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Introduction 

This chapter aims at providing the reader with two examples of open-source 

BCI-games that work with the OpenViBE platform. These two games are “Brain 

Invaders” and “Use-The-Force!” and are representative examples of two types of 

BCI: ERP-based BCI and oscillatory activity-based BCI. This chapter presents the 

principle, design and evaluation of these games, as well as how they are 

implemented in practice within OpenViBE. This aims at providing the interested 

readers with a practical basis to design their own BCI-based games. These two 

games are described hereafter. 
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The Brain Invaders 

A P300-based Brain Computer Interface (BCI) enables the user to successively 

select symbols among an available set, without relying on any motor command. The 

symbols can be of any kind, such as alphanumeric characters (e.g., for spelling) or 

icons (e.g., the elements of a menu in a computer application).  These BCIs exploit 

the well-known oddball paradigm, in which an infrequent task-related item (the 

target symbol) elicits a P300 Event-Related Potential (ERP) [WOL 2011]. By 

flashing symbols exhaustively, either one-by-one or in groups, it is possible to 

estimate the probability of each symbol being the one selected by the user. This is 

achieved evaluating the P300 elicited by each symbol once it has flashed. The 

complete set of flashes must be repeated a number of times to obtain reliable ERP 

estimations by means of trial averaging. The distinctive advantages of P300-based 

BCI are that the alphabet (the set of all available symbols) can be large (hundreds of 

symbols) and that 100% accuracy can be in principle obtained when allowing a 

sufficient number of repetitions. That is to say, with P300-based BCIs there is a 

direct trade-off between accuracy and speed of symbol selection. In the context of 

this chapter the low transfer rate is not considered a limitation, rather a challenge for 

the player, along the line of the reasoning in [NIJ 2009]. Nonetheless, we aim at 

video games progressing with a sustained pace. For this reason we have 

implemented several improvements over the basic P300 BCI paradigm [CON 2011]. 

The Brain Invaders is inspired from the famous vintage game Space Invaders. As 

most old-fashion video game the Brain Invaders proceeds by levels. To finish a level 

the user has to destroy a target alien, chosen at random within a grid of 36 aliens and 

which is indicated by a red circle at the beginning of the level. Aliens may be of 

different color. The target alien is always red. Aliens move with patterns that are 

specific to each level. A repetition of flashes consists in 12 flashes of groups of 6 

aliens chosen in such a way that after each repetition each alien has flashed exactly 

two times. After each repetition the system assigns to each alien the probability of 

being the target according to the signal processing and classification method 

implemented in the OpenViBE platform and destroys the alien with the highest 

probability. If this alien is the target the level ends, otherwise this alien is eliminated 

and another repetition of flashes starts. The process is continued until the target alien 

is destroyed or until eight non-target aliens have been destroyed, after which another 

level starts. The current number of attempts per level is indicated by coloring the 

bullets on the bottom of the screen. During the game the cumulative score is shown 

to the player. The points obtained at each level are inversely proportional to the 

number of repetitions necessary to destroy the target. Figure 1 a) shows the welcome 

screen, (b) shows the simplest level, in which the aliens move altogether from the 

left to the right of the screen as in the original game Space Invaders, (c) and (d) 

show more complex levels, where aliens move according to elaborated patterns and 

several distracting aliens are colored green or red, like the target. The flashing time 
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is fixed and should be set in between 60 ms and 150 ms The inter-stimulus interval 

(ISI) is randomly drawn from an exponential distribution with mean 100 ms and 

bounded in the range [20…500] ms by drawing a random number until it falls in this 

range. The destruction is almost instantaneous after the last flash. Then a 2-sec break 

is allowed to relax and move freely, after which the new level starts. One game 

session is composed of 12 levels. 

 

Figure 1: Screenshots of the Brain Invaders user interface. See text for details 

Results 

We present several results issued from an extensive evaluation of the Brain 

Invaders performed at GIPSA-lab in Grenoble. 24 subjects performed one session of 

the Brain Invaders. Seven of these subjects performed seven more sessions, twice a 

week, for a total of eight sessions.  Each session consisted of two runs of the Brain 

Invaders, one using the typical training-test procedure (non-adaptive mode) and the 

other without any training using an initialization and an adaptation scheme (adaptive 

mode). In the non-adaptive mode the BCI is trained on a training session and the 

training is used to calibrate the classifiers to be used in the test session. In the 

adaptive mode the BCI is initialized with a training obtained on a user database and 

then continuously learn from the subject while the subject is playing. The two runs 

looked exactly identical to the subjects, in that in both cases a training session 

preceded a test session, however the training session was not used for calibration in 

the adaptive mode. The order of the two runs was randomized and the design was 

double-blinded; at any time neither the subject nor the experimenter could know in 

what mode the BCI was running. Data was acquired with a Porti amplifier (TMSi, 

The Netherlands) using 16 electrodes positioned at Fp1, Fp2, Afz, F5, F6, T7, Cz, 

T8, P7, P3, Pz, P4, P8, O1, Oz, O2, referenced by the amplifier to an hardware 
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common average, using a cephalic ground and sampled at 512 Hz. In online 

operation and for offline analysis EEG data were band-pass filtered in the range 1-

20 Hz and downsampled to 128 Hz.   

We present both some online results and offline results, the latter in order to 

compare the Riemannian minimum distance to mean (MDM) classifier [CON 2013], 

which is used by the Brain Invaders, with two popular state of the art algorithms 

[LOT 2007]: XDAWN [RIV 2011] and the stepwise linear discriminant analysis 

(SWLDA) [FAR 1988]. For XDAWN the two most discriminant spatial filters were 

retained. EEG data was then spatially filtered, decimated to 32 Hz and vectorized so 

as to classify the obtained 32x2 features with a regularized linear discriminant 

analysis (LDA), using an automatic setting of the regularization parameter [LED 

2004], [VID 2009]. For the SWLDA, EEG data were decimated to 32 Hz and 

vectorized so as to feed the classifier with the obtained 32x16 features. 

We begin by presenting several offline results of the performance pertaining to 

the non-adaptive mode, including the classic training-test setting and the cross-

subject and cross-session initialization comparing several classifiers. We also 

present the online results obtained in the adaptive and non-adaptive mode. These 

latter results are the most relevant as they report the actual performance achieved by 

the Riemannian MDM algorithm in real operation. All performance results for this 

experiment are reported in terms of AUC (area under the curve).  

 

Offline results: the “classic” training-test mode.  

Fig. 2 shows the grand average (7 subjects x 8 sessions) AUC accuracy criterion 

for the three classification methods, obtained training the classifiers on the training 

run and testing on the test run (“Classic” column). Paired t-tests revealed that the 

mean AUC obtained by the MDM is significantly superior to the mean AUC 

obtained by the SWLDA method (t(55)= 3.377, p=0.001), and equivalent to the mean 

AUC obtained by XDAWN.  

 

Offline results: the cross-subject initialization. 

These results are obtained using a leave-one-out method. Fig. 2 shows the grand 

average (7 subjects x 8 sessions) AUC accuracy criterion for the three classification 

methods obtained training the classifiers on the test data of all subjects excluding the 

one on which the performance are computed (“Cross-subject” column). As 

compared to the classic mode the average AUC with cross-subject transfer learning 
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is significantly lower for all classification methods (p<0.002 for all of them). This is 

an expected result as no information at all about the subject actually using the BCI is 

provided to the classifiers. Paired t-tests comparing the average performance of the 

three classification methods in the cross-subject mode reveal that the average AUC 

obtained by the MDM is marginally superior to the average AUC obtained by the 

SWLDA (t(55)= 1.676, p=0.099) and by XDAWN (t(55)= 1.755, p=0.085).  

 

Figure 2: Classic (training-test), cross-subject and cross-session offline AUC performance 
for the P300-based Brain Invaders BCI experiment. Results are the grand average of 7 

subjects playing 8 sessions of the Brain Invaders. See text for details 

 

Offline results: the cross-session initialization. 

These results are also shown in Fig. 2 (“Cross-session” column). The mean AUC 

is obtained initializing the classifier with any possible combination of S number of 

sessions among the eight available sessions and testing on the remaining 8-S 

sessions. The results are given for S in the range 1,…,7 and correspond to the 

average of all subjects and all combinations (which number depends on S). The 

MDM algorithm proves superior both in the rapidity of learning from previous 

subject’s data and in the performance attained for all values of S, although for S=7 

the performance of the SWLDA approaches the performance of MDM. Note that 

XDAWN, which is a spatial filter approach, performs fairly well even when only 

one session is available for training, but its performance grows slowly as more data 

is available for training. This is because the spatial filter is influenced negatively by 

the difference in electrode placements across sessions and, in general, by all factors 

that may change from one session to the other. On the other hand the SWLDA 
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classifier performs poorly when only one session is available for training, however it 

learn fast as the number of available sessions increase. This is because the SWLDA, 

being a “hard machine learning” approach, tends to perform well only when a lot of 

training data is available. So, XDAWN possesses fast learning capabilities, but lacks 

good transfer learning, whilst the opposite holds for SWLDA. The MDM algorithm 

possesses both desirable properties.   

 

Online results: adaptation. 

Finally, we show the actual online results for the adaptive and non-adaptive 

mode of functioning. Let us remind that the adaptive and non-adaptive runs were 

performed in a double-blinded fashion and randomized order. In online operation, 

starting from the second repetition the MDM uses the cumulated distance of all 

repetitions to select the alien with the highest probability. Hence, the number of 

repetitions needed to destroy the target (NRD) is a direct measure of performance: 

the lower the NRD the higher the performance. The generic classifier is calibrated 

using online data of the preceding sessions. The individual classifier is trained in a 

supervised way (the labels are known) during the experiment after each repetition. 

Of course, the current repetition (used to select the target) is added to the training set 

only after the classification output is used in order to avoid biasing the results. The 

weights of the initial classifier (generic) based on a database and the classifier 

training on-line on the subject while s/he is playing (individual) are set according to 

the current number of repetitions, that is, the individual classifier is weighted as 

alpha = min(1, Nrep/40) and the generic classifier as (1-alpha); in this way, the 

generic classifier is not used anymore after 40 repetitions. This value as been set 

arbitrarily based on pilot studies. 

Figure 3 shows the mean and standard deviation NRD as a function of levels for 

the first session performed by all 24 subjects. As we can see, the non-adaptive MDM 

features a non-significant negative slope (p=0.087), meaning constant performance 

across levels, whereas the adaptive MDM features a significantly negative slope 

(p=0.009), meaning that the performance increases as the algorithm learns from the 

data of the subject. This result shows that the adaptation is effective in leading the 

user toward good performances. 

Figure 4 shows the histogram and percent cumulative distribution of the NRD 

for all 24 subjects and all 12 levels of the Brain Invaders game. The cumulative 

distribution at the third repetition is 94.44% for the non-adaptive mode and 95.49% 

for the adaptive mode, that is to say, on the average of all levels and subjects about 

95% of the times three or less repetitions suffice to destroy the target. These results 
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demonstrate that our adaptive system without calibration yields performances 

equivalent to the traditional system with calibration, already at the first session.  

 

Figure 3: Adaptation results. Mean (disks) and standard deviation (bars) number of 
repetitions necessary for destroying the target (NRD) for the 24 subjects across the 12 levels 

of the first session of Brain Invaders, for the adaptive run (left) and the non-adaptive run 
(right). On top of the plots is printed the slope of the means and its p-value for the two-tailed 

test of the slope being significantly different from zero 

 

 

Figure 4: Comparison of the performance of the adaptive and non-adaptive BCI as a function 
of the number of repetitions. Raw histogram (left) and percent cumulative distribution (right) 
of the number of repetitions necessary to destroy the target (NRD) for all 24 subjects and all 

12 levels of the first session of the Brain Invaders game 
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Implementation 

The implementation of the Brain Invaders is achieved with three software 

modules: acquisition, processing and rendering. Since they communicate to each 

other via a TCP/IP protocol, they may run on a single computer or on distinct 

computers in any combination: 

– Acquisition. This is the OpenViBE acquisition server [REN 2010]. It is in 

charge of acquiring the data from the EEG machine, streaming the data, correcting 

for possible amplifiers drifts and sending the data to the OpenViBE platform [REN 

2010] (http://openvibe.inria.fr/) for analysis. 

– Processing. The OpenViBE platform performs data analysis on-line. At the 

end of each repetition it computes the probability of each alien being the target and 

sends to the rendering application the indexes of the alien with the highest 

probability. 

– Rendering. A dedicated application serves as user interface. The classification 

results computed by OpenViBE are sent to this application using a VRPN network 

protocol. Once the result is received in the form of a selected alien, the alien is 

destroyed on the screen.  

Artefact Management  

As an option, the Brain Invaders can continuously receive control values from 

OpenViBE (through a VRPN network protocol). These values can be used for on-

line EEG artifact monitoring. Upon reception of a signal flagging the presence of an 

excessive EEG artifact, we can freeze the Brain Invaders application, display a 

pause message and wait until a continue signal is received (no EEG artifact is 

present).  We have implemented an on-line artifact monitoring using the Riemannian 

Potato method [BAR 2013]. In practice, we do not use this feature as pausing the 

game is annoying for the subject. As a matter of fact the Riemannian MDM method 

is very efficient, thus its functioning in the presence of small artefacts encountered 

routinely in real-life experimental sessions is satisfactory. 

Brain-Invaders in OpenViBE 

Figure 6 shows the workflow implemented in OpenViBE for running the Brain 

Invaders in adaptive mode. The EEG signal is first filtered in the band-pass region 

(1-20Hz) using the OpenViBE’s Temporal filter - GPL box. Then it is down-

sampled with a factor of 4 from 512 Hz to 128 Hz thanks to the Signal Decimation 

box. The Target and Non-Target boxes accept as input the EEG signal and the 
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triggers. The first uses only triggers that correspond to a flashing group containing 

the target alien, while the second uses only triggers that correspond to flashing 

groups non including the target alien. Both boxes output 1-sec epochs of EEG 

starting at flashing onset (the ERPs) that is provided as input. The Adaptive MDM 

box performs the adaptive classification (the mix of generic and individual classifier 

as previously explained). The box outputs a decision, that is, the alien to be 

destroyed, which is sent via the VRPN Server box to the Brain Invaders rendering 

application. The MDM box is implemented in the language Python. Two more 

OpenViBE boxes exist: Train MDM and Process MDM. These two boxes are the 

non-adaptive versions of the MDM box (Figure 6). For example they can be used for 

motor imagery with five movements.   

 

Figure 6: Screenshot of the OpenViBE scenario for running the Brain Invaders 

in adaptive mode 

 An additional application called “Brain Invaders Launcher” is also 

provided. This application configures Brain Invaders and OpenViBE and starts the 

two automatically for user convenience. The application allows the user to define a 

certain number of important runtime parameters.  
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Notes on technical problems 

The implementation of P300 BCI-based video games encounters a number of 

difficulties, the most important one being the drift problem. The drift refers to the 

fact that at least two clocks are involved in the implementation of a BCI-based 

video-game: the clock of the computer running the user interface (and possibly 

tagging the data) and the clock of the EEG amplifier. The differences between the 

paces of the two clocks accumulates over time and results in a larger and larger time 

difference. In order to tag the EEG data to know the exact stimulation time (when 

the symbols are flashing) we need to mark the EEG sample corresponding to 

stimulus onset. This is then needed to extract the (time-locked) event-related 

potential generated by the stimulus. Sending a flash command to screen and tagging 

the EEG data stream cannot be executed at the same time. The difference between 

the two should be as small as possible, but, above all, should be as constant as 

possible from tag to tag. Also, the time interval between the moment the command 

is sent and the moment the monitor actually displays the flashes is variable, 

especially on LCD monitors. The best way to verify the precision of the tagging is to 

use a light diode sticked on the screen and compare the time difference between the 

actual flash onset as seen by the diode and the time of the tagging command. The 

variability of the tag is named the jitter phenomenon. The larger the jitter, the lower 

the signal-to-noise ratio of averaged ERP and the lower the classification accuracy 

achievable by the BCI. There are two possible ways to perform data tagging, named 

here “Hardware Tagging” and “Software Tagging”. In Hardware Tagging the 

computer running the user interface sends via parallel port a trigger (sort of 

message) to the EEG machine at the moment of the stimulus presentation. The EEG 

machine synchronizes the trigger with the flow of incoming EEG data. This type of 

tagging is very precise (error=+- 2ms in our testing and negligible jitter). Drift is not 

of concern when Hardware Tagging is used, so the overall jitter is very low in this 

case. In Software tagging tags are sent internally (by software) from the user 

interface application to the EEG Data Acquisition Server (DAS) application (For 

example, the OpenViBE AS). Software Tagging has the advantage of not requiring a 

cable connection from the rendering application to the EEG machine and of working 

with any computer and EEG machine, however the overall jitter is much larger (tens 

of milliseconds on the average at the best according to our tests). When using 

software tagging the drift problems must be addressed very carefully. In OpenViBE 

drift can be corrected with the built-in functionality of the OpenViBE AS called 

“Drift correction”. Unfortunately the current implementation of the drift correction 

does not work satisfactorily for all EEG amplifiers. Thus, testing of the drift for the 

available EEG hardware is a mandatory step if software tagging is used. 
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Use-The-Force! 

The second OpenViBE-based video game that we present in this chapter is the 

game entitled “Use-The-Force”, a game that comes with the OpenViBE platform. 

The game environment corresponds to the inside of a “Star Wars
TM

 mother ship, in 

which the player can see a virtual spaceship, namely a Tie-Fighter (see Figure 7). 

The purpose of the game is to lift the Tie-Fighter up by using the BCI. This task 

establishes an analogy between the use of the BCI and the use of “the Force” in the 

Star Wars
TM

 movie. As such, the application was named “Use-The-Force!”. More 

precisely, the player can lift the Tie-Fighter up by imagining or executing foot 

movements, those being recognized by the BCI system. The Tie-Fighter is lifted-up 

at a speed and height proportional to the strength of the Beta ERS (Event Related 

Synchronization, see chapters 3 and 4) a.k.a., Beta rebound, following the end of the 

real or imagined foot movement [PFU 1999]. This BCI, its design and properties as 

well as its OpenViBE implementation are described below. 

 

 
Figure 7: A user playing with an early prototype of the "Use-the-force" game, in an 

immersive Virtual Reality room (©Hubert Raguet/Photothèque CNRS) [LOT 2008] 

 

The BCI system 

 
The BCI used for the “Use-the-Force!” is a simple self-paced one. It is based on 

a single EEG channel (either monopolar or Laplacian), located at position Cz and, as 

mentioned above, aims at detecting a Beta ERS, appearing posterior to the real or 

imagined foot movement. To detect this post-movement Beta ERS, a single Band 

Power (BP) feature is extracted in the Beta band (16-24 Hz) for the last second of 
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data. This feature is extracted every 100 ms and the last four consecutive features 

are averaged (with a moving average) in order to produce a smooth Control Signal 

(CS). 

To detect the Beta ERS, and hence, the foot movement, based on the resulting 

CS, we use a simple threshold Th. If the computed CS is higher than this threshold 

Th, a foot movement is detected (intentional control state) and a command is sent to 

the application. If the CS is lower than the threshold Th, the non-control state is 

detected and no command is sent to the application. This design enables the user to 

control the BCI in a self-paced way. The value of Th is simply determined according 

to the mean μ and standard deviation s of a CS epoch obtained while the subject is in 

a resting state, according to the equation Th = μ+3σ. This threshold determination 

procedure is similar to the one used in another virtual reality application based on 

BCI [LEE 2007]. It should be noted that Th is determined without using any 

example of real or imagined foot movement. As such, this BCI does not learn the 

mental state to be detected. 

 

Evaluation 
 

A first, simple version of the game was evaluated with 21 naïve subjects in a 

challenging situation: a first-time session, using a single EEG electrode (no 

Laplacian filter), and during a public exhibition [LOT 2008]. Results showed that, 

without training, half the subjects could control the game by using real foot 

movements. A quarter of the subjects could control the spaceship by using imagined 

foot movements. The results of subjective questionnaires filled out following the 

system’s use showed that the whole application appeared enjoyable and motivating 

to the users. 

A more recent version of the game uses more electrodes, namely electrodes FCz, 

C1, Cz, C2 and CPz to build a Laplacian derivation over Cz, which leads to 

improved performances. While this new setup has not been formally evaluated, 

informal observations suggest that about 90% of naïve users could control the 

spaceship using real foot movement and more than 50% of them using imagined 

movements. 

 

Implementation with OpenViBE 

 
In order to design the “Use-the-force!” BCI game with OpenViBE, 2 scenarios 

are necessary: a first scenario to calibrate the BCI, i.e., to identify the value of the 

threshold Th to use to detect the post-movement Beta rebound, and a second 

scenario to detect online this Beta rebound and interact with the 3D game. 

The first scenario is represented in Figure 8. It aims at instructing the user to start 

a resting phase, according to a sound being played and a picture representing a 

relaxing landscape being displayed, and to measure the mean and standard deviation 

of the Beta band power of this user in electrode Cz (ideally after Laplacian filtering). 

The threshold to detect the Beta rebound is then computed as the mean of the Beta 
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band power at rest plus three times its standard deviation. The instructions to the 

user are created using the Lua Stimulator box, to send OpenViBE stimulations 

indicating the beginning and end of the rest period, and the Sound Player and 

Display Cue image boxes that will play the sound and display the image instructing 

the user to start/stop resting. The beta Band power in Cz was computed with the 

Channel Selector and Spatial Filter boxes to first apply a Laplacian filter, then the 

Temporal Filter box to band-pass filter the data in the 16-24Hz band (i.e., the Beta 

band), then the Time-based epoching (to extract 1s long time windows), Simple 

DSP, Signal Average and Epoch Average boxes, to square the signal, average it over 

the 1s time window and average it again over the last 4  time windows, respectively 

(to smooth the signal). 

   

 

 
Figure 8: OpenViBE scenario to calibrate the “Use-The-Force!” game, i.e., to 

compute a threshold on the Beta band power of the user, defined as the mean of this 

Beta power at rest plus three times its standard deviation. The scenario also includes 

stimuli (pictures and sounds) to instruct the user when to start and stop resting so 

that the threshold can be computed.  

 

 

The Online scenario is displayed in Figure 9. It uses the same boxes as the 

calibration scenario to compute the smoothed Beta band power over Laplacian 

channel Cz. It uses new boxes though, first to apply the computed threshold Th to 

the Beta band power. This is done by cropping the signal below the threshold value 

(i.e., every band power lower than the threshold value will be set to 0) using the 

Crop box, and shifting it by subtracting the threshold from the resulting signal using 
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the Simple DSP box. This way, the resulting signal – the Control Signal - will be 

zero when the Beta band power is below the threshold, and positive when it is over 

the threshold, i.e., when a Beta rebound is detected. This CS is then transmitted to 

the actual 3D application, using the VRPN protocol. As for “Brain Invaders”, the 

rendering of the game is done in an external application, not part of OpenViBE 

(although in the case of the “Use-the-Force!” game, this external application is 

provided with the OpenViBE platform). The OpenViBE designer thus 

communicates with this external application via VRPN, by sending stimulations 

(instructions) to this application using the Button VRPN server box, which sends 

button press or button release events according to the received OpenViBE 

stimulations, and the Analog VRPN server, which sends a continuous value to the 

application, in this case, the CS. On its side, the rendering application moves the 

spaceship according to the CS it receives via the analog VRPN protocol: if the 

received CS is zero, the spaceship does not move, if it is positive, the spaceship is 

lifted from the ground up to an height proportional to the CS. The higher the CS, and 

thus the bigger the Beta rebound, the higher the spaceship is raised. 

 

Conclusion on Use-The-Force! 

 

The Use-The-Force! BCI-based game is a simple and easy to setup BCI-game based 

on oscillatory EEG activity. While its gameplay value is limited, it is an interesting 

and practical demonstration of a BCI-based video game, and therefore a useful 

starting point to build more advanced and complex BCI games. 
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Figure 9: OpenViBE scenario to run the actual use-the-force game, after it is 

calibrated. This scenario computes the beta band power of the user in the Laplacian 

Cz channel, threshold it to detect a possible beta rebound following executed or 

imagined foot movement, and transmit the resulting command to an external 3D 

application (rendering and animating the spaceship) using the VRPN protocol. 

Conclusions 

In this chapter we have presented two examples of BCI-based video games: 

“Brain Invaders” and “Use-The-Force!”. We have described their principle, design 

and characteristics, as well as their implementation with OpenViBE.  

 “Brain invaders” and “Use-The-Force!” exploit two different kind of brain 

signals and thus two different kinds of BCI: ERP-based BCI and oscillatory activity 

(i.e., ERD/ERS) based BCI. As such, we hope they will provide the readers with a 

useful and potentially inspiring basis to design new and more advanced BCI-games. 

Regarding “Brain Invaders”, our development is open-source and available at: 

https://bitbucket.org/toncho11/openvibe-gipsa-extensions. The “Use-the-force” 

game is delivered with the OpenViBE installer and/or code sources, i.e., it is also 

free and open-source as OpenViBE.  

https://bitbucket.org/toncho11/openvibe-gipsa-extensions
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