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Laminated composite three-dimensional beams are investigated by means of hierarchical
one-dimensional finite elements and a space decomposition approach. The global three-dimensional
problem is separated by a Proper Generalised Decomposition into two coupled ones over the
cross-section approximation space and on the beam axis approximation space. The size of the resulting
problem is smaller than that of a classical equivalent finite element solution. The approximation of the
displacements versus the cross-section and along the axis are general regardless the kinematic expansion
order and the number of nodes per element thanks to a Unified Formulation. Accurate yet computation-
ally affordable solutions are obtained.
1. Introduction

Over the last decades, composite materials have been extensively
used in primary and secondary loading carrying structures due to
high stiffness- and strength-to-weight ratios. Nevertheless, the
resulting mechanical response is more complex than that of classical
isotropic materials since a wider number of parameters (such as ani-
sotropy as well as fibres and matrix geometry and material and
stacking sequence) are involved. Furthermore, beam structures play
an important role in many engineering fields such as aeronautics,
space, automotive and civil construction and accurate models are
required. Composite beam modelling, therefore, is an important
and up-to-date research topic.

Classical models for the analysis of beams under bending are
based upon Euler–Bernoulli’s and Timoshenko’s kinematic
hypotheses: the cross-section is supposed to be rigid on its plane
and the shear deformation is either constant over the
cross-section (Timoshenko’s model) or neglected (Euler–Bernoull
i’s theory). Furthermore, the material stiffness coefficients in
Hooke’s law should be opportunely corrected due to the Poisson
locking, see Giunta et al. [1]. These models do not yield accurate
results in several cases where composite laminated materials are
used and, over the last years, many improvements in classical
beam models have been proposed. In this sense, Kapania and
Raciti [2,3] proposed a literature survey for the static,
free-vibration, stability and wave propagation analyses of beams.
Ghugal and Shimpi [4] addressed many equivalent single layer
and layer-wise refined models and Chakravarty [5] discussed sev-
eral ways for composite beam cross-section analysis. A finite ele-
ment with a cubic variation of the displacement components
over the thickness was presented by Maiti and Sinha [6] for the
bending and free vibration analysis of laminated beams. Shimpi
and Ghugal [7] formulated a layer-wise trigonometric shear defor-
mation theory where a first-order shear deformation approxima-
tion is used for each layer. The theory was improved by reducing
the number of primary variables, see [8]. A global higher-order the-
ory was presented by Matsunaga [9] to investigate composite
beams subjected to transverse loadings. Material constitutive rela-
tions were used to retrieve the axial stresses, whereas the trans-
verse components were determined by integration of the
three-dimensional equilibrium equations. Hodges et al. [10] and
Yu et al. [11] proposed to model composite beams by means of a
variational asymptotic beam section analysis where no
cross-section a priori assumption is assumed. The general
three-dimensional anisotropic elasticity problem is decoupled into
a non-linear one-dimensional beam analysis and a linear
two-dimensional cross-section analysis. A Timoshenko-like model
is, then, obtained by reproducing the three-dimensional strain
energy in a classical one-dimensional approximation space result-
ing in an enhanced model since in- and out-of-plane warping are
accounted for. Vo and Lee [12] investigated the non-linear static
response of thin-walled composite beams by a first-order shear
deformable one-dimensional beam finite element. Geometrical
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Fig. 1. Beam geometry and reference system.
non-linearities were accounted for in a Von Kármán sense. Lin and
Zhang [13] developed a two-node beam element based upon
Timoshenko’s beam theory. Each node has two degrees of freedom:
the transverse displacement and the cross-section rotation. The
element, therefore, can be used for the investigation of
axial-bending uncoupled laminates. Displacements’ shape func-
tions are derived from Timoshenko’s composite beam functions.
Classical Euler–Bernoulli’s and Timoshenko’s as well as second-
and third-order beam models were used by Aguiar et al. [14] to
derived finite elements based upon displacement, mixed and
mixed least-squares formulations. Vo and Thai [15] formulated a
two-node C1 element with six degrees of freedom per node.
Classical theories, polynomial third-order and sinusoidal approxi-
mations were used for the axial displacement along the thickness
direction. In the case of the higher-order models, top and bottom
stress free boundary conditions are satisfied by a parabolic varia-
tion of the shear strains. Erkmen [16] proposed a shear deformable
finite element where Timoshenko’s theory was assumed locally at
each layer and continuity was recovered by imposing
multiple-point constraint together with a variational multi-scale
approach. The element was, then, used to investigate composite
beams with partially bonded layers.

Higher-order models usually come at the price of high compu-
tational costs. Within this paper, accurate yet efficient
one-dimensional finite elements are derived for the static analysis
of three-dimensional composite beams. The kinematic field is
axiomatically assumed over the cross-section via a Unified
Formulation (UF). This UF was previously derived for plates and
shells (see Carrera [17] and Carrera and Giunta [18]) and, then,
extended to the analysis of beam structures, see Carrera et al.
[19], Giunta et al. [20] and Catapano et al. [21]. Several
higher-order models can be straightforwardly obtained via this
approach. The weak form of the governing differential equations
is derived through the Principle of Virtual Displacement (PVD) in
terms of a ‘‘fundamental nucleo’’ that does not depend upon the
displacement field approximation order over the cross-section
nor upon the number of nodes per element along the beam axis.
Displacement-based theories accounting for non-classical effects,
such as transverse shear and cross-section in- and out-of-plane
warping, are derived.

Computational costs can become prohibitive when the number
of elements and/or the approximation order increase often result-
ing in a stack overflow. An ‘‘out-of-core’’ computation approach (as
used in commercial FEM packages and several linear algebra
libraries) is a possible solution to this problem: part of the static
(and slow) memory of the hard disk is used, see Castellanos and
Larrazabal [22]. A model reduction approach where the approxi-
mation space is divided into coupled smaller ones is instead used
in this paper, see Ammar et al. [23]. The variable separation tech-
nique is based on a Proper Generalised Decomposition (PGD).
The need in memory is considerably reduced by decoupling the
approximation over the beam cross-section from that along the
axis and solving two coupled systems whose size is considerably
smaller than that of the corresponding classical finite element
solution. In this manner, the calculations are all performed
‘‘in-core’’. Nouy [24] and Chinesta et al. [25] presented a detailed
review of the PGD and its application in different engineering
fields. One of the first application of the PDG to structural mechan-
ics, to the best of authors’ knowledge, can be found in Savoia and
Reddy [26] and, more recently, in Bognet et al. [27]. Vidal and
co-workers investigated two-dimensional laminated and sandwich
beams [28,29], laminated and sandwich plates [30,31] and cylin-
drical composite shells [32] within a PGD framework. Moreover,
a reliability analysis in terms of failure probability of
multi-layered two-dimensional structures was carried out by
Gallimard et al. [33].
The derived one-dimensional finite elements are used to study
laminated slender and short beams with prismatic or hollow
cross-sections under bending or both bending and torsion.
Results are compared to solutions obtained via a closed-form
Navier-type method as well as corresponding one-dimensional
finite elements in a classical sense. Three-dimensional finite ele-
ment solutions using ANSYS are also presented. Numerical results
show that accurate results can be obtained with a reduced compu-
tational effort when compared with the corresponding
one-dimensional finite elements as well the three-dimensional
solutions.

2. Preliminaries

A beam is a structure whose axial extension (l) is predominant
with respect to any other dimension orthogonal to it. The
cross-section (X) is defined by intersecting the beam with planes
orthogonal to its axis. A Cartesian reference system is adopted.
The x coordinate is coincident with the axis of the beam and it is
bounded such that 0 6 x 6 l, whereas the y- and z-axes are two
orthogonal directions laying on X. Fig. 1 presents the beam geom-
etry and the reference system. The displacement field is:

uT x; y; zð Þ ¼ ux x; y; zð Þ uy x; y; zð Þ uz x; y; zð Þf g ð1Þ

where ux;uy and uz are the displacement components along the x-,
y- and z-axis, respectively. Superscript ‘T’ represents the transposi-
tion operator. Stresses (r) are grouped into vectors rn 2 R3 acting
on the cross-section:

rT
n ¼ rxx rxy rxzf g ð2Þ

and rp 2 R3 acting on planes orthogonal to X:

rT
p ¼ ryy rzz ryzf g ð3Þ

The associated strains, en and ep, are:

eT
n ¼ exx cxy cxz

� �
eT

p ¼ eyy ezz cyz

� �
ð4Þ

In the case of small displacements, linear relations between
strains and displacements hold:

eT
n ¼ ux;x ux;y þ uy;x ux;z þ uz;xf g

eT
p ¼ uy;y uz;z uy;z þ uz;yf g

ð5Þ

Subscripts ‘x’, ‘y’ and ‘z’, when preceded by comma, represent
derivation versus the corresponding spatial coordinate. Eq. (5) in a
compact vectorial notation read:



en ¼ Dnpuþ Dnxu
ep ¼ Dpu

ð6Þ

Dnp;Dnx and Dp are the following differential matrix operators:

Dnp ¼
0 0 0
@
@y 0 0
@
@z 0 0

2
64

3
75 Dnx ¼ I

@

@x
Dp ¼

0 @
@y 0

0 0 @
@z

0 @
@z

@
@y

2
64

3
75 ð7Þ

being I 2 R3�3 the unit matrix.
Under the hypothesis of linear elastic materials, the constitutive

relations are:

rp ¼ ~Ck
ppep þ ~Ck

pnen

rn ¼ ~Ck
npep þ ~Ck

nnen

ð8Þ

Superscript k 2 1;Nl½ � ranges over the number Nl of cross-section

sub-domains Xk
e (the whole cross-section is addressed by

Xe ¼ [Nl
k¼1X

k
e). Matrices ~Ck

pp;
~Ck

pn;
~Ck

np and ~Ck
nn are the material stiffness

matrices. Considering the general case of an anisotropic material,
they are:

~Ck
pp ¼

~Ck
22

~Ck
23

~Ck
24

~Ck
23

~Ck
33

~Ck
34

~Ck
24

~Ck
34

~Ck
44

2
664

3
775 ~Ck

pn ¼ ~CkT
np ¼

~Ck
12

~Ck
26

~Ck
25

~Ck
13

~Ck
36

~Ck
35

~Ck
14

~Ck
46

~Ck
45

2
664

3
775

~Ck
nn ¼

~Ck
11

~Ck
16

~Ck
15

~Ck
16

~Ck
66

~Ck
56

~Ck
15

~Ck
56

~Ck
55

2
664

3
775

ð9Þ

For sake of brevity, coefficients ~Ck
ij in Eq. (9) as function of the

engineering material constants (Young’s moduli Ei, Poisson’s ratios
mij and shear moduli Gij) and fibre orientation angles are not
reported here. They can be found in Reddy [34].

3. Hierarchical PGD beam elements

In the framework of the proposed PGD-based unified finite ele-
ment modelling, the variation of each displacement component
versus the spatial coordinates is decomposed as a sum of coupled
functions or ‘‘couples’’. Each couple is the product of functions

f i y; zð Þ and vi xð Þ:

u x; y; zð Þ : DX �Dx ! R3

ðy; z; xÞ# f i y; zð Þ � vi xð Þ with i ¼ 1; 2; . . . ; Nc

ð10Þ

f i y; zð Þ, which derives from the one-dimensional beam modelling,
depends upon the cross-section coordinates y and z only. Function
vi xð Þ accounts for the variation versus the axial coordinate x. This
latter, within the beam finite element modelling framework, is
obtained via classical shape functions. Nc is the number of couples.
According to Einstein’s notation, a repeated index is a dummy index
that, unless otherwise stated, stands for summation. This notation is
extensively used through the paper and it allows deriving the prob-
lem’s governing equations in terms of a single ‘‘fundamental
nucleo’’ regardless the approximation order over the cross-section
(N), the number of nodes per element along the beam axis (Nn)
and the number of couples in the PGD approximation. The actual
governing equations due to fixed cross-section approximation
order, number of nodes per element along the beam axis and num-
ber of couples are obtained straightforwardly via summation of the
nucleo corresponding to each term of the expansion. In this sense,
N;Nn and Nc are free parameters of the formulation. The operator
‘‘�’’ in Eq. (10) is Hadamard’s element-wise vector product. It is
defined as follows (see Horn [35]):
f i � vi : R3 ! R3

f i
x

f i
y

f i
z

8>><
>>:

9>>=
>>;
�

v i
x

v i
y

v i
z

8><
>:

9>=
>; ¼

f i
xv i

x

f i
yv i

y

f i
zv i

z

8>><
>>:

9>>=
>>;

ð11Þ

It should be noticed that, by its definition, Hadamard’s operator
is commutative and distributive and it can be regarded as a com-
pact expression for the following matrix–vector product:

f i � vi ¼ vi � f i ¼
f i

x 0 0

0 f i
y 0

0 0 f i
z

2
664

3
775

v i
x

v i
y

v i
z

8><
>:

9>=
>; ¼

v i
x 0 0

0 v i
y 0

0 0 v i
z

2
64

3
75

f i
x

f i
y

f i
z

8>><
>>:

9>>=
>>;
ð12Þ

Although the two notations are equivalent, in the theoretical
developments Hadamard’s product is mainly used. The matrix
notation is introduced when matrix multiplication has to be done
on a term in the Hadamard product. The following approximations
over the beam cross-section and its axis are introduced:

f i y; zð Þ ¼ Fs y; zð Þqi
DXs with s ¼ 1; 2; . . . ; Nu

vi xð Þ ¼ Nj xð Þqi
Dxj with j ¼ 1; 2; . . . ; Nn

ð13Þ

Fs y; zð Þ are the a priori approximating functions over the beam
cross-section. Within this work, they are MacLaurin’s polynomials.
This choice is inspired by Euler–Bernoulli’s and Timoshenko’s clas-
sical beam models. The dummy index s ranges over the number of
cross-section approximation terms Nu. It depends upon the
cross-section approximation order N as follows:

Nu ¼
N þ 1ð Þ N þ 2ð Þ

2
ð14Þ

Nu and Fs as functions of N can be obtained through Pascal’s tri-
angle as shown in Table 1. Nj xð Þ are the classical Lagrangian finite
element shape functions. They approximate the displacements
along the beam axis in a C0 sense up to an order Nn � 1. The
dummy index j ranges over the number of nodes per element.
Linear, quadratic and cubic elements along the beam axis are con-
sidered. These elements are addressed by ‘‘B2’’, ‘‘B3’’ and ‘‘B4’’,
respectively. For the sake of simplicity, their shape functions are
not reported here. They can be found in Bathe [36]. qi

DXs and qi
Dxj

are the unknowns for the cross-section (DX) and axis (Dx) approx-
imation spaces, respectively. By replacing Eq. (13) within Eq. (10),
the displacement field becomes:

u x; y; zð Þ ¼ Fs y; zð ÞNj xð Þqi
DXs � qi

Dxj ð15Þ

Within a PGD framework, a stiffness matrix for each approxi-
mation space is derived. Thanks to the Unified Formulation, these
matrices are obtained in a nuclear form via the weak form of the
Principle of Virtual Displacements:

dLe
int � dLe

ext ¼ 0 ð16Þ

where d represents a virtual variation, Le
int the strain energy and Le

ext

the work done by the external loads. Using Eq. (15), the virtual vari-
ation of the displacement reads:

duT ¼ dqsT
DXr � qs

Dxl þ dqsT
Dxl � qs

DXr

� �
FrNl ð17Þ

By recalling Eq. (12), Eq. (17) is rewritten using Hadamard’s
product matrix notation:

duT ¼ dqsT
DXrQ s

Dxl þ dqsT
DxlQ

s
DXr

� �
FrNl ð18Þ

where Q s
Dxl and Q s

DXr are the following diagonal matrices:



Table 1
MacLaurin’s polynomials via Pascal’s triangle.

N Nu Fs

0 1 F1 ¼ 1
1 3 F2 ¼ y F3 ¼ z
2 6 F4 ¼ y2 F5 ¼ yz F6 ¼ z2

3 10 F7 ¼ y3 F8 ¼ y2z F9 ¼ yz2 F10 ¼ z3

. . . . . . . . .

N Nþ1ð Þ Nþ2ð Þ
2

F N2þNþ2ð Þ
2

¼ yN F N2þNþ4ð Þ
2

¼ yN�1z . . . FN Nþ3ð Þ
2
¼ yzN�1 F Nþ1ð Þ Nþ2ð Þ

2
¼ zN
Q s
Dxl¼

qs
Dxlx 0 0
0 qs

Dxly 0
0 0 qs

Dxlz

2
64

3
75 Q s

DXr¼
qs
DXrx 0 0
0 qs

DXry 0
0 0 qs

DXrz

2
64

3
75: ð19Þ
3.1. Virtual variation of the strain energy

Coherently with the stresses and strains grouping in Eqs. (2)
and (3), the virtual variation of the internal work reads:

dLe
int ¼

Z
Ve

deT
prp þ deT

nrn

� �
dV ð20Þ

where Ve stands for the element volume:

Ve ¼ Xe � le ð21Þ

being le the element axial length and Xe the element cross-section.
The cross-section is assumed to be constant along the beam axis.
The virtual variation of the strains accounting for the displacement
approximation in Eq. (15) is:

den ¼ dqsT
DXrQ s

Dxl þ dqsT
DxlQ

s
DXr

� �
Nl DnpFrI
� �T þ FrNl;xI

h i

dep ¼ dqsT
DXrQ s

Dxl þ dqsT
DxlQ

s
DXr

� �
Nl DpFrI
� �T

ð22Þ

After substitution of the constitutive equations, Eq. (8), the geomet-
ric relations, Eqs. (6) and (22), and the displacement approximation,
Eq. (15), the virtual variation of the element strain energy becomes:

dLe
int ¼ dqsT

DXrKrssi
Dx

qi
DXs þ dqsT

DxlK
ljsi
DX

qi
Dxj ð23Þ

where:

Krssi
Dx
¼ Q s

DxlK
ljrsQ i

Dxj

Kljsi
DX
¼ Q s

DXrKljrsQ i
DXs

ð24Þ

Krssi
Dx

and Kljsi
DX

are the projection of Kljrs over the space Dx and

DX, respectively. Kljrs 2 R3�3 is the fundamental nucleo of the ele-
ment stiffness matrix as derived from a classical finite element
approach (see Carrera et al. [37,19]:

Kljrs¼
Z

le

Z
[Nl

k¼1
Xk

e

Nl DnpFr
� �TþNl;xFrI

h in

Nj
~Ck

np DpFs
� �

þNj
~Ck

nn DnpFs
� �

þNj;xFs
~Ck

nn

h i

þNl DpFr
� �T Nj

~Ck
pp DpFs
� �

þNj
~Ck

pn DnpFs
� �

þNj;xFs
~Ck

pn

h io
dXdx ð25Þ

The explicit expression of its components is:

Kljrs
xx ¼ Ilj J66

r;ys;y
þ J56

r;ys;z þ J56
r;zs;y þ J55

r;zs;z

� �
þ Ilj;x J16

r;ys þ J15
r;zs

� �

þ Il;xj J16
rs;y þ J15

rs;z

� �
þ Il;xj;x J11

rs

Kljrs
yy ¼ Ilj J22

r;ys;y þ J24
r;ys;z þ J24

r;zs;y þ J44
r;zs;z

� �
þ Ilj;x J26

r;ys þ J46
r;zs

� �

þ Il;xj J26
rs;y þ J46

rs;z

� �
þ Il;xj;x J66

rs
Kljrs
zz ¼ Ilj J44

r;ys;y þ J34
r;ys;z þ J34

r;zs;y þ J33
r;zs;z

� �
þ Ilj;x J45

r;ys þ J35
r;zs

� �

þ Il;xj J45
rs;y þ J35

rs;z

� �
þ Il;xj;x J55

rs

Kljrs
xy ¼ Ilj J26

r;ys;y þ J46
r;ys;z þ J25

r;zs;y þ J45
r;zs;z

� �
þ Ilj;x J66

r;ys þ J56
r;zs

� �

þ Il;xj J12
rs;y þ J14

rs;z

� �
þ Il;xj;x J16

rs

Kljrs
yx ¼ Ilj J26

r;ys;y þ J25
r;ys;z þ J46

r;zs;y þ J45
r;zs;z

� �
þ Ilj;x J12

r;ys þ J14
r;zs

� �

þ Il;xj J66
rs;y þ J56

rs;z

� �
þ Il;xj;x J16

rs

Kljrs
xz ¼ Ilj J46

r;ys;y þ J36
r;ys;z þ J45

r;zs;y þ J35
r;zs;z

� �
þ Ilj;x J56

r;ys þ J55
r;zs

� �

þ Il;xj J14
rs;y þ J13

rs;z

� �
þ Il;xj;x J15

rs ð26Þ

Kljrs
zx ¼ Ilj J46

r;ys;y þ J45
r;ys;z þ J36

r;zs;y þ J35
r;zs;z

� �
þ Ilj;x J14

r;ys þ J13
r;zs

� �

þ Il;xj J56
rs;y þ J55

rs;z

� �
þ Il;xj;x J15

rs

Kljrs
yz ¼ Ilj J24

r;ys;y þ J23
r;ys;z þ J44

r;zs;y þ J34
r;zs;z

� �
þ Ilj;x J25

r;ys þ J45
r;zs

� �

þ Il;xj J46
rs;y þ J36

rs;z

� �
þ Il;xj;x J56

rs

Kljrs
zy ¼ Ilj J24

r;ys;y þ J44
r;ys;z þ J23

r;zs;y þ J34
r;zs;z

� �
þ Ilj;x J46

r;ys þ J36
r;zs

� �

þ Il;xj J25
rs;y þ J45

rs;z

� �
þ Il;xj;x J56

rs

The generic term Jgh
r ;gð Þs ;nð Þ

is a cross-section moment:

Jgh
r ;gð Þs ;nð Þ

¼
Z
[Nl

k¼1
Xk

e

~Ck
ghFr ;gð ÞFs ;nð Þ dX with ðg; nÞ ¼ fy; zg2 ð27Þ

and it is a weighted sum (in the continuum) of each elemental
cross-section area where the weight functions account for the spa-
tial distribution of the geometry and the material. Il ;xð Þ j ;xð Þ is an inte-
gral along the element axis of the product of the shape functions
and/or their derivatives:

Il ;xð Þ j ;xð Þ ¼
Z

le

Nl ;xð ÞNj ;xð Þ dx ð28Þ

These integrals are evaluated numerically through Gauss’
quadrature method. In order to correct the shear locking, a selec-
tive integration technique is used. The selected under-integrated

term is Ilj in Kljrs
xx that is related to shear deformations cxy and cxz.

3.2. Virtual variation of the external work

The beam can be loaded by concentrated forces (F) and surface
loads (p). The virtual variation of the external work reads:

dLe
ext ¼ dLeF

ext þ dLep
ext ð29Þ



3.2.1. Force loads
The virtual work of a generic force load:

FT ¼ Fx Fy Fzf g ð30Þ

applied on a generic point xF ¼ xF ; yF ; zFð Þ is:

dLeF
ext ¼ duT xFð ÞF ð31Þ

By replacing Eq. (18) computed at xF within Eq. (31), the virtual
work of a point force becomes:

dLeF
ext ¼ dqsT

DXrFs
Dxr þ dqsT

DxlF
s
DX l ð32Þ

where Fs
Dxr and Fs

DX l 2 R3 are force load vectors projected over Dx

and DX. They are variationally consistent with the kinematic
approximation over the cross-section and the finite element
approximation over the beam axis:

Fs
Dxr ¼ qs

Dxl � Frl xFð Þ ¼ qs
Dxl � Fr yF ; zFð ÞNl xFð ÞF

Fs
DX l ¼ qs

DXr � Frl xFð Þ ¼ qs
DXr � Fr yF ; zFð ÞNl xFð ÞF

ð33Þ

The term Frl 2 R3, defined as:

Frl ¼ Fr yF ; zFð ÞNl xFð ÞF ð34Þ

is the fundamental nucleo of the force load vector as derived from
the classical finite element formulation.

3.2.2. Surface loads
The following surface loads py x; zð Þ and pz x; yð Þ are considered:

pT
y x; zð Þ ¼ pyx pyy pyz

� �
8 y; zð Þ 2 y ¼ ypy

; z 2 zpy1; zpy2

h in o

pT
z x; yð Þ ¼ pzx pzy pzz

� �
8 y; zð Þ 2 y 2 ypz1; ypz2

h i
; z ¼ zpz

n o

ð35Þ

They act on surfaces whose normal is parallel to the y- or z-axis
and along the whole axial span of the element. The first subscript
accounts for the normal of the surface the load is applied upon,
whereas the second one stands for the load direction of applica-
tion. The virtual variation of the external work is:

dLep
ext ¼

Z zpy2

le

Z
zpy1

duT x; ypy
; z

� �
py x; zð Þdz dx

þ
Z ypz2

le

Z
ypz1

duT x; y; zpz

� �
pz x; yð Þdy dx ð36Þ

Within the proposed framework, the virtual work of the surface
loads is:

dLep
ext ¼ dqsT

DXr Ps
zDxr þ Ps

yDxr

� �
þ dqsT

Dxl Ps
zDX l þ Ps

yDX l

� �
ð37Þ

being:

Ps
zDxr;P

s
yDxr

� �
¼ qs

Dxl � Pzrl;Pyrl

� �

Ps
zDX l;P

s
yDX l

� �
¼ qs

DXr � Pzrl;Pyrl

� � ð38Þ

and:

Pzrl ¼
Z

le

Nl xð Þ
Z ypz2

ypz1

Fr y; zpz

� �
pz x; yð Þdy dx

Pyrl ¼
Z

le

Nl xð Þ
Z zpy2

zpy1

Fr ypy
; z

� �
py x; zð Þdz dx

ð39Þ

are the classical finite element fundamental nuclei of the surface
loads.

For the sake of conciseness, the following generic notation for
the external loads is introduced:
Rs
Dxr ¼ Fs

Dxr þ Ps
zDxr þ Ps

yDxr ¼ qs
Dxl � Rrl

Rs
DX l ¼ Fs

DX l þ Ps
zDX l þ Ps

yDX l ¼ qs
DXr � Rrl

ð40Þ

with:

Rrl ¼ Frl þ Pzrl þ Pyrl ð41Þ
4. Problem formulation and solution

4.1. Assembling procedure at element level

Two coupled nucleal non-linear equations are obtained by
replacing the expressions of the virtual strain energy and the exter-
nal works within the PVD statement:

dqs
DXr : Krssi

Dx
qi
DXs ¼ Rs

Dxr

dqs
Dxl : Kljsi

DX
qi
Dxj ¼ Rs

DX l

ð42Þ

Accounting for Eqs. (24) and (40), Eq. (42) read:

Q s
DxlK

ljrsQ i
Dxj

� �
qi
DXs ¼ qs

Dxl � Rrl

Q s
DXrKljrsQ i

DXs

� �
qi
Dxj ¼ qs

DXr � Rrl

ð43Þ

Once the expansion order over the cross-section N and the
number of nodes per element Nn are fixed, the nucleo of the prob-
lem over the cross-section has to be expanded over the indexes r
and s 2 1;2; . . . ;Nuf g and summed over the element nodes indexes
l and j 2 1;2; . . . ;Nnf g:

qi
DXs 2 R3 ! qi

DX
2 R3Nu

Rs
Dxr 2 R3 ! Rs

Dx
2 R3Nu

Krssi
Dx
2 R3�3 ! Ksi

Dx
2 R3Nu�3Nu

ð44Þ

The expansion procedure increases the dimension (from R3 to
R3Nu ) of the expanded quantity: its nuclear form is ‘‘unfolded’’ over
the whole approximation space. Expansion and summation are
graphically presented in Fig. 2. The dimension of the problem to
be solved over the cross-section domain (NDX ) is:

NDX ¼ 3Nu ¼ 3
N þ 1ð Þ N þ 2ð Þ

2
ð45Þ

The nucleo of the companion problem over the beam axis has to
be expanded over the indexes l and j and summed over the
cross-section indexes r and s, see Fig. 3:

qi
Dxj 2 R3 ! qi

Dx
2 R3Nn

Rs
DX l 2 R3 ! Rs

DX
2 R3Nn

Kljsi
DX
2 R3�3 ! Ksi

DX
2 R3Nn�3Nn

ð46Þ

After this assembling procedure, the problems in Eq. (42)
become:

Ksi
Dx

qi
DX
¼ Rs

Dx

Ksi
DX

qi
Dx
¼ Rs

DX

ð47Þ

and hold at element level.

4.2. Assembling procedure at structural level

The problem at structural level is obtained by writing the PVD
statement for the whole beam:

dLint � dLext ¼
XNe

e¼1

dLe
int � dLe

ext

� �
¼ 0 ð48Þ



Fig. 2. Assembling procedure of the cross-section problem DX at element level.

Fig. 3. Assembling procedure of the axial finite element problem Dx at element level.
where Ne is the number of finite elements used to discretise the
beam axis. The dimension of the problem to be solved over the axial
domain is:

NDx ¼ 3 Ne Nn � 1ð Þ þ 1½ � ð49Þ

It is worth underlining that the assembling procedure at structural
level derives from the finite element solution method or, more gen-
erally, from a weak form solution type. Therefore, it directly affects
the problem on the beam axis domain Dx only. The unknown vector
qi
Dx

, the stiffness matrix Ksi
DX

and the load vector Fs
DX

are expanded
over the discretisation domain using classical finite element
assembling procedures based upon the congruency and equilibrium
at a node shared by two consecutive elements, see Bathe [36]:
qi
Dx
2 R3Nn ! q̂i

Dx
2 RNDx

Rs
DX
2 R3Nn ! R̂s

DX
2 RNDx

Ksi
DX
2 R3Nn�3Nn ! K̂si

DX
2 RNDx�NDx

ð50Þ

The problem on DX is affected indirectly by this further assem-
bling step because of its coupling with the problem on Dx. The
dimension of this latter problem, therefore, does not change and
it is equal to NDX . The stiffness matrix Ksi

Dx
and the load vector



Rs
Dx

of each element are simply summed. Each element contributes
to the problem on the cross-section in an equivalent single layer
sense:

qi
DX
2 RNDX ! q̂i

DX
2 RNDX

Rs
Dx
2 RNDX ! R̂s

Dx
2 RNDX

Ksi
Dx
2 RNDX

�NDX ! K̂si
Dx
2 RNDX

�NDX

ð51Þ

Finally, the problem for the whole beam within a PGD frame-
work reads:

K̂si
Dx

q̂i
DX
¼ R̂s

Dx

K̂si
DX

q̂i
Dx
¼ R̂s

DX

ð52Þ
4.3. Solution over the number of couples

As final step, the global problem in Eq. (52) needs to be solved
for each couple. The solution procedure proposed in Ammar et al.
[23] is here used. On this regard, the indexes s and i ranging over
the number of couples Nc play a different role than indexes (l; j)
and (r; s) do. These latter derive from the Unified Formulation
and are used to expand the nucleo of the stiffness matrices and
load vectors to obtain the corresponding global terms. The former
derive from the Proper Generalised Decomposition. Matrices and
vectors in Eq. (52) are not expanded over s and i. A summation over
the index i 2 1;2; . . . ; sf g is performed instead and the dimensions
of the two problems over DX and Dx do not change.

In the case of an unknown couple s and supposing that q̂r
DX

and

q̂r
Dx

with r 2 1;2; . . . ; s� 1f g have been already computed, Eq. (52)
become:

K̂ss
Dx

q̂s
DX
¼ R̂s

Dx
� K̂sr

Dx
q̂r
DX

K̂ss
DX

q̂s
Dx
¼ R̂s

DX
� K̂sr

DX
q̂r
Dx

ð53Þ

The second term in each right hand side of the previous equations is
summed over r 2 1;2; . . . ; s� 1f g and it represents a residual term.
The solution of Eq. (53) is obtained through a row-wise scheme: the
residuals account for the interaction between the couple currently
computed with those already determined In this sense, each new

couple represents a solution refinement. The matrices K̂sr
Dx

and

K̂sr
DX

are not, in general, symmetric because they are computed using
the unknown vectors of different couples (r – s). As far as the left
hand side terms of Eq. (53) are concerned, Einstein’s notation does
Fig. 4. Square cross-section geometry and surface bending load.
not apply for s since it is repeated more than twice. A fixed point
method is, then, used to solve the coupled non-linear problem in
Eq. (53):

1. a tentative solution q̂s0
Dx

is first set for the problem on DX and
q̂s0
DX

is obtained,

2. q̂s0
DX

is, then, used for the problem on Dx and q̂s1
Dx

is computed,
3. the procedure at the previous two points is iterated until the

following convergence criterion is satisfied:
max
q̂sm
Dx
� q̂sm�1

Dx

�� ���� ��
2

q̂sm�1
Dx

�� ���� ��
2

;
q̂sm
DX
� q̂sm�1

DX

���
���

���
���

2

q̂sm�1
DX

���
���

���
���

2

0
B@

1
CA 6 e ð54Þ

being e ¼ 10�6 and �j jj j2 the Euclidean norm.

For the considered numerical investigation, it has been
observed that the number of iteration required to reach the con-
vergence increases for each successive couple. Nevertheless, about
15 iterations have been required, at worst. At each iteration, two
problems of dimension NDX and NDx are solved. It should be noticed
that the order of an equivalent classical finite element problem is

3 � Nþ1ð Þ Nþ2ð Þ
2 � Ne Nn � 1ð Þ þ 1½ � or, equivalently, NDX

�NDx
3 .

4.4. Boundary conditions

As far as Dirichlet boundary conditions are concerned, the case
of nil prescribed displacements along the beam axis is considered.
The same principle as for the assembling procedure at structural
level is valid. A displacements’ constrain is directly imposed for
the problem on the axial space Dx:

uu xj; y; z
� �

¼ Fs y; zð ÞNj xj

� �
qi

uDXsqi
uDxj ¼ 0 ð55Þ

where subscript u stands for a generic spatial coordinate, j for the
constrained node index and xj for its axial position. Summation over

the reaped index j is not actually performed because of the well
known properties of the shape functions and Eq. (55) reduces to:

qi
uDxj ¼ 0 ð56Þ

A numerical penalisation technique is used for imposing a nil

displacement: the diagonal term of the stiffness matrix K̂si
DX

corre-
sponding to the constrained degree of freedom is set to a value two
or three order of magnitude higher than the maximum absolute
value of the matrix, see Bathe [36].

For the problem on the cross-section domain, the boundary
conditions are imposed indirectly during the projection of the stiff-
ness matrix. According to Eq. (24)a and (51), a constrained degree
of freedom does not yield any contribution in the assembling pro-
cedure over the whole structure being its value is equal to zero.

5. Numerical results and discussion

Analyses are carried out for slender and short beams, l=a ¼ 100
and 10, respectively. Square cross-sections with sides’ length
a ¼ b ¼ 1 m are considered. The cross-section can be prismatic or
channelled (box cross-section). A ½0=90� lamination is considered.
Plies have equal thickness and angles are measured towards the
x-axis. Layers are all made from an unidirectional
carbon-fibre/epoxy composite material whose equivalent proper-
ties are: EL=ET ¼ 25, GTT=ET ¼ 0:2, GLT=ET ¼ 0:5 and
mLT ¼ mTT ¼ 0:25, Ei and Gij stand for Young’s and shear moduli,
respectively, and mij are the Poisson ratios. Subscripts ‘L’ and ‘T’
stand for a direction parallel or perpendicular to the fibres.
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Fig. 5. Strain energy relative error DE versus the normalised distance diiþ1=l
between two consecutive nodes for (a) linear, (b) quadratic and (c) cubic element.
Simply supported beam, l=a ¼ 10 and N ¼ 4.
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Fig. 6. Strain energy convergence versus the number of couples, B2, B3 and B4
elements, 121 nodes, l=a ¼ 100 and N ¼ 2.
Beams are subjected to a uniformly distributed surface load of
amplitude pyy ¼ 1 Pa and acting on a whole cross-section side or
on part of it. A simply supported configuration is considered for
which a closed form, Navier-type solution implementing the same
kinematics presented in this article is also present, see Giunta et al.
[20]. It is also presented because, within the theory approximation,
it is an exact solution of governing differential equation obtained
from a strong form formulation of the PVD. The commercial code
ANSYS is also used for obtaining three-dimensional finite element
solutions for validation purposes. The quadratic 20-node element
‘‘Solid186’’ is used, see ANSYS theory manual [38]. A coarse and a
fine mesh solution (addressed as ‘‘FEM 3D-C’’ and ‘‘FEM 3D-R’’,
respectively) are considered to present the convergence of the
three-dimensional numerical reference solution. Displacements
and stresses are put into the following dimensionless form:

ui ¼
ET

pyya
ui with i ¼ x; z uy ¼ 100

ET a3

pyyl4 uz

rij ¼
1

pyy
rij with i ¼ x; y; z

ð57Þ
5.1. Square prismatic cross-section beam

Square prismatic cross-section beams are first investigated.
Cross-section geometry, lamination and load are shown in Fig. 4.
Fig. 5 presents a convergence analysis in terms of normalised dif-
ference (DE) in strain energy (Lint):

DE ¼
LNav

int � Lint

LNav
int

ð58Þ

of both FEM and FEM PGD solutions versus the number of elements
along the beam axis. Superscript ‘‘Nav’’ in Eq. (58) stands for the
Navier-type solution. Short beams are only considered, the case of
slender beams being very similar. Results are obtained by a
fourth-order model (nevertheless, the same conclusions apply to a
generic cross-section expansion order). DE is plotted versus the dis-
tance between two consecutive nodes diiþ1 normalised versus the
beam length l. Linear, quadratic and cubic elements are used. For
the classical finite element solution, the error in the strain energy
decreases as the number of nodes increases and, for a fixed number
of nodes, the higher the order of the finite element shape functions,
the smaller the error. As far as the PGD is concerned, the error pre-
sents an horizontal asymptote. The order of magnitude of the error
is 10�4 and 10�5 for Nc equal to one and five, regardless the element
type. Unless differently stated, the results further presented are
computed using 121 nodes that corresponds to 120 B2 elements,
60 B3 ones and 40 B4 elements. Fig. 6 outlines the convergence of
the strain energy versus the number of couples for a slender beam
and via a second-order model. Classical FEM solutions (solid lines)
are reported for the sake of comparison. The FEM PGD solution con-
verges to the classical finite element one for all the considered ele-
ment types for a suitable number of couples (Nc P 8). Tabular
results show that displacements are accurately obtained by three
couples, whereas five (slender beams) or six (short beams) couples
are used for the considered stresses converging up to four signifi-
cant digits.

Shear locking investigation is presented in Fig. 7, where the fol-
lowing normalised transverse displacement:
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Fig. 7. Transverse displacement ratio ~uy ¼ uy l=2; 0; 0ð Þ=uNav
y l=2;0;0ð Þ versus l=a via

linear elements, N ¼ 2 and 5. The figure is the same for the FEM as well as FEM PGD
solution regardless the value of Nc .

Table 2
Dimensionless displacements for slender and short simply supported beams under a
surface bending load via three-dimensional finite element and Navier-type solutions.

l=a ¼ 100 l=a ¼ 10

10�4 � ux uy 10�2 � uz 10�1 � ux uy uz

FEM 3D-Ra 7.792 3.334 2.921 8.304 3.724 3.054
FEM 3D-Cb 7.793 3.334 2.921 8.304 3.724 3.054
N ¼ 11;12 7.790 3.333 2.918 8.301 3.723 3.050
N ¼ 9 7.789 3.333 2.917 8.300 3.722 3.048
N ¼ 7 7.788 3.332 2.919 8.297 3.721 3.049
N ¼ 6 7.787 3.332 2.915 8.290 3.719 3.042
N ¼ 4 7.786 3.331 2.917 8.255 3.706 3.032
N ¼ 3 7.781 3.330 2.903 8.144 3.662 2.975
N ¼ 2 7.778 3.328 2.972 8.121 3.646 3.032

a Refined mesh: 40� 40� 400 for l=a ¼ 100 and 80� 80� 80 for l=a ¼ 10.
b Coarse mesh: 12� 12� 120 for l=a ¼ 100 and 12� 12� 12 for l=a ¼ 10.

Table 3
Dimensionless displacements for a slender simply supported beam under a surface
bending load via FEM 1D and FEM PGD 1D solutions, 121 nodes and Nc ¼ 3.

10�4 � ux uy 10�2 � uz

B2 B3, B4 B2 B3, B4 B2 B3, B4

FEM 1D
N ¼ 11;12 7.789 7.790 3.332 3.333 2.918 2.918
N ¼ 9 7.789 7.789 3.332 3.333 2.917 2.917
N ¼ 7 7.788 7.788 3.332 3.332 2.919 2.919
N ¼ 6 7.787 7.787 3.332 3.332 2.915 2.915
N ¼ 4 7.785 7.786 3.331 3.331 2.917 2.917
N ¼ 3 7.781 7.781 3.329 3.330 2.902 2.903
N ¼ 2 7.778 7.778 3.328 3.328 2.971 2.972

FEM PGD 1D
N ¼ 11;12 7.789 7.790 3.332 3.333 2.918 2.918
N ¼ 9 7.788 7.789 3.332 3.333 2.916 2.917
N ¼ 7 7.788 7.788 3.332 3.332 2.919 2.919
N ¼ 6 7.787 7.787 3.332 3.332 2.915 2.915
N ¼ 4 7.785 7.786 3.331 3.331 2.916 2.917
N ¼ 3 7.781 7.781 3.329 3.330 2.902 2.903
N ¼ 2 7.778 7.778 3.328 3.328 2.971 2.972

Table 4
Dimensionless displacements for a short simply supported beam under a surface
bending load via FEM 1D and FEM PGD 1D solutions, 121 nodes and Nc ¼ 5.

10�1 � ux uy uz

B2 B3, B4 B2 B3, B4 B2 B3, B4

FEM 1D
N ¼ 11;12 8.301 8.301 3.722 3.723 3.050 3.050
N ¼ 9 8.300 8.300 3.722 3.722 3.048 3.048
N ¼ 7 8.296 8.297 3.721 3.721 3.049 3.049
N ¼ 6 8.289 8.290 3.719 3.719 3.042 3.042
N ¼ 4 8.255 8.255 3.706 3.706 3.032 3.032
N ¼ 3 8.143 8.144 3.662 3.662 2.975 2.975
N ¼ 2 8.120 8.121 3.646 3.646 3.032 3.032

FEM PGD 1D
N ¼ 11;12 8.301 8.301 3.722 3.723 3.050 3.050
N ¼ 9 8.299 8.300 3.722 3.722 3.048 3.048
N ¼ 7 8.296 8.297 3.721 3.721 3.049 3.049
N ¼ 6 8.289 8.290 3.718 3.719 3.042 3.042
N ¼ 4 8.254 8.255 3.706 3.706 3.032 3.032
N ¼ 3 8.143 8.143 3.662 3.662 2.975 2.975
N ¼ 2 8.120 8.120 3.646 3.646 3.032 3.032

Table 5
Dimensionless stresses for slender and short simply supported beams under a surface
bending load via three-dimensional finite element and Navier-type solutions.

l=a ¼ 100 l=a ¼ 10

10�4 � rxx rxy rxx 10� ryy rxy

FEM 3D-Ra 2.152 113.8 216.6 6.354 10.76
FEM 3D-Cb 2.152 115.5 217.2 6.357 10.98
N ¼ 12 2.153 113.7 216.7 6.381 10.77
N ¼ 11 2.152 113.8 216.6 6.717 10.79
N ¼ 10 2.150 115.4 216.4 8.557 10.93
N ¼ 8 2.153 115.6 216.6 9.123 10.91
N ¼ 6 2.150 111.0 216.3 7.102 10.54
N ¼ 4 2.151 100.4 216.2 3.016 9.557
N ¼ 3 2.153 76.28 213.9 1.514 7.495
N ¼ 2 2.154 73.10 211.4 2.228 7.215

a Refined mesh: 40� 40� 400 for l=a ¼ 100 and 80� 80� 80 for l=a ¼ 10.
b Coarse mesh: 12� 12� 120 for l=a ¼ 100 and 12� 12� 12 for l=a ¼ 10.

Table 6
Dimensionless stresses for a slender simply supported beam under a surface bending
load via FEM 1D and FEM PGD 1D solutions, 121 nodes and Nc ¼ 5.

10�4 � rxx rxy

B2 B3 B4 B2 B3 B4

FEM 1D
N ¼ 12 2.153 2.153 2.153 102.6 128.8 114.4
N ¼ 11 2.152 2.153 2.152 102.7 128.9 114.5
N ¼ 10 2.150 2.150 2.150 104.3 130.5 116.1
N ¼ 8 2.152 2.153 2.153 104.1 130.3 115.8
N ¼ 6 2.150 2.151 2.150 99.48 125.6 111.2
N ¼ 4 2.151 2.151 2.151 88.92 115.1 100.7
N ¼ 3 2.153 2.153 2.153 64.83 90.91 76.53
N ¼ 2 2.153 2.154 2.154 61.67 87.71 73.33

FEM PGD 1D
N ¼ 12 2.153 2.153 2.153 102.7 128.8 114.4
N ¼ 11 2.152 2.153 2.152 102.8 128.9 114.5
N ¼ 10 2.150 2.151 2.150 104.4 130.5 116.1
N ¼ 8 2.152 2.153 2.153 104.1 130.3 115.9
N ¼ 6 2.150 2.151 2.150 99.50 125.7 111.3
N ¼ 4 2.151 2.151 2.151 88.92 115.1 100.7
N ¼ 3 2.153 2.153 2.153 64.84 90.92 76.54
N ¼ 2 2.153 2.154 2.154 61.66 87.68 73.32
~uy ¼
uy

uNav
y

ð59Þ

evaluated at l=2;0; 0ð Þ is depicted versus the length-to-side ratio.
Results obtained via second- and fifth-order theories are presented
in the case of B2 elements (the most affected by shear locking). Full
and selective integration strategies are compared. In the former
case, locking appears for l=a P 40 whereas the latter is locking free.
Results are the same regardless the solution framework (classical
FEM or FEM with separation of the approximation space with a gen-
eric number of couples) and the kinematic approximation over the
cross-section. This is due to the fact that shear locking is a



Table 7
Dimensionless stresses for a short simply supported beam under a surface bending load via FEM 1D and FEM PGD 1D solutions, 121 nodes and Nc ¼ 6.

rxx 10� ryy rxy

B2 B3 B4 B2 B3 B4 B2 B3 B4

FEM 1D
N ¼ 12 216.7 216.7 216.7 6.385 6.386 6.385 10.75 10.82 10.79
N ¼ 11 216.6 216.7 216.6 6.717 6.718 6.717 10.76 10.83 10.80
N ¼ 10 216.4 216.4 216.4 8.556 8.557 8.557 10.89 10.97 10.94
N ¼ 8 216.6 216.7 216.6 9.123 9.123 9.123 10.86 10.94 10.91
N ¼ 6 216.3 216.3 216.3 7.102 7.103 7.102 10.51 10.58 10.55
N ¼ 4 216.2 216.3 216.2 3.016 3.017 3.016 9.558 9.621 9.588
N ¼ 3 213.9 214.0 213.9 1.514 1.514 1.514 7.453 7.535 7.518
N ¼ 2 211.4 211.5 211.4 2.228 2.228 2.228 7.137 7.233 7.229

FEM PGD 1D
N ¼ 12 216.7 216.7 216.7 6.395 6.395 6.393 10.74 10.82 10.79
N ¼ 11 216.6 216.7 216.6 6.727 6.727 6.725 10.75 10.83 10.80
N ¼ 10 216.4 216.4 216.4 8.572 8.572 8.570 10.89 10.96 10.94
N ¼ 8 216.6 216.7 216.7 9.145 9.145 9.144 10.86 10.93 10.91
N ¼ 6 216.3 216.3 216.3 7.123 7.123 7.123 10.51 10.58 10.56
N ¼ 4 216.2 216.3 216.2 3.025 3.026 3.027 9.560 9.629 9.602
N ¼ 3 213.9 214.0 213.9 1.514 1.516 1.516 7.453 7.541 7.525
N ¼ 2 211.4 211.5 211.4 2.230 2.230 2.230 7.134 7.231 7.227
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Fig. 8. Dimensionless displacement ux colour map at x=l ¼ 0 cross-section via (a) proposed solution with N ¼ 12;Nc ¼ 6 and B4 and (b) FEM 3D-R model in a short beam. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Dimensionless displacement uz colour map at x=l ¼ 1=2 cross-section via (a) proposed solution with N ¼ 12;Nc ¼ 6 and B4 and (b) FEM 3D-R model in a short beam.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
numerical problem that arises as soon as a finite element approxi-
mation is used.

The dimensionless displacement in Eq. (57) are presented in
Tables 2–4 where ux is evaluated at 0;�a=2;0ð Þ;uy at l=2;0;0ð Þ
and uz at l=2;�a=2; b=2ð Þ. Table 2 addresses the reference results
obtained by the three-dimensional finite element model and the
Navier-type solution for both slender and short beams. The
three-dimensional finite element solution provides a validation
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Fig. 10. Dimensionless stress rxx colour map at x=l ¼ 1=2 cross-section via (a) proposed solution with N ¼ 12;Nc ¼ 6 and B4 and (b) FEM 3D-R model in a short beam. (For
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Fig. 11. Dimensionless stress rxy colour map at x=l ¼ 0 cross-section via (a) proposed solution with N ¼ 12;Nc ¼ 6 and B4 and (b) FEM 3D-R model in a short beam. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Dimensionless stress rxz colour map at x=l ¼ 0 cross-section via (a) proposed solution with N ¼ 12;Nc ¼ 6 and B4 and (b) FEM 3D-R model in a short beam. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
in general terms (accuracy of the results in the case of the consid-
ered problem), whereas the Navier solution allows to assess the
effect of the considered numerical solution schemes (classical
FEM or FEM PGD) in the framework of the proposed beam theories.
In the Navier solution, the uniform loads is approximated by its
Fourier series expansion with a number of harmonic terms that
ensures the convergence of displacements and stresses up to four
significant digits. Fourth- and seventh-order models yield good
results for slender and short beams, respectively. Tables 3 and 4
compare the one-dimensional beam FEM and FEM PGD results



Table 8
Computational costs of the considered solutions for a short simply supported beam.

dofs

FEM 3D-R (80� 80� 80) 603180243
FEM 3D-C (12� 12� 12) 240843
FEM 1D N ¼ 11;121 nodes 280314
FEM 1D N ¼ 2;121 nodes 20178
FEM PGD 1D N ¼ 11;121 nodes 597
FEM PGD 1D N ¼ 2;121 nodes 381
for l=a ¼ 100 and 10. Three (slender beam) and five (short beam)
couples ensure almost coincident results between the two solution
methods. Quadratic and cubic elements converge to identical
results that are very close to Navier and three-dimensional results.

Tables 5–7 show the dimensionless stresses rxx;ryy and rxy.
They are evaluated at l=2; a=2;0ð Þ; l=2; a=4;0ð Þ and 0; a=4;0ð Þ,
respectively. Accurate results can be obtained by the proposed
models as shown by Table 5. The finite element approximation of
the shear stress component rxy via linear and quadratic elements
for a slender beam is not accurate for the considered number of
nodes. Accuracy can be improved by either increasing the number
of nodes or by using a stress recovery technique such as the inte-
gration of the indefinite equilibrium equations, see Tornabene
et al. [39]. FEM PGD results are in good agreement with the classi-
cal finite element ones. A higher number of couples than that used
for displacements is required to converge to the FEM solution.
Furthermore, short beams present a mechanics that is more com-
plex than that of slender beams and they call for a higher number
of couples. Table 7 shows that rxx and rxy are practically coincident
between the two solution schemes for Nc equal to six. A small dif-
ference is observed for ryy but Nc ¼ 11 ensures matching results
for the considered number of significant digits (for instance, ryy

is equal to 0.6383 for N ¼ 12 and B4 element while the correspond-
ing classical FEM solution is 0.6385).

Figs. 8 and 9 qualitatively present the cross section-variation of
the dimensionless displacement components ux and uz in the form
of colour maps for a short beam. The solution obtained via a
12th-order model and six couples is compared to the FEM 3D-R
model. Cross-section colour plots of dimensionless stresses
rxx;rxy and rxz are presented in Figs. 10–12.

The results obtained by the two different solutions are in good
agreement.
Fig. 13. Box cross-section geometry and surface bending-torsional load.
As far as the computational cost is concerned, the degrees of
freedom (dof) of a three-dimensional finite element solution using
serendipity quadratic Lagrangian elements are:

dofFEM 3D ¼ 3 Nex 4N2
ey þ 6Ney þ 2

� �
þ 3N2

ey þ 4Ney þ 1
h i

ð60Þ

where Nex and Ney are the number of elements along x and y and it is
assumed that the number of elements along z are equal to Ney. The
degrees of freedom of the Navier-type solution represent the num-
ber of unknowns per cross-section and they are 3

2 N þ 1ð Þ N þ 2ð Þ.
The number of dofs of a classical one-dimensional finite element
solution based upon the proposed beam models is 1

3 NDX � NDx where
NDX and NDx have been defined in Eqs. (45) and (49), respectively. In
the case of a FEM PGD one-dimensional solution, the number of
dofs are NDX þ NDx . Table 8 presents the computational cost of the
solutions used in this paper. The dofs of the FEM 3D-C solution
and of the classical FEM 1D with N ¼ 11 are similar (although, the
latter one ensures an accuracy closer to FEM 3D-R solution). This
calls for solution schemes that allows for a reduction of the dofs
for a given accuracy. In the case of the proposed variable separation
method, the dofs of an eleventh-order one-dimensional finite ele-
ment solution reduce to 597 only, whereas the accuracy remains
practically the same.

5.2. Box cross-section beam

A 0=90½ � box cross-section beam as shown in Fig. 13 is consid-
ered. The thickness of each layer is equal to a=10. An off-centric
pressure load pyy is considered in order to investigate a problem
where both bending and torsion are present. Furthermore, the
presence of sharp corners in the cross-section makes the prediction
of mechanical response not trivial. This demanding example has
been considered with the intent to assess the limits of the pro-
posed kinematic models as well as the used numerical solution
schemes. For the sake of brevity, only a short beam is considered.
Table 9 presents the dimensionless displacements ux;uy and uz.
The displacements are all evaluated at y ¼ �a=2 and z ¼ b=2. The
mid-span cross-section is considered for uy and uz, whereas the
axial displacement is computed at x=l ¼ 0. Dimensionless stresses
are shown in Table 10. The axial and the shear stresses rxx;rxy

and rxz are computed at l=2; a=2;0ð Þ; 0;0; b=2ð Þ and 0;�a=2;0ð Þ,
respectively. One-dimensional solutions are obtained via 121
Table 9
Dimensionless displacements for a short box cross-section beam under bending-
torsion load via FEM 3D, 1D and PGD 1D solutions, 121 nodes and Nc ¼ 11.

ux 10� uy uz

FEM 3D-Ra 4.112 4.491 8.983
FEM 3D-Cb 4.096 4.481 9.001

FEM 1D B2 B3, B4 B2 B3, B4 B2 B3, B4
N ¼ 14 4.028 4.028 4.414 4.414 9.077 9.077
N ¼ 12 4.023 4.023 4.395 4.396 9.104 9.104
N ¼ 9 3.967 3.967 4.370 4.370 9.101 9.101
N ¼ 7 4.019 4.019 4.324 4.324 9.175 9.175
N ¼ 4 3.893 3.893 4.151 4.151 9.260 9.260
N ¼ 3 3.907 3.907 4.000 4.000 7.732 7.732
N ¼ 2 3.452 3.453 3.634 3.634 7.798 7.798

FEM PGD 1D B2 B3, B4 B2 B3, B4 B2 B3, B4
N ¼ 14 4.025 4.028 4.412 4.414 9.081 9.077
N ¼ 12 4.023 4.023 4.395 4.396 9.105 9.106
N ¼ 9 3.967 3.967 4.370 4.370 9.101 9.101
N ¼ 7 4.019 4.019 4.324 4.324 9.175 9.175
N ¼ 4 3.893 3.893 4.151 4.151 9.260 9.260
N ¼ 3 3.907 3.907 4.000 4.000 7.733 7.733
N ¼ 2 3.452 3.453 3.634 3.634 7.799 7.798

a Refined mesh: 60� 60� 120.
b Coarse mesh: 10� 10� 10.



Table 10
Dimensionless stresses for a short box cross-section beam under bending-torsion load via FEM 3D, 1D and PGD 1D solutions, 121 nodes and Nc ¼ 11.

rxx rxy rxz

FEM 3D-Ra 2.432 5.110 2.349
FEM 3D-Cb 2.442 5.193 2.381

FEM 1D B2 B3 B4 B2 B3 B4 B2 B3 B4
N ¼ 14 24.40 24.41 24.41 5.221 5.241 5.233 2.346 2.349 2.348
N ¼ 12 24.45 24.46 24.46 5.108 5.132 5.127 2.421 2.424 2.422
N ¼ 9 24.52 24.53 24.52 4.837 4.849 4.839 2.332 2.335 2.333
N ¼ 7 24.64 24.65 24.64 4.811 4.829 4.822 2.404 2.407 2.405
N ¼ 4 25.82 25.82 25.82 5.130 5.154 5.143 2.535 2.538 2.536
N ¼ 3 25.84 25.85 25.84 4.358 4.395 4.392 1.581 1.584 1.583
N ¼ 2 24.94 24.95 24.94 3.055 3.097 3.098 1.577 1.580 1.578

FEM PGD 1D B2 B3 B4 B2 B3 B4 B2 B3 B4
N ¼ 14 24.39 24.41 24.41 5.222 5.244 5.235 2.348 2.349 2.347
N ¼ 12 24.46 24.47 24.46 5.109 5.134 5.127 2.421 2.424 2.423
N ¼ 9 24.52 24.53 24.52 4.839 4.852 4.841 2.335 2.338 2.336
N ¼ 7 24.64 24.65 24.64 4.813 4.830 4.822 2.407 2.410 2.409
N ¼ 4 25.81 25.82 25.82 5.130 5.154 5.143 2.535 2.538 2.536
N ¼ 3 25.84 25.85 25.84 4.358 4.394 4.391 1.581 1.584 1.583
N ¼ 2 24.94 24.95 24.94 3.055 3.097 3.098 1.577 1.580 1.578

a Refined mesh: 60� 60� 120.
b Coarse mesh: 10� 10� 10.
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Fig. 14. Dimensionless displacement ux colour map at x=l ¼ 0 cross-section via (a) proposed solution with N ¼ 14;Nc ¼ 11 and B4 and (b) FEM 3D-R model in a short box
beam. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. Dimensionless displacement uz colour map at x=l ¼ 1=2 cross-section via (a) proposed solution with N ¼ 14;Nc ¼ 11 and B4 and (b) FEM 3D-R model in a short box
beam. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. Dimensionless stress rxx colour map at x=l ¼ 1=2 cross-section via (a) proposed solution with N ¼ 14;Nc ¼ 11 and B4 and (b) FEM 3D-R model in a short box beam.
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Fig. 17. Dimensionless stress rxy colour map at x=l ¼ 0 cross-section via (a) proposed solution with N ¼ 14;Nc ¼ 11 and B4 and (b) FEM 3D-R model in a short box beam. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 18. Dimensionless stress rxz colour map at x=l ¼ 0 cross-section via (a) proposed solution with N ¼ 14;Nc ¼ 11 and B4 and (b) FEM 3D-R model in a short box beam. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
nodes and 11 couples are used for the domain decomposition.
Results show that 11 couples ensures a good agreement classical
FEM and FEM PGD solution, being the results very close. As far as
the proposed kinematic models are concerned, a fair accuracy
can be observed. Figs. 14–18 present displacements and stresses
variation over the cross-section. The reference FEM 3D-R solution
is compared to a FEM 1D PGD model with N ¼ 14 and Nc ¼ 11.
Results fairly agree for the displacements and the axial stress com-
ponent. In the case of the shear stresses, stress concentrations are
present in the internal sharp corners of the cross-section making



the solution difficult to be accurately predicted. It should be
observed that this limitation is due to the kinematic model.
Accurate results can be obtained by changing the manner displace-
ments are approximated over the cross-section. Future work will
use a layer-wise modelling approach, see Carrera et al. [19]. In this
manner, the displacement field can be locally refined resulting in
improved results for a given number of degrees of freedom.

6. Conclusion

In this paper, a hierarchical family of higher-order
one-dimensional beam finite elements has been developed in the
framework of a Proper Generalised Decomposition, a variables sep-
aration method that allows reducing the computational costs
inherent to higher-order models. The displacement field has been
approximated over the cross-section via a Unified Formulation in
order to derive several kinematic models able to account for
non-classical effects such as shear deformation and in- and
out-of-plane warping. Furthermore, finite elements with a general
number of nodes per element along the beam axis can be obtained
via this Unified Formulation. Linear, quadratic and cubic
Lagrangian element have been derived. The global problem has
been divided into two coupled ones over the cross-section and
along the beam axis via the adopted variables separation method.
The dimensions of the resulting problems are considerably smaller
than that of an equivalent classical finite element solution. This
approach is particular appealing in the case of higher-order solu-
tions with a refined mesh along the beam axis since a high amount
of computer volatile memory is required and stuck overflow can
occur. The developed elements have been used to investigate the
static response of three-dimensional laminated beam structures.
Simply supported beams with square prismatic or channelled
box cross-sections have been investigated. Analyses accounted
for both slender and short beams subjected to bending as well as
bending-torsional loads. Results have been validated through com-
parison with analytical Navier-type solutions and
three-dimensional finite element solutions obtained via the com-
mercial code ANSYS. The presented results showed that quasi
three-dimensional solutions for both displacement and stress com-
ponents can be obtained in a very computational effective manner.
Some limitations in the kinematic field have been observed in the
case of a short beam with a laminated box cross-section under a
bending-torsion load due to the internal sharp corners.
Nevertheless, the used generalised decomposition is able to con-
verge to the classical corresponding finite element solution pro-
vided a suitable number of couples is considered. Future work
will focus on the improvement of the displacement field by a
layer-wise approach in order to refine the solution locally.
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