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Abstract. We present a framework capable of automatically planning and animating dynamic
multi-contact jumping trajectories for arbitrary legged characters and environments. Our contribu-
tion is the introduction of an approximate yet efficient multi-contact impulse formulation, used at
the motion planning phase. We combine this criterion with a heuristic for estimating the contact
locations without explicitly computing them, which breaks the combinatorial aspect of contact
generation. This low dimensional formulation is used to efficiently extend an existing ballistic
motion planner to legged characters. We then propose a procedural method to animate the planned
trajectory. Our approach thus results from a trade-off between accuracy of the law of physics and
computational efficiency. We empirically justify this approach by demonstrating a large variety of
behaviors for four legged characters in five scenarios.
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1 Introduction

Synthesizing high quality motions for legged characters in arbitrary environments is challenging: the
dimension of the problem is high, equal to the number of degrees of freedom, the environment is big
and complex, and the motion is additionally constrained by the dynamics of the world. For this reason,
motion synthesis is typically addressed with a decoupled approach. First, in the path planning phase a
collision-free path is found for the character using a PRM based approach [1]. Then, in the animation
phase a motion is computed and played along the path. Using this decoupled approach, we consider
the issue of synthesizing highly dynamic jumping motions for legged characters.

For concision our scope is restricted to the generation of sequences of jumping motions, disregarding
alternations with classical walking / running trajectories at the moment. Thus, given start and goal
configurations for an arbitrary character in an arbitrary environment, our framework outputs a motion
described as a sequence of parabolic jumps [2], respecting a set of kinematic and dynamic constraints
for the character.

Our key idea is the introduction of a simplified multi-contact model within a sampling based planner.
We relax the dynamics of the problem with two hypotheses, which assimilate our character with a
superhero:

• First, we consider an impulse formulation. Our character is thus assumed to be able to exert a
large force instantaneously, as proposed in [2].

• Then, when verifying the dynamic constraints on the character, we verify the Newton equation of
the motion, but assume that the Euler equation is always satisfied. This means that we assume
that the character can generate an arbitrary angular momentum.
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These two hypotheses lead to an efficient, low dimensional formulation of the motion planning problem,
solved with a sequence of simple geometric tests, while partially capturing the dynamics model of
the character to compute plausible trajectories. To handle the combinatorial aspect of the contact
generation problem, we decouple the trajectory planning phase from the contact generation phase,
thanks to a heuristic based on the reachable workspace of the character. Finally, to propose a complete
framework, we implement a procedural method to automatically animate the computed trajectory. This
is achieved by combining a contact generator proposed by [3] with a dedicated interpolation scheme
that we introduce.

Our main contribution is thus a computationally efficient ballistic multi-contact motion planner.
It extends the PRM planner proposed by the authors of [2], limited to planning for a single mass
point, to arbitrary legged characters generating non-coplanar contact configurations (Sections 3 and
4). Our second contribution is an automatic interpolation method for animating multi-contact jumping
trajectories (Section 5).

2 Related Work

We propose a purely procedural motion synthesis methods, able to generate dynamic motions through
multi-contact interactions, with a focus on the motion planning phase. Our work is thus related to
physically based motion synthesis methods, as well as motion and contact planning techniques. It is
also to be compared with respect to data-driven animation techniques (such as motion capture). This
related work provides an overview of these approaches, before focusing to specific contributions to the
jumping motion synthesis problem.

A standard motion synthesis technique is to use pre-existing animations, produced either by 3D
artists or through motion capture. These approaches are favored because of the high quality of the
resulting animations [4]. When the environment differs from the original one, local editing methods
can be used to adapt the motion [5, 6, 7, 8], but they produce unnatural results when the deformation
becomes too important.

Rather than using reference animations, physics-based methods synthesize motions with algorithms
based on a simplified model of the law of physics [9]. Walking pattern generators combine finite state
machines with proportional derivative control to generate periodic locomotion [10]. The number of
states increases with the complexity of the environment and the desired motions, such that reinforcement
based learning techniques are required to overcome the limitations [11, 12]. However, they are based
on simplifying assumptions regarding the location and periodicity of the contacts, which do not hold in
arbitrary environments.

Sampling based planning algorithms such as PRM [1] and RRT [13] are the standard methods used
to find a collision-free path in a complex 3D environment. Our approach follows [14], with an interactive
method that breaks the combinatorial by decoupling the planning of a feasible path and the contact
generation.

Overall, contributions that have studied jumping motions do not focus explicitly on path planning,
rather on the physically accurate adaptation or synthesis of the jump animation, which is complementary
with our approach.

As such, most robotics contributions to jumping scenarios assume coplanar contacts on flat surfaces,
and do not consider collision avoidance in general [15, 16]. Similarly computer graphics contributions
assume the ballistic jumping motion is already precomputed [17], and focus on the preparation phase
[18, 19], or the reception phase [20].

To plan highly dynamic motions, recent contributions have proposed hybrid approaches, using both
data-driven and physics based methods to generate motions [21, 22]. In particular, [23] propose to
deform motion capture trajectories using physics based heuristics. Interestingly, while the authors
make similar assumptions to us (they consider characters with surhuman capabilities), their approach
is opposite to ours: they constrain a motion adaptation to respect the Euler equation of motion,
given customizable bounds on the angular momentum of the character. Because the contact locations
are predefined relatively to the center of mass by the reference motion capture animation, the linear
part is necessarily validated. However, this limitation once again prevents generalization to arbitrary
environments, where the contacts must be changed to obtain a valid motion. We, on the other hand,
focus on the Newton equation that regularizes the linear momentum, and do not constrain the angular
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momentum, making our method able to handle arbitrary contact locations.

3 Relaxed contact model for impulse based motion planning

Our contact model is based on Coulomb’s non-slipping constraint, which we recall briefly in this section.
We generalize the constraint to handle an arbitrary number of contacts, by expressing it at the center
of mass (COM) of the robot. From this formulation, assuming an impulse formulation of the model, we
propose a conservative condition for non-slipping, that is sufficient, but not necessary. This condition,
reduced to a simple geometric test, is then used in our motion planner, presented in Section 4.

Definitions. We consider a character of mass m ∈ R, of COM position c ∈ R3, assimilated to the
geometric root. ċ is the velocity of c.

For the i-th contact point pi, 1 ≤ i ≤ h, Ki is the associated convex friction cone, considering a
friction coefficient µi, and a surface normal ni. fi is the contact force applied at pi. Finally, g =
[0, 0,−9.81]T is the gravity acceleration.

Non-slipping constraint for an arbitrary number of contacts. The non-slipping condition is
given by Coulomb’s law: the contact will not slip if the contact reaction force fi lies strictly within the
cone Ki.

Now, if we consider an arbitrary number h of contacts, each reaction force fi must lie in its associated
cone Ki. The resulting force fc applied at the center of mass c of the character, is defined as the sum
of all the forces fi. It follows that the set of admissible resulting forces K such that the non-slipping
condition is respected is defined as the Minkowski sum of each individual friction cone:

K = {f1 + · · ·+ fh|fi ∈ Ki} (1)

As a Minkowski sum of convex cones, K is itself a convex cone [24].
However, the analytical form of K is unknown. Therefore in this work, we use a conservative

approximation Kc.

We define nc =
h∑

i=1

ni and µc = min
i=1...h

µi.

The cone Kc, originating at c, of normal nc, and friction µc, is included in K by construction, and
is thus a conservative approximation of K. Force closure contact configurations, where the resulting
normal nc is null, are considered invalid in this formulation. Although this formulation is intuitively
really conservative, it has an analytical form that makes it extremely efficient to compute. We justify
the interest of this formulation with the variety of the solutions found by our planner.

Impulse model of the non-sliding constraints. We extend the model proposed in [2] to multi-
contact motions, by applying it to the centroidal cone Kc. Assuming that the motion is determined
as a sequence of jumps, we want to verify the non-slipping conditions between the landing and takeoff
phases of two consecutive jumps. With an impulse model, we make the hypothesis that the character
can only apply large contact forces instantaneously, and assume that the transition between the landing
and takeoff phases is instantaneous.

Under the conservative non-slipping condition, Newton’s equation is written:

m
dċ

dt
−mg = fc | fc ∈ Kc

Under the impulse hypothesis dt is instantaneous, such that the action of gravity is not measurable:

m dċ ≈ fcdt | fc ∈ Kc

Thus, dċ and fc are colinear, and dċ ∈ Kc.
Furthermore, the instantaneous velocity shift dċ is constrained by the relationship

dċ = ċt − ċl (2)

where ċt and ċl are respectively the takeoff and landing velocities.
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We now make the observation that, by definition of a convex cone:

− ċl ∈ Kc and ċt ∈ Kc =⇒ dċ ∈ Kc (3)

(3) provides a sufficient condition for satisfying the non-slipping condition. This conservative con-
dition reduces the dimensionality of the motion planning problem, because it removes the relationship
between the entering velocity and the exiting velocity of a node, required by classical kinodynamic
approaches [25]. With a kinodynamic planner, to verify whether a trajectory can be connected with
another one, it is required to extend the state space with the velocities. In our case, this is required to
verify whether there exists a ċ ∈ Kc that satisfies Equation 2 each time we want to connect a new tra-
jectory. Including the velocities doubles the dimensionality of the problem. The conservative condition
removes this need: any takeoff velocity ċt that belongs to the cone is automatically achievable from the
previous one, independently of ċl.

4 Path planner

We integrate the multi-contact non-slipping condition within a PRM-based motion planner to consider
the dynamics constraints that apply to the character at the planning phase. To reduce the dimensionality
of the problem and break the combinatorial, the planner does not consider the complete character model
at this phase, nor the explicit computation of contact configurations.

We first present and justify the reduced character model used by the planner. We then introduce
a heuristic to estimate the contact location of the configuration without computing them explicitly.
Then, we give the details of the planning algorithm.

A reduced character model for contact location estimation. We consider a legged character,
described by a kinematic chain R, composed of a root R0, and l limbs Rk, 1 ≤ k ≤ l.

The root has a minimum of r ≥ 6 degrees of freedom (dofs), which describe its position and orien-
tation in the world frame. The additional dofs describe the articulations of the back of the character.
R is fully described by a configuration q ∈ Rr+n. We define q0 ∈ Rr as the configuration of the root of
the character.

At the planning phase, to verify the non-slipping condition, we need an estimation of the contact
locations. To avoid dealing with the combinatorial and computational complexity of contact generation,
we introduce a contact estimation heuristic, based on a dual, low-dimensional representation of the
character, introduced by [14]. We recall it here for completeness.

Rather than considering the complete body configuration, the planner only considers the root con-
figuration q0. To perform collision detection, the complete body is approximated with a bounding
shape W0. Additionally, for each limb k, we attach to the root a shape Wk, computed as the reachable
workspace of the limb. For details on the computation of the W shapes, we refer the reader to [14].

Our contribution is to use the reachable workspace of each limb for contact estimation. Given
a configuration q0, we assume that if Wk is in collision with the environment, it is possible for the
character to create a contact (Figure 1) between the limb Rk and the environment. The contact location
is estimated to be at the center of the intersection between the largest colliding contact surface and
Wk. This heuristic provides an efficient method to approximate the contact location, and allows the
verification of the non-slipping condition without considering the expensive complete model.

Motion planning algorithm for the reduced model. Our algorithm is an extension of the ballistic
PRM planner [2], adapted to generate multi-contact jumping motions. It is based on an oriented
version of the PRM planner [1]. The PRM algorithm processes offline, to generate a graph of connected
configurations, which captures the topology of the environment. The resulting graph can be efficiently
queried online to compute a path between two specified configurations. The nodes of the graph are
configurations. They are connected if there exists a collision-free path between them. The path is
computed using a steering method, which takes into account the kinematic (and eventually, the dynamic)
constraints of the model to generate a path.

We modify the original algorithm in three ways:
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60 dofs
9 dofs

Figure 1: Illustration of a necessary condition for contact creation. If the trunk bounding box is collision-
free (Left–red), and the reachable workspaces of the limbs are in collision with the environment (Left–
green), we assume that a contact configuration can be created between the effectors and the environment
(Right).

• First, as proposed by [14], the configuration sampling is biased towards configurations that allow
to generate contacts. Without loss of completeness, we only consider configurations for which at
least one contact creation is possible, that is that if a shape Wk is in collision for this configuration
(Figure 1);

• Then, to generate a trajectory between two configurations, we use the parabolic steering method
introduced by [2], used to represent jumps;

• Our contribution lies in the validation of the generated trajectory. A trajectory between two
configurations is only validated if the multi-contact non-slipping condition is validated.

Algorithm 1 gives the pseudo-code of the motion planning algorithm. It generates a graph, called
a roadmap, which can be requested online to compute a sequence of jumps between a start and a goal
configuration.

validTrunkRandomSample returns a root configuration q0. q0 is such that W0 is collision-free,
and ∃k,Wk is in collision.

findContacts estimates the contact positions on the surfaces resulting of the intersections between
the Wk shapes and the environment. From the estimated contact locations, the centroidal cone Kc is
computed with the method computeCone.

validSteer is an extension from the parabola-steering-method of [2]. To generate a trajectory
between two configurations q0

a and q0
b , the method determines whether there exists a parabola that

verifies the non-sliding condition. This means that the takeoff velocity belongs to the centroidal cone
Kc(a), while the landing velocity belongs to Kc(b). The takeoff and landing velocities are also limited
by user-defined bounds ċmax

t and ċmax
l . These bounds are manually chosen according to the maximal

allowed jump range Xmax of the character (e.g. on a flat ground, Xmax = ċmax 2
t /9.81). The trajectory

is validated if the resulting parabola is collision-free, that is if W0 is collision-free along the path. If no
valid parabola can be found, validSteer returns an empty trajectory T.

5 Online path request and motion synthesis

Once a roadmap has been generated, requesting a trajectory between two configurations consists in
adding them to the roadmap using Algorithm 1. If both configurations have been successfully added,
the shortest trajectory connecting them is obtained by computing the shortest traversal of the graph.

A remaining step is to extend the trajectory q0(t) computed for the root of the character into a full
body animation. In this phase, despite the impulse model formulation, to obtain a plausible animation,
we consider that contact duration is not instantaneous. This requires identifying the transition times
between contact and flight for each effector.

The whole-body animation technique proceeds as follows for each jump:
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Algorithm 1 Probabilistic roadmap planner for ballistic motion planning of a dual-shape system.

Input: environment, ċmax
l , ċmax

t

Output: Graph of valid root configurations connected with parabolas
finished← False
while not(finished) do

q0
rand ← validTrunkRandomSample()

findContacts(q0
rand)

Kc ← computeCone(q0
rand)

addToRoadmap(q0
rand,Kc)

for q0 ∈ Roadmap do
T←validSteer(q0,q0

rand, ċ
max
l , ċmax

t )
addToRoadmap(T)
T←validSteer(q0

rand,q
0, ċmax

l , ċmax
t )

addToRoadmap(T)
end for
finished← TerminationCondition()

return Roadmap

apex

contact (t0)

contact

takeoff

landing

transition

transition (ttransit)

Figure 2: Key configurations computed along a parabola trajectory.

• First, several key configurations are automatically computed at specific times of the trajectory:
two contact configurations at the take-off and landing phases; one configuration at each moment
where an effector contact is broken (respectively created); one configuration at the apex of the
trajectory (Figure 2).

• Then, a linear interpolation is performed for each dof of the character between each key configu-
rations. It is designed in such a way that collisions are avoided and contact location constraints
are maintained.

We first explain how the complete contact configurations are computed, and how the moment where
a contact is broken / created is identified. Then, we present the interpolation method to generate the
continuous complete animations.

Computation of whole-body contact configurations, and identification of takeoff and land-
ing phases. We first address the identification and animation of the takeoff and landing phases, where
contacts occur between the character and the environment. To keep the explanation simple, in this sec-
tion we consider an input trajectory q0(t) which consists in a single jump, and assume that contacts
are created and broken simultaneously, although the method handles the general cases.

To identify the duration of the landing phase, we first generate a collision-free, whole-body con-
tact configuration that verifies the non-sliding condition at the impact frame. To generate such a
configuration, we use a dedicated contact generator proposed in [3]. To increase the plausibility of the
animation, contact generation is biased towards configurations as close as possible to a manually defined
reference configuration (Figure 3). Contact locations may differ from the planned ones as long as the
new centroidal cone Kc satisfies the criterion (3).

6



Figure 3: Illustration of the generation of a contact configuration. (Left) The root of the reference
configuration is placed close to an obstacle so that the obstacle is in the accessible space of the limbs.
(Right) Result of the configuration projection on the obstacle to create contacts on hands and feet.

We then identify the transition time between the take-off and flight phases using an iterative ap-
proach. We go forward in time from t0 = 0. At each time step ti, we update the root configuration
q0(ti), and solve an inverse kinematics problem to maintain the contacts active with the obstacle sur-
face. The last time ttransit before the inverse kinematics fails is the transition time with the flight
phase. The landing phase is handled similarly, with the exception that we go backwards in time from
the impact time.

An additional key configuration is generated at the apex of the parabola. It is sampled to be
collision-free, with a bias to lie in the neighborhood of a manually defined reference configuration.

Whole body animation of the jump trajectory. The final animation is obtained by linear in-
terpolation between the computed key configurations (Figure 2). While the root motion is guaranteed
to be collision-free, the linear interpolation can result in one limb being in collision with the environ-
ment. In this case a local re-sampling phase is performed to find a collision-free trajectory. During this
re-sampling only the dofs of the limb in collision are modified. In particular the root motion remains
unchanged.

6 Simulations

Our framework has been implemented using the open source motion planning software Humanoid Path
Planner (HPP) [26]. The method source code is available online. Final renderings have been generating
with Blender 2.7 using the automatic blender export tool of HPP.

We demonstrate the genericity of our approach with four characters in five environments. The
characters have different morphologies with from two to six limbs. They also have different jump
abilities, expressed as the friction coefficients of the environment, as well as velocity bounds. The
Figure 4 illustrates a few simulation results. All the key qualitative results of the method are detailed
in the companion video : they include removals of unnatural jumps by the non-sliding constraints, jump
transitions with arbitrary numbers of contacts and collision avoidance.

Time performances. Table 1 provides a quantitative analysis of our approach performances in four
scenarios. We separate the offline step, including the roadmap construction, from the online step,
including the trajectory query and the jump synthesis. Since a full-path motion synthesis is dependent
on the number of waypoints found by the planner, we give the average computation times to synthesize
one jump and one contact configuration. All benchmarks were run on a PC with 64 GB of main memory
and using one core of an Intel Xeon E5-1630 processor running at 3.7 GHz.

From the results we obtain, we observe that the complete computation time for one jump is inferior
to the actual animation time. This is also true for our worst case scenario, the houses rooftops with
Jumper-man. In this case, the large numbers of triangles that describe both the scene and the character
explain the drop in the performances, due to the collision tests. As classically done in video games,
using simplified meshes at the planning phase would probably allow us to obtain better performances
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Figure 4: Sequences of jumps computed by our planner in three environments.

Scenarios dofs
Offline Online

Roadmap
N. of nodes

Full trajectory One-jump CT (s)
N. of jumps

Contact
CT (s) CT (s) Average Min — Max generation (s)

Skeleton in desert 42 0.51 22.4 2.8718 0.3231 0.2167 - 0.9147 9.2 0.0253
Frog in pond 45 0.76 46.6 0.4742 0.1185 0.1077 - 13.25 5.3 0.0326

Jumper-man on houses∗ 38 44.93 142.4 7.2497 1.3894 0.3307 - 3.9250 6.1 0.0765
Skeleton on houses∗ 45 107.13 1256.3 7.2737 0.5057 0.4381 - 0.6923 14.4 0.0264

Table 1: Computation time (CT) averages of the method stages for 50 runs of each of the scenarios.
Offline columns concern the planning procedure while online columns deal with the path query in the
roadmap and the motion synthesis of the whole trajectory. The number of nodes reflects the roadmap
memory occupation. Number of triangles: house 449267, desert 47733, pond 6994, Jumper-man 10052.
∗Skeleton parameters: µc = 0.6, ċmax

t = 18 m/s, ċmax
l = 25 m/s. ∗Jumper-man parameters: µc = 1.2,

ċmax
t = ċmax

l = 25 m/s.

without impacting the quality of the results. However we chose to preserve the complexity of the scene
in this work, to demonstrate that the method scales well with the number of triangles.

More importantly, the critical observation is that both the trajectory query and the contact gener-
ation are real time in every scenario. We recall that those are the main contributions of the paper, and
the performances obtained allow us to consider interactive applications with more advanced animation
methods.

7 Conclusion

This work introduces an efficient motion planner, able to compute and animate complex trajectories
for jumping legged characters, by extending a ballistic motion planner proposed by [2]. In particular,
contrary to previous works based on finite state machines or data-driven animation, the planner is
able to automatically compute non-coplanar multi-contact configurations, without making hypotheses
about the number of contacts required and their locations. As such, it is able to address arbitrary
environments.

Despite the integration of a dynamic impulse contact model, our planner is computationally efficient,
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thanks to the introduction of a low dimensional conservative criterion for verifying the non-slipping
condition without explicitly computing the contact locations. This reduction of the problem’s dimension
only approximates the kinematic constraints of the character, and in rare cases, the whole body contact
generation at the animation phase will fail.

A current limitation of the model is that it does not consider angular momentum in the planning
phase. Furthermore, our approximation of the non-slipping condition is highly conservative. While
the analytical computation for the Minkowski sum of friction cones is not tractable, we could consider
another conservative approximation of the centroidal cone: the Minkowski sum resulting of the lin-
earized shape of the cones [27, 28] is algorithmically computable. We wish to compare the quality and
computation times of the two approximations for future work.

Regarding the quality of the obtained animations, we believe that the non-slipping criterion in-
creases the plausibility of the obtained motion, despite a current limitation of the model, which does
not consider angular momentum in the planning phase. We leave the validation of this hypothesis
through a perception user study for future work. To integrate angular momentum constraints within
the planning phase, we consider extending the centroidal cone to a 6 dimensional wrench-cone, following
the formulation of [29].

Lastly, we aim at extending our planner to integrate other phases than jumping, to be able to
alternate running, rolling or crawling sequences, for a larger spectrum of application.
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[5] A. Witkin and Z. Popović. Motion warping. In Proceedings of the 22nd Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’95, pages 105–108, New York, NY,
1995. ACM.

[6] Julien Pettré, Jean-Paul Laumond, and Thierry Siméon. A 2-stages locomotion planner for dig-
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