 59.035 59.035
o Mﬂe—w No. dofs 64 64 64 64 64
No. elements 15 14 13 12 1
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Table 14

Mesh convergence study for the four-layer [0°/90°/90°/0°] beam using the different
order of NURBS basis functions and control points/nodes- (1 element; k = n+1)-
(S=5).

Mode type Number of control points/nodes (order of basis function)

6(6) 7(7) 8(8) 9(9) 10(10) 13(13) 16(16)
Bend 7431 6815 6.815 6.815 6.815 6.815 6.815
Bend 17340 16549 16.541 16.541 16.541 16.541 16.541
Bend 33.826 26.844 26789 26719 26718 26717 26.717
Bend 47.808 43201 37.746 37.601 37.294 37.281 37.281
sh 43.803 43.803 43.803 43.803 43.803 43.803 43.803
Bend - 61.013 59420 49296 49.031 48.089 48.088
Bend - - 79.838 78234 61.589 59.186 59.035

No. dofs 24 28 32 36 40 52 64

The last three columns of Table 14 show that with the increase of
the number of control points, the accuracy is improved. It can be
concluded from these results that a merely use of high order NURBS
basis functions does not lead to accurate results. For an accurate
free vibration isogeometric analysis, the use of sufficient number of
control points is essential. Additional numerical results are given in
Tables 15 and 16. Table 15 shows results of the convergence study
considering different orders of NURBS basis functions and 16 con-
trol points/nodes (n = 15). It is seen from this table that the use of
the NURBS basis functions of order 4 (k = 5) with 16 control points
is enough for a vibration analysis. Moreover, results of the
convergence study considering different number of control points
and NURBS basis functions of order 4 are also given in Table 16. It
can be observed that the use of more than 16 control points does
not change the first seven natural frequencies of the symmetric
laminated beam significantly. Based on the convergence study, all
the subsequent results are obtained using order 4 and 16 control
points (n = 15, k = 5, 64 dofs).

Then, the effect of different parameterizations on the vibration
results is studied in Tables 17 and 18. The cross-ply [90°/0°/0°/90°]
beam is modelized using quartic NURBS basis functions with
different sets of control points. Data of different locations of control
points are given in Table 17. “Case A” leads to a linear parameteri-
zation while the other cases lead to nonlinear parameterizations.
The obtained natural frequencies with the associated error rate are
shown in Table 18. Similar to the static tests, the linear parame-
terization (case A) and the nonlinear parameterization with equally
spaced control points (case D) lead to more accurate results. Note
that the error rate on the fundamental mode remains low regard-
less of the case. The influence of the local modification of the
control points is greater for the higher mode. Thus, the subsequent

isogeometric results are calculated wusing the linear
parameterization.
Table 16

Results of the convergence study for the non-dimensional natural frequencies of the
four-layer [0°/90°/90°/0°] beam using the different number of control points/
nodes; k = 5- (S = 5).

Mode type Number of control points/nodes
5 8 16 25

Bend 6.816 6.815 6.815 6.815
Bend 17.288 16.544 16.541 16.541
Bend 30.175 26.901 26.717 26.717
Bend - 38.959 37.281 37.281
sh 43.802 43.802 43.803 43.803
Bend — 47.868 48.088 48.089
Bend - 60.958 59.035 59.038
No. dofs 20 32 64 100

No. elements 1 4 12 21




Table 17
The coordinates of different sets of control points employed in the vibration tests.

Xi

1 0 0 0 0

2 L/48 0.07L 0.07L 0.07L
3 3L/48 0.13L 0.13L 0.13L
4 6L/48 0.23L 0.20L 0.20L
5 10L/48 0.30L 0.27L 0.27L
6 14L/48 0.37L 0.33L 0.33L
7 18L/48 0.40L 0.40L 0.40L
8 221/48 0.47L 0.47L 0.47L
9 26L/48 0.53L 0.53L 0.53L
10 30L/48 0.60L 0.65L 0.60L
11 34L/48 0.67L 0.72L 0.67L
12 38L/48 0.73L 0.79L 0.73L
13 421/48 0.83L 0.80L 0.80L
14 45L/48 0.90L 0.87L 0.87L
15 47L/48 0.97L 0.93L 0.93L
16 L L L L

Case A Case B Case C Case D

4.2.2. Free vibration of symmetric lay-up composite beam

Free vibration analysis of a simply supported composite cross-
ply [0°/90°/90°/0°] beam with a length to thickness ratios of
S =5,10 and 20 is carried out. The same material as in Section 4.2.1
is used. Table 19 presents the computed natural frequencies. In this
table, the mode shapes are precised as: bend, sh, t/c, for bending,
shear and axial traction/compression mode respectively. The mode
shapes of the thick beam (5=5) are shown in Fig. 8. Description of
the modes is given in Table 19. For comparison purposes, results of
the refined sinus finite element model (Vidal and Polit, 2008) and
2D finite element (ANSYS) are given. Table 19 shows that results of
the proposed isogeometric formulation agree well with the ANSYS
values. The present isogeometric formulation predicts the first
fundamental natural frequency of the thick to thin beams with the
maximal error rate of 0.1%. The discrepancy in the prediction of the
first seven non-dimensional natural frequencies of the thick to thin
beams is less than 2.1%. It is also seen from Table 19 that the ac-
curacy of the present isogeometric formulation in the prediction of
non-dimensional natural frequencies is slightly better than the
refined sinus finite element model. This phenomenon is probably
due to the fact that the NURBS basic functions can provide higher
order continuity on the displacement field.

4.2.3. Free vibration of anti-symmetric lay-up composite beam
In this example, free vibration analysis of a simply supported
composite beam is carried out. Geometry and material properties of

Table 19
Non-dimensional natural frequencies of the four-layer [0°/90°/90° /0°] beam.
S Non-dimensional natural frequencies
Present Error (%) SinRef-c Error (%) ANSYS
5 Bend 6.81 0.1 6.81 0.2 6.81
Bend 16.54 0.1 16.45 0.1 16.52
Bend 26.72 0.0 26.73 0.04 26.72
Bend 37.28 0.1 37.32 0.02 37.33
sh 43.80 0.0 43.80 0.01 43.79
Bend 48.09 0.2 48.18 0.4 48.17
Bend 59.04 0.1 59.26 0.2 59.11
10 Bend 9.35 0.1 9.36 0.1 9.34
Bend 27.26 0.1 27.25 0.1 27.24
Bend 46.49 0.0 46.53 0.1 46.47
Bend 66.16 0.1 66.25 0.1 66.19
Bend 86.29 0.2 86.51 0.1 86.43
t/c 95.74 2.1 95.90 2.2 93.78
Bend 106.87 03 107.38 0.1 107.20
20 Bend 10.64 0.0 10.65 0.1 10.64
Bend 37.40 0.0 37.45 0.1 37.40
Bend 71.82 0.0 71.94 0.1 71.85
Bend 109.04 0.1 109.30 0.1 109.15
Bend 147.26 0.2 147.83 0.2 147.54
Bend 185.98 03 187.19 03 186.53
t/c 191.47 0.5 191.81 0.6 190.52

the laminated composite beam are the same as those of the pre-
vious section. Here, the anti-symmetric lay-up [0°/90°] is consid-
ered. The non-dimensional natural frequencies of the composite
beams are summarized in Table 20 for three values of length-to-
thickness ratios S = 5, S = 10 andS = 20. Similar to the composite
beams with symmetric lay-up, the results obtained from the pre-
sent NURBS-based isogeometric formulation are very close to the
reference values. Table 20 shows that the present isogeometric
formulation yields more accurate results than refined sinus finite
element model in all cases. The maximum error rate is 3.72%.

4.24. Free vibration of sandwich beam

In this section, a three-layer simply supported sandwich beam
with S = 10 and 20 is considered. Thickness of each face sheet is
0.1 h and thickness of the core is 0.8 h. The face sheets are made of
graphite-epoxy with the following material properties:

(E11,E22,E33,G12,G13,G23)=(131.1,6.9,6.9,3.588,3.088,2.3322)
GPa

The material properties of the core are:

(E11,Ex2,E33,G12, G13, G3) = (0.2208,0.2001, 2760, 16.56, 545.1, 455.4)MPa

Table 18

The effect of different parameterization on the non-dimensional natural frequencies; four-layer [0°/90°/90° /0°] beam with S = 5; (n = 15, k = 5).

Mode type Non-dimensional natural frequencies
Case A Error (%) Case B Error (%) Case C Error (%) Case D Error (%)

Bend 6.815 0.07 6.820 0.15 6.824 0.21 6.815 0.07
Bend 16.541 0.13 16.575 0.33 16.616 0.58 16.546 0.16
Bend 26.717 0.01 26.832 0.42 27.059 1.27 26.742 0.08
Bend 37.281 0.13 37.608 0.74 37.921 1.58 37.358 0.08
sh 43.803 0.03 43.803 0.03 43.803 0.03 43.803 0.03
Bend 48.088 0.17 48.276 0.22 48.360 0.39 48.305 0.28
Bend 59.035 0.13 60.702 2.69 62.611 5.92 59.710 1.02
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Fig. 8. Mode shapes of the four-layer [0°/90°/90°/0°] beam with S = 5 (description of

the modes are given in Table 19).

Table 20
Non-dimensional natural frequencies of the anti-symmetric [0°/90°] beam.

S Non-dimensional natural frequencies
Present Error (%) SinRef-c Error (%) ANSYS
5 Bend 4.78 0.2 4.78 0.2 4.77
Bend 14.70 0.6 14.71 0.6 14.61
Bend 25.85 1.8 25.87 1.8 25.40
t/c 35.53 0.3 35.56 0.4 35.42
Bend 37.36 3.7 37.42 4 36.02
sh 48.53 0.0 48.52 0. 48.52
10 Bend 5.29 0.0 5.29 0.1 5.29
Bend 19.12 0.0 19.14 0.1 19.12
Bend 37.80 0.1 37.87 0.2 37.77
Bend 58.79 0.3 58.97 0.6 58.60
Bend 80.83 0.8 81.26 1 80.22
t/c 88.52 0.1 88.65 0.2 88.44
20 Bend 5.45 0.0 5.45 0.1 5.45
Bend 2117 0.1 21.20 0.1 21.18
Bend 45.51 0.1 45.62 0.1 45.55
Bend 76.46 0.2 76.81 0.3 76.59
Bend 112.19 0.2 113.11 0.6 112.40
Bend 151.21 0.2 153.29 1 151.48
t/c 187.93 0.0 188.26 0.2 187.89

(r12, 713, 723) = (0.99,0.00003,0.00003), p. = 70kg / m3

Similar to the previous example, results are presented in terms
of the following non-dimensional natural frequency:

W= wLS(pf/E()) 12

where Ey = 6.9GPa. The dimensionless natural frequencies of the
sandwich beam are given in Table 21. The numerical results are
compared with results of the refined sinus finite element model
(Vidal and Polit, 2008), 2D finite element (ANSYS) and exact 2D
solutions (Kapuria et al., 2004). It can be inferred from Table 21 that
the proposed isogeometric formulation yields accurate results in all
cases. The present formulation is able to predict the first six non-
dimensional frequencies of the thick and relatively thick sand-
wich beams with a maximum difference of 4.2%. In case of thin
beam, the error is less than 2.8%. Note also that the results obtained

Table 21
Non-dimensional natural frequencies of the sandwich beam.

S Non-dimensional natural frequencies

Present Error (%) SinRef-c  Error (%) ANSYS Exact 2D

5 Bend 8.04 28 8.04 2.7 7.82 7.82
Bend 1786 34 17.86 33 17.28 17.27
Bend 2787 35 27.88 35 26.93 26.90
sh 3422 25 34.22 24 33.40
Bend 3832 35 38.35 3.6 37.01 36.93
Bend 4920 35 49.31 3.6 47.55 47.39
t/c 6046 4.2 60.68 4.5 58.02 -
Bend 60.52 34 60.72 37 58.51 58.22

10 Bend 1244 17 12.45 1.7 12.23 12.23
Bend 3214 2.7 32.16 2.7 31.30 31.29
Bend 51.80 3.1 51.82 3.1 50.26 50.21
Bend 7142 32 71.48 32 69.21 68.09
Bend 9127 32 91.43 34 88.41 88.18
Bend 11150 3.2 111.91 35 108.02 107.61
t/c 121.04 038 121.36 1.1 120.03 -

20 Bend 1548 0.6 15.51 0.8 15.38 15.38
Bend 4975 1.6 49.82 1.7 48.98 48.94
Bend 88.91 22 89.03 23 87.01 86.90
Bend 16798 2.7 168.41 29 163.58 163.12
Bend 207.20 28 208.08 3.1 201.64 200.87

t/c 24208 0.2 242.73 0.4 24161 —




for the thick case can be improved by considering the influence of
the transverse normal deformation.

The above obtained numerical results prove the efficiency of the
proposed NURBS-based isogeometric formulation for the free vi-
bration analysis of laminated composite and sandwich beams with
wide range of length to thickness ratios.

5. Conclusions

In this paper, a NURBS-based isogeometric approach is devel-
oped for the static and free vibration analysis of laminated com-
posite and sandwich beams. The employed kinematics is based on a
refined sinus model. All displacement and transverse shear stress
continuities are ensured at layer interfaces between the layers as
well as the free boundary conditions on the top and bottom of the
beam. The number of the mechanical unknowns remains low and is
independent of the number of layers. In order to assess the accuracy
of the proposed isogeometric formulation for static and dynamic
analyses of laminated beams, comparisons have been made with
results obtained from the 2D or 3D finite element (ANSYS and
ABAQUS) analyses and other previous published results. To this
purpose, various static and dynamic tests with different geometric
parameters, stacking sequences and boundary conditions are
considered. Accurate results have been found for static bending,
natural frequencies and mode shapes. It has been proved that the
convergence rate of the present isogeometric formulation is very
high. It has also been shown that this approach is free of shear
locking for k > 3. For k = 3, the shear locking phenomenon can be
avoided using the field compatibility condition. Due to inherent
advantages, e.g. preserving exact geometries and providing the
smoothness of field variable approximations with arbitrary conti-
nuity order, it seems that the present isogeometric analysis can
provide an efficient alternative method to the finite elements
analysis of laminated composite and sandwich beam structures.

Further works are pointed towards curved beam developments
and axisymetric approaches.
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