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Abstract An upper-bound solution for stone-facing embankments is developed
to assess the stability of this type of structures. The embankment is treated as
a cohesionless granular material whereas the facing is considered as composed
of discrete stone blocks, laid dry one on the top of the other, complying with a
Mohr-Coulomb interface law. This enables the assessment of the stability of the
structure, solely resorting to its geometry, unit weight, and the friction angles of
the embankment and facings. The model is finally used to assess the stability of an
existing rockfill dam in the Pyrénées (France). Comparison with Distinct Element
Method results and parametric analyses prove the robustness of the model on this
case study.

Keywords Masonry facing · embankment · rockfill dam · dyke · upper-bound
solution

1 Introduction

Embankments are hydraulic structures built to retain – called dams, or prevent –
called dykes, water. They are generally made of earthfill or rockfill, covered with
concrete, asphalt or masonry. These structures are difficult to model considering
the heterogeneous nature of the material composing the embankment and the
interface with its facing. Indeed, the loadings acting on the structure are complex:
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in addition to the unit weight, water action and even seismic risks should be taken
in consideration. In this study, it has been decided to concentrate on a static
analysis of masonry facing embankments.

Only few studies are dedicated to stone-facing embankment structures: they
concentrate on masonry rockfill dams and resort to Distinct Element Method
(DEM) (Deluzarche 2004; Deluzarche and Cambou 2006; Tran et al 2009; Bre-
tas et al 2013, 2014). DEM has been developed to deal with discontinuous media,
which are treated as an assembly of elements linked with contact interactions. In
these studies, rockfill is modelled as composed of discrete blocks, with the ob-
jective to evaluate the safety of the structure. These studies provide exhaustive
information on the behaviour of stone-facing rockfill dams at failure but require
quantitative and qualitative information on the mechanical properties of the con-
stituent materials, and can prove time-consuming.

The model presented here resorts to yield design theory. Yield design relies
on the compatibility between the equilibrium of the structure under consideration
and the resistance of its constituent materials in order to formulate a rigorous
analytic expression of the upper-bound solution to its stability problems. It has
been already used to model jointed rock mass (Bekaert et al 1998) and masonry
retaining walls (Colas et al 2010a, 2013). The paper focuses on the application
of this theory to the specific modelling of stone-facing embankments. First, the
model is introduced and an analytical expression of the upper-bound solution for
stone-facing embankments is presented. A case study is proposed, consisting in the
structural evaluation of an existing dam. Finally, comparison with DEM results
and parametric analyses are undertaken to assess the robustness of the model.

2 Analytic upper-bound solution for stone-facing embankment
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Fig. 1 Yield design upper-bound approach of a stone-facing embankment submitted to a
rotation of gravity of angle α.
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2.1 Introduction to yield design principles

According to yield design theory (Salençon 1990, 2013), the stability of a structure
is based on the compatibility between static equilibrium under prescribed loading
and strength verification at any point of its constituent materials. Two approaches
have been implemented in this framework:

– the static approach, which consists in finding stress fields σ in the strength
domain G to provide a lower estimation of the extreme loading domain K:

σ ∈ G ⇒ Q ∈ K (1)

– the kinematic approach, which boils down to dualizing the static approach
through the principle of virtual works to provide an upper-bound estimation
of the extreme loading :

Q ∈ K ⇒ Pe ≤ Prm =

∫

V

π(d) dV +

∫

S

π(n, JvK) dS (2)

where π(d) and π(n, JvK) are the support functions of the strength domain G
defined by:

π(d) = sup
σ∈G

{

σ : d
}

(3)

π(n, JvK) = sup
σ∈G

{

σ . n . JvK
}

(4)

2.2 Geometrical and physical characteristics

The static approach consists in finding stress fields ensuring the previous condition,
thus giving a lower estimation of the extreme loading. The kinematic approach,
which can be derived by dualizing the static approach through the principle of
virtual work, provides an upper-bound estimation of the extreme loading

Geometry. The structure (Fig. 1) is composed of an embankment of height h and
thickness at the top l. The structure will be treated in plane strain. The cross-
section of the embankment has a trapezoidal shape: downstream slope is noted
as f1 = tanλ1 and upstream slope is noted as f2 = tanλ2, where λ1 and λ2

are respectively the slope inclination of the downstream and upstream faces. Each
slope is faced with a masonry cover composed of rectangular blocks of height a
and thickness b, which are built dry with their bed joint normal to the face slope.

Loading. The system is solely subjected to the unit weight of its constitutive ma-
terials, which will be noted as γ

s
for the embankment and γ

m
for the masonry

face. The influence of gravity is tested not by increasing its norm, but by inclining
its direction from the vertical at an angle α. Indeed the introduction of a horizon-
tal component of the body forces in the loading constitutes a first step towards
the quasi-static approach of seismic problems; indeed, a vertical component may
be added, using a lower unit weight of the constitutive materials. Considering
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this angle of inclination α, the embankment and the stone-facing unit weights are
written:

γ
s
= γs sinα x− γs cosα y (5)

γ
m

= γm sinα x− γm cosα y (6)

Resistance. The embankment is represented by a pulverulent material resorting to
Mohr-Coulomb strength criterion. The support function associated to this criterion
only depends on the friction angle of the material φs, the dilatancy angle being
equal to φs, and can be found in Salençon (1990, 2013):

π (ns , JvsK) = 0 (7a)

if JvsK . ns ≥ |JvsK| sinφs (7b)

The blocks composing the stone-facing are considered as infinitely resisting.
The joints are governed by a purely frictional Mohr-Coulomb criterion, depending
on the friction angle of the stones φm. The support function of the joints is given
by Salençon (1990, 2013):

π(n , V ) = 0 (8a)

if V n ≥ |V t| tanφm (8b)

where V denotes the velocity jump between two blocks of the stone-facing.

The same Mohr-Coulomb law is applied to the interface between the embank-
ment and the stone-facing, with the frictional interface angle noted as δ:

π(n , V ) = 0 (9a)

if V n ≥ |V t| tan δ (9b)

where V = vm − vs denotes the velocity jump between the embankment and the
stone-facing.

The value of the friction angle δ at the interface depends upon the choice of
the material and the constructional arrangements between the embankment and
the facing:

– δ = φs, if the material composing the embankment is laid loose with the stone-
facing blocked on the embankment;

– δ = φm, if the embankment is faced, and the stone-facing less frictional than
the embankment.

With these definitions of the loading and resistance parameters, it can be noted
that the stability domain of the structure is necessarily a convex cone, with its
apex at the origin and its geometry depending on the maximum load inclination
α, in the plane of the loading parameters γ

m
and γ

s
.
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2.3 Definition of virtual velocity fields

In the framework of yield design kinematic approach, the ultimate loading is given
by the minimum value over all the kinematically admissible failure mechanisms.
Nevertheless, as it is impossible to explore them all, this approach solely provides
an upper-bound of the ultimate loading. It has been decided here to explore rigid
body translation mechanisms. A failure line is drawn through the embankment,
delimiting a motionless lower part from the upper part translating at a constant
velocity field noted vs for the embankment, vm1

for the downstream stone-facing,
and vm2

for the upstream stone-facing (Fig. 1). This mechanism has been chosen
for its simplicity and its correspondence with experimental results on retaining
structures (Villemus et al 2007; Colas et al 2010b), and DEM results (Deluzarche
2004; Deluzarche and Cambou 2006; Tran et al 2009) on rockfill dams.

The failure line crossing the embankment can be defined by its origin R1 on
the downstream stone-facing [OA], quoted with its height hr1, and its extremity
R2 on the upstream stone-facing [BC], quoted with its height hr2. The study is
generalised to the case of a failure line extremity R2 situated in the top of the
embankment [AB]; the distance AR2 is then noted lr. Considering the discrete
character of the stone-facing, it can be noticed that hr1 and hr2 cannot reach
every value between 0 and h as they correspond to an integer number of blocks
nr1 and nr2, so that:

hr1 = nr1a cosλ1

hr2 = nr2a cosλ2

(10)

Based on these kinematic variables, the angle of inclination Ψs of the failure
line can be defined as:

tanΨs =
hr1 − hr2

lr + hr1f1 + hr2f2
(11)

with

∣

∣

∣

∣

lr = l if R2 ∈ [BC]
hr2 = 0 if R2 ∈ [AB]

The velocity field vs has to comply with the relevancy conditions of the resisting
criterion chosen for the embankment (7b). Thus, considering this condition, vs can
be written as :

vs = vs cos(Ψs − φs) x− vs sin(Ψs − φs) y (12)

The velocity fields vm1
and vm2

have to comply with the relevancy conditions
of the resisting criterion chosen for the stone blocks (8b). Thus, considering this
condition, vm1

and vm2
can be written as :

vm1
= vm1 cos(φm + λ1) x+ vm1 sin(φm + λ1) y (13)

vm2
= vm2 cos(φm − λ2) x+ vm2 sin(φm − λ2) y (14)

Considering the upstream facing has no stabilizing influence on the embank-
ment stability, it has been decided to take vm2 equal to 0 when its vertical com-
ponent is positive that is to say:

vm2
= 0 if γ

m
. vm2

≤ 0 (15)

The interface between the embankment and the masonry facing relies on a
Mohr-Coulomb criterion with the relevancy condition on the velocity jump V i =
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vmi − vs exposed in (9b). Thus, considering this condition, vm1
, vm2

and vs are
related by (Fig. 2):

vm1 =
cos(Ψs − φs − δ + λ1)

cos(φm + δ)
vs (16)

vm2 =
cos(Ψs − φs − λ2 + δ)

cos(φm − δ)
vs (17)

π

2
− φm − λ1

λ1 − δ

λ1 − δ

φm + λ1

Ψs − φs

π

2
− Ψs + φs

vm1

vs

π

2
− φm + λ2

λ2 − δ

λ2 − δ

φm − λ2

Ψs − φs

π

2
− Ψs + φs

vm2

vs

(a) (b)

Fig. 2 Velocity jump conditions at the interface between the embankment and the downstream
stone-facing (a) or upstream stone-facing (b).

2.4 Upper-bound limit of stability of masonry dams

The stability of the structure is assessed using yield design upper-bound approach,
with the objective to determine the inclination of gravity αmax which leads to the
failure of the embankment.

The work of the external forces Pe falls into three parts, corresponding to the
work in the embankment Pe

s , and the work of the downstream Pe
m1 and upstream

Pe
m2 stone-facing.

For simplification, the following notations will be assumed :

ξs = Ψs − φs (18a)

ξ1 = φm + λ1 (18b)

ξ2 = φm − λ2 (18c)

ζ11 = Ψs − φs − δ + λ1 (18d)

ζ12 = φm + δ (18e)

ζ21 = Ψs − φs − λ2 + δ (18f)

ζ22 = φm − δ (18g)
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Considering equations (5) and (12), the work of the external forces in the
embankment Pe

s can be written as:

Pe
s =

∫

V
s

γ
s
. vs dV (19)

Pe
s =

γsvs
2

sin(α+ ξs)
[

(hr1 + hr2) l + (f1 + f2)hr1hr2

]

Considering equations (6), (13) and (16), the work of the external forces in the
downstream stone-facing Pe

m1 can be written as:

Pe
m1 =

∫

V
m1

γ
m
. vm1

dV

Pe
m1 = γmbhr1vs

cos ζ11 sin(α− ξ1)

cos ζ12 cosλ1

(20)

Similarly, considering equations (6), (14) and (17), the work of the external
forces in the upstream stone-facing Pe

m2 can be written as:

Pe
m2 =

∫

V
m2

γ
m
. vm2

dV

Pe
m2 = γmbhr2vs

cos ζ21 sin(α− ξ2)

cos ζ22 cosλ2

(21)

The final expression of Pe is thus given by the sum of (19), (20) and (21):

Pe = Pe
m1 + Pe

m2 + Pe
s (22)

The maximum resisting work is also given by the sum of the work in the
embankment Prm

s , and the work of the downstream Prm
m1 and upstream Prm

m2

stone-facings. Yet, each maximum resisting work falls to 0 as the corresponding
support functions equal 0, referring to equations (7a), (8a) and (9a), thus:

Prm = 0 (23)

Based on the principle of virtual work, the yield design upper-bound theorem
states that the work of the external forces has to remain lower than the maximum
resisting work to ensure the stability of the structure:

Pe ≤ Prm (24)

α ≤ arctan
2γm b

(

C1 sin ξ1 + C2 sin ξ2
)

− γsCs sin ξs

2γmb
(

C1 cos ξ1 + C2 cos ξ2
)

+ γsCs cos ξs
(25)

where C1, C2 and Cs are:

C1 =
cos(Ψs − φs − δ + λ1)

cosλ1 cos(φm + δ)
hr1

C2 =
cos(Ψs − φs − λ2 + δ)

cosλ2 cos(φm − δ)
hr2

Cs = (hr1 + hr2) lr + (f1 + f2)hr1hr2

(26)
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Finally, the minimisation of the right member of the inequality (25), noted as
αlim, with respect to the kinematic parameters nr1 and nr2 provides an upper-
bound limit value of the rotation of gravity α ensuring the collapse of the embank-
ment:

αmax = min
n

r1,nr2,lr

{

αlim

(

hr1, hr2, lr, Ψs

)

}

(27)

2.5 Consideration of water pressure

In case the model deals with embankment dams, an additional development is
necessary to take into account the action of water on the structure. In order to
ensure the impermeability of the dam, the upstream face is usually covered by an
impervious concrete layer (see for instance Fig. 3b). The action of water will thus
be modelled by a hydrostatic pressure applied on the upstream face.

Considering a water reserve of height hw behind the dam, the work of the
external forces Pe (22) is amended with a fourth term Pe

w representing the work
of the water pressure:

Pe = Pe
m1 + Pe

m2 + Pe
s + Pe

w (28)

where P e
w is:

P e
w =

∫ h
w

h−h
r2

p
w
. vm2

dx2

cosλ2

P e
w =

γwvm2 cosφm

2 cosλ2

(hw − h+ hr2)
2

(29)

if hw ≤ h− hr2, and P e
w = 0 otherwise.

The maximum resisting work remains (23), with the same conditions on the
virtual velocity fields.

This provides a new expression of αmax depending on the previous parameters
plus the unit weight of water γ

w
and the height of the reservoir hw.

3 Application to a rockfill dam case study

An application of the model is undertaken on a real case study, taken from
Deluzarche (2004): it consists in a rockfill embankment dam situated in the de-
partment of Hautes-Pyrénées (France). This dam, dated from the middle of the
XXth century, is composed of a 20 m high granitic rockfill embankment covered
with a stone-facing on each face (Fig. 3).

Based on the information given by Deluzarche (2004), geometrical and physical
characteristics have been defined and reported in Table 1.

The model exposed in section 2 is used to assess the stability of the dam. The
parameters given in Table 1 are reported in (27) in order to calculate the maximum
inclination of gravity the dam can bear.

Considering the dam on its own, the failure is ensured for a rotation of gravity:

αmax = 37.1◦ (30)
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(a)

(b)

Fig. 3 Full-scale dam case study (source EDF): view of the downstream stone-facing (a) and
schematic view of the section (b).

Table 1 Geometrical and physical parameters selected for the study of a full-scale dam.

Parameters Symbol Value Unit
Dam height h 20.0 m
Dam thickness at the top l 1.0 m
Dam downstream slope λ1 45 °
Dam upstream slope λ2 45 °
Stone block height a 0.3 m
Stone block thickness b 1.2 m
Water height hw 20.0 m
Rockfill unit weight γs 18.3 kN/m3

Rockfill friction angle φs 37.7 °
Stone-facing unit weight γm 21.0 kN/m3

Stone block friction angle φm 35.0 °
Interface friction angle δ 35.0 °

It can be noticed that this value is reached for nr1 = 0 and nr2 = 49, corresponding
to a failure line starting from the toe of the dam and ending in the upstream stone-
facing with an angle Ψs = 26°. The kinematic parameters involved in the upper
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bound approach may be virtual, they yet provide an indication on the possible
failure mechanism.

For the case in which the reservoir is full, the failure is ensured for a rotation
of gravity:

αmax = 31.4◦ (31)

This value is lower than the rotation of gravity needed to collapse the dam without
retaining water (30). Nevertheless, the action of water on the stability of the
structure remains moderate. The failure of the dam is reached for nr1 = 0 and
nr2 = 37, corresponding to a failure line starting from the toe and developing with
an angle Ψs = 20°.

4 Comparison with DEM results

Deluzarche (2004) analyses the stability of this dam using a Distinct Element
Method model of rockfill developed for the study. He has undertaken independent
and combined tests on the mechanical properties of the rockfill and the stone-
facing, and the loadings, in various configurations of the dam. In this study, the
authors concentrate on the tests of:

– the presence of stone-facing;
– the presence of water;
– the diminution of the rockfill friction angle φs;
– the diminution of the stone friction angle φm;
– the effect of a rotation α0 of gravity.

The tests undertaken by Deluzarche have been reproduced using yield design and
compared to the DEM results; tests and results are reported in Table 2.

Table 2 Comparison with DEM simulations taken from Deluzarche (2004) on a full-scale
dam: yield design failure is appreciated with the previously exposed model and the additional
rotation of gravity αf

= αmax
− α0 needed for failure is given into brackets.

Facing Water φs (°) φm (°) α0 (°) DEM failure YD failure (αf)
No No 37.7 – 0 YES YES
No No 45.6 – 0 NO NO (0.6)
Yes No 37.7 35.0 0 NO NO (37.1)
Yes Yes 37.7 35.0 0 NO NO (31.4)
Yes Yes 30.4 26.6 0 NO NO (16.2)
Yes Yes 21.2 5.7 0 YES YES
Yes Yes 37.7 35.0 5 NO NO (26.4)
Yes Yes 37.7 35.0 10 YES NO (21.4)
Yes Yes 37.7 35.0 20 YES NO (11.4)

Comparing yield design and DEM results (Tab. 2), it can be seen that the
two methods provide close results, considering the influence of the facing and the
water reserve. The stabilising role of stone-facing is more important in yield design
simulation as structures without stone-facing are unstable or likely to become for
φs = 45.6°. This is consistent with the definition of an upper-bound solution in
case of yield design.
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Fig. 4 Iso-values of velocities on DEM simulations for a rotation of gravity of 20° (top) and
10° (bottom) from Deluzarche (2004).

Yet, the effect of a rotation of gravity is much more impacting in DEM simula-
tions. For an angle of rotation α = 10°, the dam is still stable in yield design, as it
fails for αmax = 31.4◦ > α0, whereas DEM simulations show an instability located
in the upper part of the stone-facing. However, the reduced zone of instability
highlighted in DEM suggests that the whole stability of the dam is not compro-
mised (Fig. 4). For α0 = 20°, the dam is quite close to failure in yield design –
about 10° left before failure. In DEM simulations, a failure line, starting from the
upper third of the upstream face to the half of the downstream face, develop in
the dam. This difference can be accounted for by the upper-bound character of
the yield design solution, which leads to an overestimation of the maximum angle
of failure. The failure line observed in DEM simulations (Fig. 4) suggests that the
difference can also be due to the discontinuity in the downstream face of the dam,
called the risberm, which is not taken into account in yield design simulation. More
DEM calculations would be necessary to precise the conclusions.

5 Parametric analysis

The sensitivity of the model is addressed by a parametric analysis on different
characteristics of the dam. This enables the identification of the most influential
parameters, which value have to be measured carefully. This also highlights the
part of constructional arrangements in the stability of the construction, and can
thus provide information on the elements which should be paid attention to during
the inspection of an existing dam.

5.1 Influence of the water height

The first parametric analysis focuses on the influence of the water impoundment
on the dam. Fig. 5a shows the evolution of the failure angle of inclination αmax
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Fig. 5 Evolution of the failure angle of inclination αmax depending on the water to dam
height ratio hw/h (a), the facing to rockfill weight ratio γm/γs (b), the friction angle of the
rockfill φs and the stone-facing φm (c), and the dam downstream slope inclination λ1 (d).

with the filling of the dam. It can be seen that the water reserve has no influence
on the dam stability when the level is above 50% of the dam height. This is due to
the slope of the optimal internal failure line in the dam which ends above half of
the upstream face. Then, the water reserve leads to a reduction of the stability of
the dam, even though, as already mentioned in section 3, this reduction remains
moderate.

The following parametric analyses concentrate on the dam on its own, without
water reserve.
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5.2 Influence of the stone-facing and rockfill weights

Rockfill dams are gravity structures, and the weights of the constituent materials
of the dam have a great influence on its behaviour. Fig. 5b shows the evolution
of failure angle of inclination αmax depending on the facing to rockfill weight
ratio γm/γs. The stability of the dam increases with the weight ratio, proving the
important role of the dry-stone facing.

5.3 Influence of the friction angles of the rockfill and the stone-facing

The influence of the resisting characteristics can be evaluated by plotting the
evolution of the failure angle of inclination of the dam αmax depending on the
rockfill friction angle φs for different values of φm, the stone block friction angle
(Fig. 5c). It can be noticed that the stability of the structure increases with the
friction angle of the rockfill and the stone. The stone and the rockfill friction
angles stand for an important part of the stability: thus, they should be measured
precisely (±2◦) to ensure an accurate assessment of the structure.

5.4 Influence of the friction angle at the interface

The interface between the rockfill and its stone-facing is considered as purely fric-
tional, complying with a Mohr-Coulomb law of friction angle δ. In a first approach,
it has been decided to take the friction angle of the interface equal to the friction
angle of the blocks composing the stone-facing δ = φm. This value seems relevant
for rockfill built carefully, with regular faces, as explained in section 2.2. However,
for loose rockfill it seems better to use the friction angle of the rockfill δ = φs. In
this case, the maximum friction angle equals:

αmax = 39.0◦ (32)

This represents an increase of 5% of the stability compared to the value ob-
tained with δ = φs (30). In this case study, the interface friction angle has a
moderate effect on the stability of the structure; this can be accounted for by
the little difference between the two friction angles, which is common situation as
rockfill and facing are often built with the same material.

5.5 Influence of the dam downstream slope inclination

The most remarkable specificity of this dam is the geometry of the downstream-
face, which angle with the horizontal proves higher than the friction angle of
the rockfill. The influence of this geometric parameter is evaluated in Fig. 5d,
representing the evolution of the failure angle of inclination αmax depending on
the dam downstream slope inclination λ1. The graph consistently shows that the
stability of the dam increases with its downstream slope. Besides, it can be seen
that, even with a lower downstream slope, the dam still proves stable, even close
to failure.
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5.6 Influence of the orientation of the stone blocks

In the model previously exposed, blocks are considered as rectangular, with bed
joints normal to the embankment slope. It can prove interesting to evaluate the
influence of the block inclination, considering blocks are no longer rectangles but
parallelograms of height a and thickness b with their bed joints parallel to the
foundation. The formulas established in section 2 remain valid, except for vm1

et
vm2

:

vm1
= vm1 cosφm x+ vm1 sinφm y (33)

vm2
= vm2 cosφm x+ vm2 sinφm y (34)

and their relations with the virtual velocity in the embankment :

vm1 =
cos(Ψs − φs − δ + λ1)

cos(φm + δ − λ1)
vs (35)

vm2 =
cos(Ψs − φs − λ2 + δ)

cos(φm + λ2 − δ)
vs (36)

The expression of the maximum angle of inclination αmax is:

α ≤ arctan
2γmb sinφm

(

K1 +K2

)

− γsCs sin ξs

2γmb cosφm

(

K1 +K2

)

+ γsCs cos ξs
(37)

where K1, K2 and Cs are:

K1 =
cos(Ψs − φs − δ + λ1)

cos(φm + δ − λ1)
hr1

K2 =
cos(Ψs − φs − λ2 + δ)

cos(φm + λ2 − δ)
hr2

Cs = (hr1 + hr2) lr + (f1 + f2)hr1hr2

(38)

Thus, the expression of the maximum angle of inclination αmax can be deduced
from the minimization of the previous expression towards hr1 = nr1a, hr2 = nr2a
and lr:

αmax = min
n

r1,nr2,lr

{

αlim

(

hr1, hr2, lr, Ψs

)

}

(39)

Considering the parameters in Table 1, the maximum value of αmax is :

αmax = 13.1◦ (40)

Comparison of this value with (30) shows a decrease in stability of 60%, proving
the importance of joint orientation for an equivalent volume of stone. This result is
particularly interesting for inspection of existing dams, as observing the rotation
of the stone-facing bed joints denotes a loss of stability of the structure.
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5.7 Influence of stone-facings

The influence of the upstream and downstream stone-facings on rockfill dams
stability have finally been tested in the model.

Removing the upstream stone-facing of the dam provides a failure angle of
inclination :

αmax = 39.6◦ (41)

The rockfill dam shows slightly the same stability with (30) or without upstream
stone-facing, meaning that this cover could be neglected in further calculation to
simplify the model.

Considering there are no stone-facings, the dam is unstable. This result is
consistent with the daring geometry of the embankment, which slope is higher
than the friction angle of the material constituting the rockfill. This proves the
importance of the downstream stone-facing in the stability of the rockfill dam as
it can bear a rotation of gravity of 37.1° with stone-facing (40).

6 Conclusions and perspectives

In this article, an upper-bound solution to assess the stability of stone-facing em-
bankments is developed. The model enables the analytic calculation of the struc-
ture, solely based on its geometry, unit weight and yield criterion. Then, the model
is tested on a case study consisting in the structural evaluation of an existing dam.
The model is compared to DEM simulations undertaken by Deluzarche (2004).
Yield design provides an upper-bound solution for the stability of the dam, re-
sorting on few parameters and requiring no calculation device or time, and thus
proving an efficient tool to address structural evaluation problems on stone-facing
embankments. Finally, a parametric analysis on this example proves the stabilising
role of the stone-facing as well as the influence of the stone block orientation in
the stability of the structure.
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List of symbols

α angle of rotation of gravity
h height of embankment
l thickness at top of embankment

λ1 front batter of embankment
λ2 back batter of embankment
a height of stone-facing blocks
b thickness of stone-facing blocks

hw height of water reserve
γm unit weight of stone-facing
γs unit weight of embankment
φm block friction angle
φs embankment friction angle
δ interface friction angle

Pe work of external forces
Prm maximum resisting work
vm1

virtual velocity field in downstream stone-facing
vm2

virtual velocity field in upstream stone-facing
vs virtual velocity field in embankment

hr1 failure line downstream height
hr2 failure line upstream height
Ψs failure line angle
σ stress field tensor

d strain rate tensor

Q loading mode

G strength domain
K extreme loading domain
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