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Benchmark solutions and assessment of variable kinematics models
for global and local buckling of sandwich struts
Michele D’Ottavio, Olivier Polit, Wooseok Ji, Anthony M. Waas 
1. Introduction

Sandwich panels basically consist of two thin and stiff load
carrying face sheets (the skins) that are separated by a thick and
relatively weak core made of low density material. The particularly
high specific bending stiffness renders sandwich panels an
appealing load bearing solution in designs with relevant weight
constraints. Failure mechanisms of sandwich panels can be very
different from those of other composite structures due to the char-
acteristic mismatch of mechanical and geometrical properties
between skins and core [1,2]. In particular, instability phenomena
occurring under compressive stress states have been given great
attention through numerous experimental works [3–6] as well as
theoretical and computational developments [7–15].

Compression instabilities in sandwich panels can be classified
with respect to the wavelength of the buckling pattern [16]: face
dimpling denotes the intracellular face buckling within honey-
comb cells; wrinkling is characterized by a wavelength that is com-
parable to the face thickness; overall or global buckling identifies
instabilities with wavelengths of the same order of magnitude of
the panel in-plane dimension. These global and local instabilities
may interact and form a complex failure scenario [17–20]. The
differences between the length scales of the response demand
appropriate modeling techniques [21,22].
The classical manner to compute buckling instabilities refers to
a linearized bifurcation analysis that permits to determine critical
loads by a simple eigenvalue analysis, and the present work
follows this approach also. The authors are aware that the loads
predicted by this simplified analysis should be reduced by oppor-
tune knockdown factors in order to account for the imperfection
sensitivity of the instability process [23]. The alternative to the lin-
earized bifurcation analysis is the solution of the full nonlinear
equilibrium and stability problem, including initial perturbations
of geometrical and/or mechanical nature [9,24,25].

When dealing with the linearized bifurcation analysis great
attention should be given to the definition of the incremental
strain and stress measures that describe the adjacent equilibrium
state. Bažant [26] demonstrated the equivalence of formulations
based on different incremental strain and work-conjugate incre-
mental stress measures provided the corresponding constitutive
equations is used, see also [27]. The selection of a consistent set
of relations defining the incremental strains and stresses and
the constitutive model is of utmost importance when dealing
with soft, shear-flexible materials like those usually employed
in sandwich structures [28,29]. A quantitative assessment of
different incremental elasticity formulations has been provided
by comparing the buckling loads obtained from exact elasticity
solutions [30] or accurate FE analyses [31] for various sandwich
(wide) beams. They showed that these inconsistencies may
lead to errors of up to 20% and that the erroneous results are
non-conservative.
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Fig. 1. Geometry of the symmetric sandwich plate.
Despite elasticity solutions of the linear bifurcation problem of
sandwich panels are available for a restricted class of problems
[30,32–34], it is often necessary to resort to approximate structural
models in order to cope with more complex configurations [35].
Many plate and shell models have indeed been proposed for sand-
wich panels, as already summarized by the reviews of Noor and
Burton [36,37]. Carrera [38,39] paved the way for a very efficient
manner to assess the accuracy of different models. Thanks to a
compact index notation, variable kinematic models are formulated
and the corresponding governing equations are implemented in a
unique computer program. Carrera’s Unified Formulation (CUF)
formulates axiomatic, displacement-based plate and shell models
by postulating the through-thickness distribution of the displace-
ment field within the weak form expressed by the Principle of
Virtual Displacements (PVD). Following the systematic classifica-
tion of Reddy [40], the displacement field can be described in
either Equivalent Single Layer (ESL) or Layer-Wise (LW) manner.
The ESL displacement field can be enhanced with Murakami’s
Zig-Zag Function (MZZF), which introduces the slope discontinuity
at layers’ interfaces, which is a necessary though not sufficient con-
dition for satisfying the interlayer equilibrium [41,42]. Finally, the
order of the polynomial approximation across the thickness of the
panel (in an ESL description) or of the layer (in an LW description)
may be freely selected, but it is taken to be the same for all dis-
placement components. This latter limitation has been removed
by the Generalized Unified Formulation (GUF) proposed by Demasi
[43], where different orders can be introduced for the approxima-
tion of different displacement components. However, in both GUF
and CUF the same hypotheses (i.e., ESL or LW description and
approximation order) are used for all the plies of the composite.
In order to overcome this limitation, a Sublaminate version of the
GUF (S-GUF) has been recently proposed [44]. Following an idea
early proposed by Reddy [45], the multilayered plate is subdivided
into an arbitrary number of sublaminates, each constituted by an
arbitrary number of physical plies, and the variable kinematics
modeling expressed by GUF is employed independently in each
sublaminate.

The objective of the present contribution is to propose bench-
mark solutions and an assessment of several displacement-based
models for the global buckling and wrinkling instabilities of sand-
wich struts subjected to uniaxial compression loads. Ji and Waas
[30,31] provided reference solutions through an exact solution of
the differential equations governing the 2D incremental elasticity
problem formulated in a plane strain setting. Different models
are formulated in the framework of the newly developed S-GUF,
which allows a systematic investigation of the pertinence of the
model assumptions. To this aim, the paper is organized as follows.
Section 2 introduces the geometry of the considered problems and
the notation employed throughout the paper. The governing equa-
tions and exact solution of the 2D incremental elasticity problem
are described in Section 3. The approximate plate solution is
formulated in Section 4, in which the S-GUF is introduced and
extended to include the geometric stiffness matrix accounting for
the initial stress. Section 5 presents the results of the numerical
investigations and, finally, Section 6 summarizes concluding
remarks and an outlook towards future research topics.

2. Preliminaries

We consider a sandwich strut, i.e., a wide beam in plane strain
and subjected to an axial compressive load, generally composed of
Np perfectly bonded plies of arbitrary thickness hp. Attention is lim-
ited single-core, symmetric sandwich cross-sections that consist of
a core of thickness hc that is perfectly bonded to the outer face
sheets of thickness hf as illustrated in Fig. 1. Each face sheet is then
composed of N f
p ¼ ðNp � 1Þ=2 of homogeneous, orthotropic and

perfectly bonded plies. Cartesian coordinates ðx; y; zÞ ¼ ðx1; x2; x3Þ
are used to describe the undeformed strut occupying the volume
V ¼ X� � H

2 ;
H
2

� �
, where X ¼ ½0; L� � ½0;W � is the mean surface that

is taken to be coincident with the x; y plane and H is the constant
total thickness of the sandwich strut.

The pre-buckled configuration of the strut is defined through an
initial compressive axial strain along x in the xz-plane, which can
be thought of as generated by a shortening due to rigid end plates
that are parallel to the yz-plane and move in the x-direction. As will
be detailed later, the buckled configuration will be characterized
by periodic modal shapes along the x-direction with a wavelength
2Lx. Fig. 2 illustrates the periodic antisymmetric and symmetric
buckling modes that will be object of the present study. The global
buckling mode corresponds to the antisymmetric mode with a
half-wavelength Lx ¼ L.

3. Elasticity approach

The bifurcation buckling problem is formulated by considering
the adjacent equilibrium state the solid body arrives at upon a
small perturbation of an initially stressed state. The incremental
stresses r�

ij must satisfy the general equilibrium equations

r�
ij;j

¼ 0 ð1Þ

where Einstein’s summation convention is employed with Latin
indices i; j; l;n ¼ 1;2;3. The incremental Trefftz stress measure is
employed, which is defined in terms of initial stress r0

ij and pertur-
bation stress r0

ij according to

r�
ij ¼ r0ð2Þ

ij þ r0
lj ui;l ð2Þ

This stress measure is work-conjugate to the Green–Lagrange finite
strain tensor, which corresponds to the class of Doyle–Erickson

strain tensors �ðmÞ
ij with m ¼ 2:

�ð2Þij ¼ eij þ eij with eij ¼ 1
2

ui;j þ uj;i

� �
and eij ¼ 1

2
uk;i uk;j ð3Þ

Within this approach, the consistent constitutive model linking the
perturbation stress and the finite strain employs constant stiffness

moduli eC ð2Þ
ijln ¼ Cijln:

r0ð2Þ
ij ¼ eCijln �

ð2Þ
ln ð4Þ

Note that the stiffness moduli are expressed in the Cartesian frame
of the problem.

The sandwich strut is subjected to a uniform axial strain
�011 ¼ �0, which produces in each ply ðpÞ a purely axial initial stress

state r0ðpÞ
ij ¼ r0ðpÞ

11 that depends on the elastic stiffness of the ply.
The governing equilibrium equations are thus written for each
ply of the sandwich strut as follows



Fig. 2. Antisymmetric and symmetric periodic buckling modes.
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where the superscript (2) has been omitted from the perturbation
stress components.

The constitutive law Eq. (4) and the strain–displacement rela-
tion Eq. (3) are substituted into the equilibrium equations and a
system of homogeneous partial differential equations (PDE) is
obtained. The solution of the bifurcation buckling problem consists
in seeking the critical value of the parameter �0 for which the
above set of homogeneous PDE admits a non-trivial displacement
field. Note that in the considered plane strain configuration the
second of Eq. (5) is automatically verified.

3.1. Analytical solution

The present work focuses on periodic buckling and a harmonic
solution is accordingly assumed for each ply in the following form:

up
1ðx; zpÞ ¼ wðzpÞ cosðx=LxÞ up

3ðx; zpÞ ¼ /ðzpÞ sinðx=LxÞ ð6Þ
where Lx is the half-wavelength of the periodic in-plane modal
shape and the functions wðzpÞ and /ðzpÞ define the modal shape
across the ply thickness. These are found to be linear combinations
of four hyperbolic trigonometric functions whose full expression
can be found elsewhere [13,33,30]. The solution Eq. (6) exactly
satisfies the field equations Eq. (5) and introduces 4 unknown
constants for each ply to be determined by appropriate boundary
conditions. For symmetric sandwich struts, as those considered in
the present work, only the upper half of the sandwich cross-
section shall be considered. The 8 arbitrary constants associated
to the solution for the top face and the core must thus verify 4 dis-
placement and traction continuity conditions at the face-core inter-
face and 2 homogeneous traction conditions at the top surface. The
last two conditions are provided by imposing the modal shape
across the thickness to be either symmetric or antisymmetric
[13,33,30]. A classical eigenvalue problem is finally formulated by
setting to zero the determinant of the resulting set of 8 algebraic
equations in the 8 unknown coefficients. This may be represented
in the following implicit form:

f �0cr;g
� � ¼ 0 ð7Þ
where the critical (buckling) strain �0cr ¼ k�0, defined by the scaling
factor k of the initial axial strain �011, is obtained in function of a non-
dimensional half-wavelength of the periodic in-plane buckling
mode g ¼ Lx=hf , where hf is the thickness of the sandwich face.

4. Approximate plate solutions for linearized bifurcation
analysis

Approximate solutions to the governing equations of the buck-
ling problem are found by referring to weak forms obtained from
variational equations. The variational statement corresponding to
the linearized stability analysis of a body subjected to initial stres-
ses as defined by Eqs. (1)–(4) can be found in the book by Washizu
[46]. The critical load is given by the scalar parameter k that mul-
tiplies the initial stress state r0

ij and that satisfiesZZ
X

Z
H
deij Cijln eln þ ðdul;j Þkr0

ij ul;i dz dx dy ¼ 0 ð8Þ

where d denotes virtual variation. The associated Euler equations
are indeed the three equilibrium equations Eq. (1), where the incre-
mental stresses are those given in Eq. (2) and the subsidiary condi-
tions are those expressed by Eqs. (3) and (4).

Ji and Waas [30,31] have detailed out a displacement-based
Finite Element Method (FEM) based on the above weak form in
the framework of the plane strain elasticity, see also [29]. The
importance of using correct work-conjugate strain and stress defi-
nitions has been pointed out along with the error that commercial
FEM software can produce due to an inconsistent incremental elas-
ticity formulation. In the present work, the weak form Eq. (8) is
used as a starting point for formulating 2D plate models. Following
the axiomatic approach, approximations are introduced by postu-
lating the distribution of the displacement field along the trans-
verse z-direction. Unified Formulations propose a way to express
variable kinematics plate models according to the following com-
pact index notation [47,43,48]:

uiðx; y; zÞ ¼
XNui

a¼0

Fa ui ðzÞ ûi aðx; yÞ ð9Þ

where Fa ui ðzÞ (a ¼ 0;1 . . .Nui ) are known approximating functions.
Details about the way this approximation is formulated in this work
are given in the subsequent section dedicated to the Sublaminate
Generalized Unified Formulation (S-GUF). For the periodic buckling
problem of orthotropic sandwich structures investigated in this
study, a harmonic in-plane solution is formulated according to
Navier’s method [35,15]:

û1 aðx; yÞ ¼ U1 a cos
mpx
L

sin
npy
W

ð10aÞ

û2 aðx; yÞ ¼ U2 a sin
mpx
L

cos
npy
W

ð10bÞ

û3 aðx; yÞ ¼ U3 a sin
mpx
L

sin
npy
W

ð10cÞ

The integers m;n denote the number of half-waves of the periodic
response along x and y, respectively, and define, hence, the half-
wavelengths Lx ¼ L=m; Ly ¼ W=n. For a simply-supported plate,
the only approximations are those introduced across the transverse
z-direction, i.e., they concern only the sandwich plate kinematics,
because the Navier-type solution verifies in a strong form the PDE
in the x; y-plane as well as the boundary conditions at x ¼ 0; L and
y ¼ 0;W .

The assumed solution obtained from the combination of Eqs.
(10) and (9) is substituted into the variational Eq. (8). The integrals
over the thickness H of the sandwich strut are evaluated, which
yields the weak form of the 2D governing equations. Those terms
whose virtual variation is differentiated with respect to the in-
plane variables x; y are integrated-by-parts for obtaining the strong
form of the 2D governing equations, which are exactly verified by



the adopted Navier solution. The plane strain condition is enforced
by setting to zero all partial derivatives with respect to x2 ¼ y. The
governing equation for the bifurcation buckling is finally expressed
in matrix form by the following classical eigenvalue problem:

dU|
ðmÞ KðmÞ þ kKG ðmÞ
� �

UðmÞ ¼ 0: ð11Þ
where superscript | is the transposition operator. The matrices KðmÞ
and KG ðmÞ are the linear stiffness matrix for the perturbed configu-
ration and the geometric stiffness matrix associated to the initial
stress field r0

ij, respectively.
Solution of the eigenvalue problem: critical loads and buckling

loads. The matrices in Eq. (11) are square, symmetric and real
and have a size NDOF dictated by the model approximations intro-
duced by Eq. (9). For a given half-wavelength Lx ¼ a=m the plane
strain ðn ¼ 0Þ eigenvalue problem yields NDOF real eigenvalues
kðmÞ. Each eigenvalue corresponds to a critical load NcrðmÞ and the
corresponding eigenvector is the through-thickness distribution
of the buckled configuration. The lowest critical load obtained for
all possible half-wavelengths Lx ¼ L=m defines the buckling load
P of the plate and the corresponding half-wavelength L�x:

P ¼ min
m

ðNcrðmÞÞ atm ¼ m�; L�x ¼ Lxðm�Þ ¼ L
m� ð12Þ
4.1. Approximations in S-GUF

In order to cope with the different mechanical and geometric
properties of core and face sheets, that may be composed of several
plies, it may be useful to introduce different approximations for
these three layers. The recently proposed Sublaminate version of
the Generalized Unified Formulation (S-GUF) [44] will be
employed for modeling the sandwich strut as an assembly of
NL ¼ 3 sublaminates. If the whole sandwich is modeled as a single
sublaminate, NL ¼ 1, the S-GUF simply reduces to the established
GUF [43]. In S-GUF, the integral along the transverse z-coordinate
appearing in the variational Eq. (8) is hence split in NL sublaminate
contributions:Z
H
deij Cijln eln þ ðdul;j Þkr0

ij ul;i dz ¼
XNL
k¼1

Z
hk

dekij eC ðpÞ
ijln e

k
ln

þ duk
l;j

� �
kr0ðpÞ

ij uk
l;i
dzk ð13Þ

where the superscript ðpÞ highlights the dependence of the stiffness
coefficients and the initial stress on the ply p inside the sublaminate
k. In each sublaminate k 2 f1;NLg, variable plate kinematics models
are introduced following the GUF compact notation first introduced
by Demasi [43]:

uiðx; y; zÞ ¼
XNk

ui

aui¼0

Faui ðzÞ û
k
iaui

ðx; yÞ ð14Þ

where Nk
ui
is the order of the approximation of the variable ui inside

the kth sublaminate, which is a free input choice. The essential
difference between the present Sublaminate-GUF and the GUF
proposed by Demasi [43] lies in the fact that the order of the

approximation Nk
ui

depends not only on the displacement compo-
nent (subscript ui) but also on the sublaminate k. This permits to
formulate different approximations for different sublaminates.
The formulation of the variable kinematic model follows exactly
the same way outlined by Demasi [43], where it is recalled that
now the resulting model is defined for the sublaminate only instead
of for the whole plate.

Once the sublaminate models Eq. (14) introduced in Eq. (13),
the corresponding sublaminate integrals are evaluated. The model
for the whole sandwich plate is finally obtained as a Layer-Wise
assembly of all sublaminate models. The continuity of the assumed
displacement field is hence exactly fulfilled at the interfaces
between adjacent sublaminates.

4.2. Approximations for the sublaminate

When the kth sublaminate is composed of Nk
p > 1 plies, the S-

GUF model may be constructed with an ESL or LW description
for the variable uk

i . Note that the choice of the description can be
made independently for each of the three displacement compo-
nents. In the ESL case, the approximating functions Faui ðzÞ are
expressed in terms of the sublaminate-specific coordinate zk;

uk
i ðx; y; zkÞ ¼

XNk
ui

aui¼0

Faui ðzkÞ û
k
i aui

ðx; yÞ ð15Þ

In the LW case, the approximation is introduced in each ply, i.e.,
ply-specific coordinate zp must be used instead of zk in Eq. (15):

up
i ðx; y; zpÞ ¼

XNk
ui

aui¼0

Faui ðzpÞ û
p
i aui

ðx; yÞ ð16aÞ

The approximation for the sublaminate is finally obtained upon

assembling all contributions of the Nk
p plies:

uk
i ðx; y; zkÞ ¼

XNk
p

p¼1

up
i ðx; y; zpÞ ¼

XNk
p

p¼1

XNk
ui

aui¼0

Faui ðzpÞ û
p
i aui

ðx; yÞ
8<:

9=; ð16bÞ

Note that in an LW description the expansion order of each

unknown Nk
ui
is the same for all Nk

p plies of the sublaminate.
For both ESL and LW descriptions, the sublaminate integral in

Eq. (13) has to be evaluated as an assembly of ply-specific integrals
in order to account for the ply-dependent stiffness coefficient:Z
hk

dekij eC ðpÞ
ijln e

k
ln þ duk

l;j

� �
kr0 k

ij uk
l;i
dzk ¼

XNk
p

p¼1

Z ztp

zbp

dekij eCp
ijln e

k
ln

þ duk
l;j

� �
kr0 p

ij uk
l;i
dzk ð17Þ

The assembly procedure of the ply integrals to build the
sublaminate integral depends on the ESL or LW description of the
variable ui and can be found elsewhere [44].

4.2.1. The approximating functions
The approximating functions Faui are polynomial functions

defined in the non-dimensional coordinate fk 2 ½�1;1� of the kth
sublaminate as follows

if Nk
ui
¼ 0 : F0ðfkÞ ¼ 1 ð18aÞ

if Nk
ui
P 1 : F0ðfkÞ ¼

1þ fk
2

; F1ðfkÞ ¼
1� fk

2
; ð18bÞ

FrðfkÞ ¼ PrðfkÞ � Pr�2ðfkÞ for r ¼ 2;3; . . .Nk
ui

ð18cÞ
where PrðfkÞ is Legendre’s polynomial of order r that can be defined
recursively from following relations [49]

P0ðfkÞ ¼ 1; P1ðfkÞ ¼ fk; Prþ1ðfkÞ ¼
ð2r þ 1Þfk PrðfkÞ � r Pr�1ðfkÞ

r þ 1
ð19Þ

These functions are used inside the kth sublaminate irrespective of
the ESL or LW descriptions of the variable ui. The chosen approxi-
mating functions ease the imposition of the continuity at interfaces



between sublaminates as well as between plies inside a sublami-
nate described in a LW manner. Note that if a Layer-Wise descrip-
tion is chosen inside the kth sublaminate, the non-dimensional
ply-specific coordinate fp should be used instead of fk in Eqs. (18)
and (19). The relation between these non-dimensional coordinates
reads

fp ¼
hk

hp
fk þ

2
hp

z0k � z0p
� � ð20Þ

where z0k and z0p are the z-coordinates of the mean surfaces of the
kth layer and the pth ply, respectively.

4.2.2. Generic kernel for the linear stiffness matrix
The proposed S-GUF maintains the main feature of Unified For-

mulations, which consists in expressing variable kinematics mod-
els in terms of kernels or fundamental nuclei that are invariant
with respect to the chosen model approximations. The kernels
for the linear stiffness matrix K of Eq. (11) are obtained from the
virtual variation of internal strain energy dPint during the pertur-
bation from the initially stressed state:

dPint ¼ dU|
ðm;nÞKðm;nÞUðm;nÞ ¼

ZZ
X

Z
H
deij Cijln eln dz dx dy ð21Þ

Introducing the S-GUF expansion Eq. (14) for the variables ui and uj,
the virtual variation of internal strain energy can be split into sub-
laminate contributions according to Eq. (13):

dPint ¼
XNL
k¼1

dPk
int ¼

XNL
k¼1

duk
i aui

K
k aui buj
uiuj

� 	
uk
j buj

ð22Þ

A generic expression for all terms contributing to the kth sublami-
nate can be then written from Eq. (17) in the following way:

duk
iaui

K
k aui buj
uiuj QS

� 	
uk
j buj

¼
ZZ

X
@
ðiÞ
ðx;yÞ dû

k
iaui

ðx; yÞ
� � XNk

p

p¼1

eZpaui buj
uiuj QS

8<:
9=;

� @
ðjÞ
ðx;yÞ û

k
j buj

ðx; yÞ
� 	

dx dy ð23aÞ

where, depending on the considered term, the displacement
component ui or uj may be derived with respect to the in-plane

coordinates, which is indicated by the notation @
ði;jÞ
ðx;yÞ. The

ply-integral eZp aui buj
uiuj QS

is defined as

eZpaui ð;zÞ buj ð;zÞ
uiuj QS

¼ eC ðpÞ
QS

Z ztp

zbp

Faui ð;zÞð�zÞFbuj
ð;zÞð�zÞ d�z ð23bÞ

with �z ¼ zk for an ESL description and �z ¼ zp for a LW description.
Depending on the considered term, the displacement components
ui or uj may be derived with respect to the transverse coordinate
z, which is indicated by the subscript ð;zÞ. The conventional Voigt
notation has been introduced in order to write the constitutive
Eq. (4) in matrix form as

rQ ¼ eCQS eS ðQ ; S ¼ 1;2; . . .6Þ ð24aÞ
with

e1 ¼ e11; e2 ¼ e22; e3 ¼ e33; e4 ¼ 2e23; e5 ¼ 2e13;
e6 ¼ 2e12; ð24bÞ
r1 ¼ r0

11; r2 ¼ r0
22; r3 ¼ r0

33; r4 ¼ r0
23; r5 ¼ r0

13;

r6 ¼ r0
12; ð24cÞ

More details can be found in [44] and a full derivation of all kernels
can be found in the detailed paper by Demasi [43]. All ply-integralseZp aui ð;zÞ buj ð;zÞ

uiuj QS
as well as the kernels K

p aui buj
uiuj for the present Navier-type

solution are reported in Appendix A.
4.2.3. Kernel for the geometric stiffness matrix

This work considers a uniaxial stress r0ðpÞ
11 acting in each ply that

is generated by a uniform strain �011 induced by an end shortening
of the whole sandwich strut within the plane strain setting. The
uniaxial initial stress is hence defined from the combination of

the condition r0ðpÞ
33 ¼ 0 and of the plane strain condition �022 ¼ 0

[50], which yields

r0ðpÞ
11 ¼ Q ðpÞ

11 �
0
11 with Q ðpÞ

11 ¼ eC ðpÞ
11 �

eC ðpÞ
13
eC ðpÞ
31eC ðpÞ

33

ð25Þ

It appears useful to state the equivalence between this definition
and that used in [30], where the initial stress in each ply is defined
in terms of the total compressive load P as

r0ðpÞ
11 ¼ Q ðpÞ

11

A11W
P ð26aÞ

For a composite plate composed of Np plies, the axial membrane
stiffness A11 is

A11 ¼
XNp

p¼1

Q ðpÞ
11 hp ð26bÞ

with Q ðpÞ
11 ¼ Ep=ð1� ðmpÞ2Þ for isotropic materials. Introducing an ini-

tial uniform stress R0 ¼ P=ðHWÞ the initial stresses in each ply can
be hence expressed as

r0ðpÞ
11 ¼ Q ðpÞ

11H
A11

R0 ð26cÞ

which is equivalent to Eq. (25) once the uniform initial strain is
identified as

�011 ¼ H
A11

R0 ¼ P
A11W

ð26dÞ

The kernels for the geometric stiffness matrix are identified
from the ply contribution to the virtual work done by the initial
stress. Introducing the definition of the initial stress field Eq. (25)
into the variational Eq. (17) one has

dU|
ðm;nÞ kKG ðm;nÞUðm;nÞ

¼
ZZ

X

Z
H
Q ðpÞ

11 k�
0
11 u1;1du1;1 þ u2;1du2;1 þ u3;1du3;1

� �
dz dx dy ð27Þ

If von Kàrmàn approximation is used for the non-linear
strain definition, the membrane contributions are discarded,
i.e., u1;1 ¼ u2;1 ¼ 0 is set.

Introducing the S-GUF approximation (14), the following
expression is obtained for the contribution of the kth sublaminate:

duk
iaui

kK
kaui bui
Guiui11

� �
uk
ibui

¼ k�011

ZZ
X

@ dûiaui
ðx;yÞ

@x1

XNk
p

p¼1

eZpaui bui
Euiui 11

8<:
9=;@ ûibui

ðx;yÞ
@x1

ð28aÞ
with the ply-integral defined as

eZpaui bui
E uiui 11

¼ Q ðpÞ
11

Z ztp

zbp

Faui ð�zÞFbui
ð�zÞ d�z ð28bÞ

The ply-integral eZp aui bui
E uiui 11

is the kernel of the geometric stiffness
matrix for the considered initial load defined in terms of uniform
strain. Its expression is invariant with respect to the expansion
order used for the displacement uk

i , the ESL or LW description of
uk
i inside the sublaminate and the solution adopted in xy-plane.

The kernels for the geometric stiffness matrix K
p aui bui
G uiui

for the consid-
ered Navier-type solution are explicitly reported in Appendix A.



Table 2
S-GUF representation of the models for sandwich panels considered in the numerical
assessment.

Acronym Face model Core kinematics Core assumptions NDOF

HL CLT Nu1 ¼ 2; Nu3 ¼ 1 12
DY FSDT Nu1 ¼ 2; Nu3 ¼ 1 12
HSAPT CLT Nu1 ¼ 3; Nu3 ¼ 2 Ec11 ¼ 0; r0ðcÞ

11 ¼ 0 15

HSAPTr0 CLT Nu1 ¼ 3; Nu3 ¼ 2 r0ðcÞ
11 ¼ 0 15

EHSAPT CLT Nu1 ¼ 3; Nu3 ¼ 2 15
4.2.4. Size of the resulting arrays

The sublaminate kernels K
p aui buj
uiuj and K

k aui bui
G uiui

are first expanded

over the indices aui ¼ 0;1; . . .Nk
ui
and buj

¼ 0;1; . . .Nk
uj
, which yields

the ply contribution to kth sublaminate as a ð1þ Nk
ui
Þ � ð1þ Nk

uj
Þ

array. The assembly over all plies inside the sublaminate is then
performed as formally described by Eq. (17). The resulting size of
the arrays depends on whether the uk

i and uk
j variables are

described in ESL or LW manner, as given in Table 1.

5. Numerical results

Numerical tests are performed for the periodic buckling of sym-
metric sandwich plates subjected to a uniaxial uniform strain as
described in the previous Sections. Several 2D plate models are
assessed towards the elasticity solutions in the 2D plane strain set-
ting. The S-GUF is here used to represent and assess several classi-
cal models proposed in open literature for the analysis of buckling
of sandwich panels. In the following, the models considered in the
assessment and their representation within S-GUF are discussed.
Subsequently, numerical results are presented for sandwich panels
with orthotropic and isotropic core.

5.1. Considered sandwich plate models

This section introduces briefly the axiomatic models considered
in the numerical assessment. A class of models originally
developed for sandwich panels with honeycomb core considers
the in-plane stiffness of the core negligible compared to the trans-
verse one. The models proposed in [9,51,11] refer to this anti-plane
stress assumption and formulate a core kinematics with cubic and
quadratic expansions for the in-plane and transverse displace-
ments, respectively. In the following, these models will be referred
to as HSAPT. Besides the classical HSAPT model, in which the axial
Young’s modulus of the core is set to zero, a modified version of
this class of models, denoted HSAPTr0 , is discussed in this work:
in HSAPTr0 the axial stiffness of the core is retained in the defini-
tion of the perturbation stresses Eq. (4), but it does not contribute
to the initial stress, i.e., the core axial stiffness is neglected only in
the geometric stiffness matrix. In both the HSAPT and HSAPTr0

models, the initial stress is entirely carried by the face sheets. Note
that in this configuration the dominant buckling mode can be a
non-periodic short wavelength one, known as edge buckling [33].
Phan et al. [52,53] analyzed sandwich buckling with an enhanced
version of HSAPT, which includes the in-plane stiffness of the core
and will be referred to as EHSAPT model. Hohe and Librescu [54]
proposed a sandwich plate model based on a core kinematics with
quadratic and linear expansions for the in-plane and transverse
displacements, respectively. This model will be denoted HL in the
following and, in comparison to HSAPT, represents the core with
a lower-order kinematics but it retains its in-plane stiffness. While
all models discussed so far adopt the Euler–Bernoulli–Kirchhoff
hypothesis that discards the transverse deformation in the face
Table 1
Array size for a sublaminate constituted of Nk

p plies and with expansion orders Nk
ui
and

Nk
uj
.

Description for uk
i Description for uk

j Size (Kk
uiuj

) = size(Zk
uiuj QS

)

ESL ESL ð1þ Nk
ui Þ � ð1þ Nk

uj Þ
ESL LW ð1þ Nk

ui
Þ � ðNk

p N
k
uj
� 1Þ

LW ESL ðNk
p N

k
ui
� 1Þ � ð1þ Nk

uj
Þ

LW LW ðNk
p N

k
ui � 1Þ � ðNk

p N
k
uj
� 1Þ
sheets (CLT model), the DY model proposed by Dawe and Yuan
[55] employs the same core kinematics of the HL model but
includes a constant transverse shear strain in the face sheets by
referring to an FSDT model.

The S-GUF allows to model the sandwich plate in terms of
three-layer models with different kinematics for the three sublam-
inates representing the face sheets and the core. Since S-GUF
consists of a variable kinematics approach, all previously discussed
HL, DY, HSAPT, HSAPTr0 and EHSAPT kinematics are particular
cases of S-GUF models and can thus be represented within the
same software with the model definition summarized in Table 2.
Following the standard nomenclature for Unified Formulation
models, capital ‘E’ and ‘L’ denote ESL and LW descriptions, respec-
tively; capital ‘D’ indicates the displacement-based approach; the
order of the polynomial expansions for u1 and u3 is specified in
the subscript. Therefore, the classical CLT and FSDT models are
both represented in S-GUF notation as ED10, where a 0th-order
implies a constant approximation, see Eq. (18a). Note that the
NDOF indicated in Table 2 is referred to the S-GUF representation.
CLT and FSDT have thus the same NDOF, where the infinite trans-
verse shear rigidity of CLT is included via a penalty factor whereas
a unit shear correction factor is used for FSDT. It should be finally
pointed out that several models in the literature have been pro-
posed for isotropic core materials only as, e.g., [9,11], but this lim-
itation has not been retained in the present S-GUF representation
in which all materials are considered as orthotropic.

5.2. Sandwich with orthotropic core

The case study proposed by Ji and Waas [31] is considered in
order to validate the S-GUF buckling analysis. A short sandwich
strut with H ¼ 1 [mm], L ¼ 3H is made of two identical face sheets
of thickness hf ¼ 0:1 [mm] and a core of thickness hc ¼ 0:8 [mm].
Two material configurations are considered: an orthotropic core
is combined with an isotropic face (Case 1) and an orthotropic core
is combined with an orthotropic face (Case 2). The complete set of
material data used for Case 1 and Case 2 are reported in Table 3 and
Table 4, respectively. The results are given in Fig. 3 and report the
critical loads for the global buckling mode (Lx ¼ L). The computed
buckling loads P are normalized with respect to the global beam
buckling load defined as

PG ¼ PE

1þ ðPE=GAÞ
ð29aÞ
Table 3
Material data for Case 1 with isotropic face sheets and orthotropic core.

Case 1 Property Value

Face sheets E f [GPa] 30

m f 0.3

Core Ec33 [GPa] 4� Gc
13

Gc
13 [GPa] Gf =1000

mc13 0.25



Table 4
Material data for Case 2 with orthotropic face sheets and core.

Case 2 Property Value

Face sheets E f
11 [GPa] 107

E f
33 [GPa] 15

Gf
13 [GPa] 4.3

m f
13

0.3

Core Ec33 [GPa] 4� Gc
13

Gc
13 [GPa] Gf

13=200
mc13 0.25
where PE is the conventional Euler load

PE ¼ p2EI

L2
with EI ¼ W Ef h

3
f

6
þ E f hf

ðhf þ hcÞ2
2

þ Ec h
3
c

12

" #
ð29bÞ

and GA is the shear stiffness defined by Huang and Kardomateas
[56] as

GA ¼ 1
2W

Ef 2

4EI2Gf
e4hf � 2

3
e2ðe3 � d3Þ þ 1

5
ðe5 � d5Þ

� 	"

þ E f 2

EI2Gc h2
c c

2dþ 2
15

Ec2

E f 2
d5 þ 2

3
Ec

E f
hf cd

3

!#�1

ð29cÞ

with e ¼ hf þ hc=2; c ¼ ðhf þ hcÞ=2 and d ¼ hc=2, see also [57].
The evolution of the normalized buckling load with respect to

the core orthotropy Ec
11=E

c
22 is reported in Fig. 3(a) for both Case 1

and Case 2. The approximated plate results are obtained with the
high-order S-GUF model ED4;4=ED8;8 (fourth-order expansion for
the faces and eigth-order expansion for the core). An excellent
agreement is shown between the S-GUF model and the reference
FE solution of [31]. Fig. 3(b) compares the non-dimensional
Fig. 3. Evolution of normalized global buckling

Fig. 4. Model assessment with
buckling loads obtained for varying aspect ratio L=H of the sandwich
strut. The total thickness of the sandwich has been kept constant
with hf ¼ 0:1 and hc ¼ 0:8 [mm]. Both Case 1 and Case 2 are again
considered: the results in Fig. 3(b) refer to an axial Young’s
modulus that corresponds to Ec

11 ¼ 400� Gc
13 for Case 2 and to

Ec
11 ¼ 480� Gc

13 for Case 2. The agreement between the S-GUF plate
model and the reference solution obtained by the accurate FE com-
putations of [31] is very good. The small discrepancies occurring for
the extremely short strut (L=H ¼ 2) are attributed to the slightly dif-
ferent boundary conditions that have been used in the FE
computation with respect to the simply-support conditions
implied by Navier’s solution. Note that, since the edge conditions
of the FE simulation – u1ðx ¼ 0; zÞ ¼ u1ðx ¼ L; zÞ ¼ 0 and
u3ðx ¼ 0; z ¼ 0Þ ¼ u3ðx ¼ L; z ¼ 0Þ ¼ 0 – are more similar to a clamp
[31], the beam length L ¼ 3H used for the Navier solution is one half
of that used in [31].

The assessment of the models reported in Table 2 for the
varying orthotropic ratio Ec

11=E
c
33 is illustrated in Fig. 4(a) for Case

1 and Fig. 4(b) for Case 2. The non-dimensional buckling load pre-
dicted by the HSAPT model is clearly insensitive with respect to the
Ec
11=E

c
33 ratio: its value is P=PG ¼ 0:88, which is a conservative esti-

mate, and is not reported in Fig. 4. On the contrary, the HSAPTr0

model does systematically provide a largely non-conservative pre-
diction of the buckling load. The errors increase with the core axial
stiffness and can be as high as 70% for Case 1 (isotropic faces) and
40% for Case 2 (orthotropic faces). The lower-order models HL and
DY behave similarly but with smaller error magnitudes. Comparing
the HL and DY results in Fig. 4, one notices that the assumption of
zero transverse shear deformability of the face sheets appears to be
irrelevant for the isotropic faces (Case 1) but produces a certain
inaccuracy when the faces are orthotropic (Case 2). The error intro-
duced by this hypothesis is also shown to slightly grow with the
core stiffness. Moreover, from Fig. 4(b) it appears that this assump-
tion is the main source of error of the high-order EHSAPT model.
load with core othotropy and aspect ratio.

respect to core othotropy.



Fig. 5. Model assessment with respect to aspect ratio.

Fig. 6. Fagerberg case study: critical strain vs buckling wavelength for three
different core qualities.
Fig. 5 reports the model assessment for the varying aspect ratio
L=H and similar conclusions can be drawn.

5.3. Sandwich with isotropic core

The symmetric sandwich plate experimentally investigated by
Fagerberg [5] is considered in the plane strain setting and with a
model consisting of three layers of isotropic materials [30]. The
geometry of the strut is defined by L ¼ 200 [mm], H ¼ 70 [mm]
with a core of thickness hc ¼ 68 [mm] and two faces of thickness
hf ¼ 1 [mm] each. The faces are four-ply ½0=90�s laminates, where
each ply has equal thickness hp ¼ hf =4 ¼ 0:25 [mm] and following

material data (moduli in [GPa]): Ef
11 ¼ 107; Ef

22 ¼ 15; Gf
12 ¼ 4:3,

major Poisson’s ratio m f
12 ¼ 0:3 [5,30]. The equivalent axial Young’s

modulus and Poisson’s ratio for the faces are obtained through the
membrane stiffness matrix of the CLT: the isotropic data used in

the study are thus Ef
x ¼ 61:443 [GPa] and m f

xy ¼ m f
xz ¼ 0:0738. The

core, made out of Divinycell H-grade materials, is modeled as an
Fig. 7. Model assessment for
isotropic material with mc ¼ 0:3 and Young’s modulus Ec depending
on the foam quality [5,30]: Ec ¼ 40 [MPa] for an H45 foam,
Ec ¼ 80 [MPa] for an H80 foam and Ec ¼ 140 [MPa] for an H130
foam.

Fig. 6 reports the critical strain �cr ¼ rcr H=A11 in function of the
normalized half-wavelength Lx=hf . The results obtained with the
high-order S-GUF model ED4;4=ED8;8 compare well against the ana-
lytical elasticity solution extracted from Ji and Waas [30]. Both
symmetric and antisymmetric wrinkling modes are considered
and it is apparent that for the considered isotropic cores the dom-
inant buckling mode is the antisymmetric one, see also [15]. In the
following, only the anti-symmetric wrinkling mode shall thus be
addressed.

An assessment of several three-layers sandwich models is pro-
posed in Fig. 7 for the configurations with H45 (weak core) and
H130 (stiff core) foams. For this assessment, the face sheets are
modeled as laminated plates, i.e., the complete set of orthotropic
material properties of each ply is used, while the core is still mod-
eled as an isotropic layer. The reference solution is here taken to be
the LD4;4=ED8;8 model, in which each ply of the laminated faces has
a fourth-expansion for both u1 and u3. Results in Fig. 7 are reported
in terms of normalized buckling loads P=PG, where PG is the global
beam buckling load defined in Eq. (29) and for which the following

face moduli are used (values in [GPa]): Ef ¼ 61:443; Gf ¼ 4:3. The
assessment in Fig. 7(a) indicates that the HL and DY models are
unable to grasp the antisymmetric wrinkling of the sandwich
panel. An at least linear variation of the transverse normal strain
is required for correctly capturing this short wavelength response.
The HSAPT model is seen to underestimate the critical loads over
the whole wavelength range. For the weak H45 core, Fig. 7(a)
shows that HSAPTr0 provides results with similar accuracy as
EHSAPT, i.e., the core does effectively not carry much of the initial
load. However, for the stiffer H130 core, it is interesting to observe
that HSAPTr0 and EHSAPT yield similar accuracy only in the short
wavelength (wrinkling) regime; higher global buckling load
ff

the Fagerberg case study.



(long wavelength regime) is predicted by the HSAPTr0 model, see
Fig. 7(b).

6. Conclusions and outlook

This paper proposed an assessment of several well known sand-
wich plate models for the global and local buckling of struts in the
plane strain setting. Benchmark solutions are provided by analyti-
cal solutions and accurate FE computations of the elasticity equa-
tions. All assessed plate models are formulated in the framework
of a recently proposed Sublaminate Generalized Unified Formula-
tion, a variable kinematics approach in which different approxima-
tions can be introduced in the face sheets and the core
independently. The presented numerical results concern short
sandwich struts subjected to a uniform compressive strain and
whose face sheets and core consist of isotropic and orthotropic
homogeneous materials. High-order approximations are shown
to well recover the reference solutions. Based on the considered
case studies, the following conclusions can be drawn from the
proposed assessment:

� an at least quadratic approximation is required for the
transverse displacement in the core in order to grasp the local
buckling instability;

� if the axial stiffness of the core is neglected, lower
(conservative) buckling loads are usually obtained;

� if the initial load is carried by the skins only, the predicted
critical load for periodic buckling is usually not conservative;

� the EHSAPT model provides satisfactory accuracy, but the CLT
approximation in the face sheets can produce a higher critical
load.

The authors dedicate this work to the lifelong contributions by
Prof. J. N. Reddy to the literature dealing with the mechanics of
composite plates and shells.

Appendix A. GUF kernels

The instantiations of the generic kernel Z
p aui buj
uiuj PQ

for the linear

stiffness matrix are the following:
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Kernels K
p aui buj
uiuj for the linear stiffness matrix and Navier solution
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Kernels K
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for the geometric stiffness matrix and Navier
solution
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