
HAL Id: hal-01366789
https://hal.science/hal-01366789v1

Submitted on 12 Feb 2017 (v1), last revised 29 Jan 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning from situated experiences for a contextual
planning guidance

Ahmed Chawki Chaouche, Amal El Fallah-Seghrouchni, Jean-Michel Ilié,
Djamel Eddine Saïdouni

To cite this version:
Ahmed Chawki Chaouche, Amal El Fallah-Seghrouchni, Jean-Michel Ilié, Djamel Eddine Saïdouni.
Learning from situated experiences for a contextual planning guidance. Journal of Ambient Intelligence
and Humanized Computing, 2016, 7 (4), pp.555-566. �10.1007/s12652-016-0342-y�. �hal-01366789v1�

https://hal.science/hal-01366789v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Learning from Situated Experiences for a Contextual Planning Guidance

Ahmed-Chawki Chaouche · Amal El Fallah Seghrouchni · Jean-Michel Ilié ·
Djamel Eddine Saı̈douni

Received: date / Accepted: date

Abstract This paper presents AgLOTOS as an algebraic
language dedicated to the specification of agent plans in am-
bient systems. It offers two levels of plans: Elementary plans
which are composed to produce an intention plan ; The in-
tention plans which are, in turn, composed to build an agent
plan. The composition relies on several operators such as al-
ternative and concurrency. Consequently, the plans can be
built automatically as a system of concurrent processes. At
the execution level, our approach helps the agent to select
an optimal plan preserving the consistency of its intentions.
The selection is based on an original and formal construction
called Contextual Planning System (CPS), which presents
the potential paths with the associated contexts while remov-
ing the inconsistent options. Finally, our CPS is improved by
using past-experiences for a better guidance of the agent.

Keywords Planning language · BDI agent · ambient sys-
tem · intention consistency · past-experiences · contextual
planning guidance

1 Introduction

Ambient Intelligence (AmI) is the vision of a ubiquitous
electronic environment that is non-intrusive and proactive,
when assisting people during various activities (??). For the
design of such complex systems, Multi-Agent System (MAS)
approaches offer interesting frameworks, since their agents
are designed to be intelligent, proactive and autonomous (?).

Ahmed-Chawki Chaouche · Djamel Eddine Saı̈douni
University Abdelhamid Mehri - Constantine 2, MISC Laboratory,
Campus Ali Mendjeli, 25000 Constantine, Algeria.
Tel: +213-781-851-597 ; Fax: +33-144-277-000
E-mail: {ac.chaouche, saidouni}@misc-umc.org

Amal El Fallah Seghrouchni · Jean-Michel Ilié
LIP6, UMR 7606 UPMC - CNRS, 4 place jussieu 75005 Paris, France.
E-mail: {amal.elfallah, jean-michel.ilie}@lip6.fr

The major problem of an AmI agent is to recognize its
context. This includes gathering information on its location
and the ability to discover other agents. In (?), it is shown
how autonomous Belief-Desire-Intention (BDI) agents (?)
can evolve and move within an ambient environment, based
on an agent centric approach and context-awareness. The
proposed model, called Higher-order Agent (HoA), takes
into account the major features and functionalities of AmI.
In particular the AmI systems can be open i.e. agents can
enter or leave the system. Locations may change, exposing
the agent to different surroundings.

This paper introduces an efficient planning management
process into the HoA architecture. In particular, we aim to
endow each AmI agent with a powerful on the fly predictive
service. The plan of a BDI agent can be viewed as a set of
intentions produced by the BDI interpreter.

We adopt the formal description language for plans, namely
AgLOTOS, introducing modularity and concurrency aspects
for sub-plan composition. Unlike the formal description of
?, the AgLOTOS semantics overpasses the sequential exe-
cution of sub-plans. Moreover, the fact that the agent plans
are produced automatically from concurrent intentions, for-
mally enforces the consistency of the agent, hence, extends
the GraphPlan-based approaches (?).

The formal semantics of AgLOTOS is enriched to au-
tomatically produce a Contextual Planning transition Sys-
tem (CPS), which allows to automatically guide the agent
over the possible execution of actions in plans. In the CPS
structure, the selection of the possible actions is informed
by the successes and failures concerning the running past-
experiences of actions. In the literature, the benefits of a
learning process have already been studied but under a huge
number of iterations (??). Our learning approach is different
and adapted to AmI and dynamic systems requiring an effi-
cient activity of the agent even when the knowledge about
the past-experiences is very limited.

2 Ahmed-Chawki Chaouche et al.

The paper is organized as follows: Section 2 describes
the functional architecture of the planning process, together
with its guidance mechanism based on lookahead capability
and past experience knowledges. In Section 3, the AgLO-
TOS specification language is briefly described and used
to build an agent’s plans from its intentions (e.g. composi-
tion of plans). In Section 4, the Contextual Planning System
(CPS) is defined. Section 5 presents our guidance mecha-
nism and a realistic scenario for illustration. In Section 6,
we improve the guidance mechanism by exploiting the agent
past-experiences to qualify the actions of the CPS. In Sec-
tion 7, we study the complexity of the proposed approach
and we show how decreasing the combinatorial effect within
the CPS. Finally, Section 8 discusses our approach with re-
gard to state of the art.

2 Contextual Planning Architecture

Action

Planning Proc.

Guidance

Execution

LCE

Proc.

LibP

Plan

Factory

B D I

Mental

Proc.

Event I σP Reinforced

Fig. 1 View of the contextual planning architecture

The overall agent architecture, we deal with, is stan-
dardly based on several processes. Triggered by events ex-
pressing the context changes, the mental process is assumed
to be highly deductive and rational, based on BDI structures
(Beliefs, Desires and Intentions).

Figure 1 brings out a functional view of our planning
process, in charge to offer some plan to execute (σ) from the
current set of intentions (I). It is composed of two modules:

– The Plan Factory builds the so-called agent plan which
globally corresponds to the current set of intentions. The
LibP library is used to exploit the different alternative
plans that must be specified for each intention. With re-
spect to the current spatial context of the agent, a Con-
textual Planning System (CPS) is built. By its traces (paths),
the CPS represents all the possible plans that can be re-
alized.

– The Guidance module is able to enrich the CPS informa-
tion taking profit from the past-experiences of actions,
that are stored in the so-called Learned Contextual Expe-
riences (LCE) module. This results in a structure called
CPS with learning (CPS-L for short), which can be used
to searching the optimal trace with respect to the agent
context.

3 The AgLOTOS Specification Language

The behavior of the BDI agent we consider in this paper
is carried out by two successive processes, as highlighted
in Figure 2. As usual, the Mental process represents the rea-
soning mechanism, based on the beliefs (B), desires (D), and
intentions (I), the instances of which define the BDI states of
the agent. Triggered by the perceived events, the mental pro-
cess manages/updates the B, D and I structures. In order to
organize its selected intentions, the mental process is able to
schedule them by associating each one a given weight (see
Section 3.2).

From the set of intentions, the Planning process is called
by the mental process to produce a plan of actions, helped
by a library of plans (LibP). In our approach for each BDI
state, the Agent plan is composed as follows: (1) the agent
plan is made of sub-plans called Intention plan, each one
dedicated to achieving a selected intention; (2) each inten-
tion plan is an alternate of several sub-plans, called Elemen-
tary plans, extracted from the LibP library. This allows one
to consider different ways to achieve the associated intention
(see Section 3.1). Further, we assume that the LibP library
of elementary plans is indexed by the set of all the possible
intentions for the agent.

In our approach, the associated notation of the planning
language is described in Table 1.

Table 1 Synthetic presentation of the used notations

Notation Description
E Elementary expression
P Elementary plan
P̂ Intention plan
P Agent plan
(E,P) Elementary plan configuration
(E, P̂) Intention plan configuration
[P] Agent plan configuration

3.1 The Syntax of Elementary Plans

Elementary plans are written using the algebraic language
AgLOTOS (?). This language extends the LOTOS language
(?) in order to deal with the concurrency of actions in plans.

Let O be the (finite) set of observable actions which are
viewed as instantiated predicates, ranged over a,b, ... and let
L be any subset of O. Let H⊂O be the set of the so-called
AmI primitives which represent the mobility and communi-
cation:

– In AgLOTOS, actions are refined to make the AmI prim-
itives observable: (1) an agent can perceive the entrance
and leaving of other agents in the AmI system, (2) it

Learning from Situated Experiences for a Contextual Planning Guidance 3

PlanningI
P

P̂0 P̂1 P̂j

P0,0 P0,1 P0,k

E0,0

process
Mental
process

I = {iw0 , iw1 , ..., iwj }

⊙

E0,1 E0,k

Agent plan

Intention plans

Elementary plans

Behavior expressions

⊙ ||| Parallel
≫ Sequence

Alternate
{

Fig. 2 Agent planning structure

can move between the AmI system locations and (3) an
agent can communicate with another agent in the sys-
tem.

– An AgLOTOS expression refers to contextual informa-
tion with respect to the (current) BDI state of the agent:
(1) Θ is a finite set of space locations, (2) Λ is a set
of agents with which it is possible to communicate, and
(3)M is the set of possible messages to be sent and re-
ceived.

– The agent mobility is expressed by the primitive move(`)
which is used to handle the agent move to some location
` (` ∈Θ). The syntax of the communication primitives
is inspired by the semantics of the π-calculus primitives.
However, contrary to the classical use of the calculus, the
communication support is completely dynamic, so there
is no need to specify the predefined channels: the expres-
sion x!(ν) specifies the emission to the agent x (x ∈ Λ)
of some message ν (ν ∈ M), whereas, the expression
x?(ν) means that ν is received from some agent x.

Let Act = O∪{τ}, be the set of actions, where τ /∈ O
is the internal action. Let δ /∈ Act be a particular observable
action which features the successful termination of a plan.

The AgLOTOS language specifies for each elementary
plan a name to identify it and an AgLOTOS expression to
describe its behavior. Consider that the elementary plan’s
names are ranged over P1,P2, ... and that the set of all possi-
ble behavior expressions is denoted E , ranged over E,F,
The AgLOTOS expressions are written by composing (ob-
servable) actions using LOTOS operators. The syntax of an
AgLOTOS elementary plan P is defined inductively as fol-
lows:

P ::= E Elementary plan
E ::= exit | stop

| a;E | E�E (a ∈ O)
| hide L in E

H ::= move(`) (H⊂O, ` ∈Θ)

| x!(ν) | x?(ν) (x ∈Λ ,ν ∈M)

� = { [],�, [>, |[L]|, ||, ||| }
In this syntax, P ::= E represents an elementary plan

identified by P, such that its behavior expression is E. The

elementary expression stop specifies a plan behavior with-
out possible evolution and exit represents the successful ter-
mination of some plan. The expression a;E denotes an ac-
tion a prefixing E and the set � represents the standard LO-
TOS operators and some of them can refer to any subset L
of O. The expression E []E specifies a non-deterministic
choice, E � E a sequential composition and E [> E the in-
terruption. The LOTOS parallel composition, denoted E |[L]|E,
can model both synchronous composition for actions defined
in L, denoted E ||E with L =O, and asynchronous composi-
tion, denoted E |||E with L = /0. The expression hide L in E
represents an explicit hiding of actions mentioned in L, mak-
ing them unobservable in E.

Every expression of a process is terminated by an exit.
Here are now different examples of compositions between
two sub expressions E1 and E2, with E1 ::= a;b;exit and
E2 ::= a;b;c;exit:

– E ::= E1� E2 means that all the expression E1 is real-
ized before the expression E2.

– E ::= E1 ||| E2 means that the expression E1 and E2 are
realized in concurrence.

– E ::= E1 [] E2 means that only one of E1 and E2 is real-
ized

– E ::=E1 [>E2 means that the expression E1 can no more
be executed when the execution of E2 starts.

– E ::= E1 |[b]| E2, means that the joint execution of b in
E1 and E2 is possible only when b is possible in both E1
and E2.

– E ::= hide a in (E1 |[b]| E2) means that the action a is
hidden when a is offered in the expression (E1 |[b]| E2).
In fact, this operator makes all the occurrences of the
action a unobservable (replaced by τ) at the semantical
level (see Section 4).

The AgLOTOS language is expressive due to its various
operators, so that each execution plan is mainly based on the
concurrent composition of elementary plans (one for each
intention). Unlike LOTOS specification, it is worth noticing
that AgLOTOS does not proposed any recursion mechanism
based on the two following points:

4 Ahmed-Chawki Chaouche et al.

– The mental attitudes of the agent can simulate a recur-
sion by maintaining some intention, hence the possible
associated elementary plans. Further in this paper, this
AgLOTOS restriction guarantees that the semantic con-
struction is finite, hence calculable.

– The maintainability of intentions is very efficient since
an agent can maintain some intentions, even if the other
intentions are revised (??),

3.2 Building the Agent Plans from Intentions and
Elementary Plans

The building of an agent plan requires the specific AgLOTOS
operators:

– at the agent plan level, the parallel ||| and the sequen-
tial� composition operators are used to build the agent
plan, in line with the intentions of the agent and associ-
ated weights.

– the alternate composition operator, denoted ♦, allows to
specify an alternation of elementary plans. In particular,
an intention is satisfied if and only if at least one of the
associated elementary plans is successfully terminated.

Let P̂ be the set of names used to identify the possible
intention plans: P̂ ∈ P̂ and let P be the set of names quali-
fying the possible agent plans: P ∈ P .

P̂ ::= P | P̂ ♦ P̂ Intention plan
P ::= P̂ | P ||| P | P� P Agent plan

With respect to the set of intentions I of the agent, the agent
plan is formed in two steps: (1) by an extraction mechanism
of elementary plans from the library, (2) by using the com-
position functions called options and plan:

– libp : I → 2P , features the library of elementary plans.
It yields, for each intention i ∈ I, a set of instantiated
elementary plans dedicated for achieving i.

– options : I → P̂ , yields for any i ∈ I, an intention plan
of the form: P̂i = ♦P∈libp(i) P.

– plan : 2I → P , creates the final agent plan P from the
set of intentions I. Depending on how I is ordered, the
intention plans yielded by the different mappings P̂i =

options(i) s.t. i ∈ I are composed by using the AgLO-
TOS composition operators ||| and�.

In order to account for any BDI state of the agent, we
propose that the agent can label the different elements of the
set I of intentions by using a weight function weight : I→N.
This allows us to weight the corresponding intention plans
yielded by the mapping options. The ones having the same
weight are composed by using the concurrent parallel op-
erator |||. In contrast, the intention plans corresponding to
distinct weights are ordered by using the sequential opera-
tor�.

P

P̂e

Pe1 Pe2Pm2

Ee1

|||

Ee2Em2

P̂m

Pg

Eg

P̂g

Pm1 Pm3

Em1 Em3

≫

Fig. 3 An example of an agent plan structure

For instance, let I = {i2g, i1e , i2m} be the considered set of
intentions, such that the superscript information denotes a
weight value. As illustrated in Figure 3, let P̂g, P̂e, P̂m be their
corresponding intention plans, the constructed agent plan
could be viewed as: P ::= (P̂g|||P̂m)� P̂e, where P̂g ::= Pg,
P̂m ::= Pm1♦Pm2♦Pm3 and P̂e ::= Pe1♦Pe2. Further, each ele-
mentary plan Pk is associated with an expression Ek describ-
ing its behavior.

3.3 A Simple AmI Example

Let us consider the AmI University scenario presented in (?)
where Alice and Bob are two agents. The proposed problem
of Alice is that she cannot make the two following tasks in
the same time: (1) to meet Bob in the location `1, and (2) to
get her exam copies from the location `2. Clearly, Alice’s
desires are conflictual since Alice cannot be in two distinct
locations simultaneously.

Table 2 Scenarios for Alice and Bob

Alice’s scenario
IA = {meeting(Bob,`1),receiving(Bob,con f irm getc)}
PA = meet(Bob);exit ||| Bob?(con f irm getc);exit

Bob’s scenario
IB = {meeting(Alice,`1),getting copies(`2)}
PB = get copies(`2);Alice!(con f irm getc);exit �

move(`1);meet(Alice);exit

As illustrated in Table 2, the scenarios of Alice and Bob
are specified separately. It is assumed that Bob and Alice
may coordinate in order to achieve their intentions, at their
mental process levels. The actions in plans are simply ex-
pressed using instantiated predicates, like get copies(`2). In-
tention plans are composed from elementary plans which are
viewed as concurrent processes, terminated by exit, a la LO-
TOS.

The mental process can order the set of intentions to
be considered. For instance, the intention set of Bob IB =

{meeting(Alice, `1),getting copies(`2)} is ordered such that

Learning from Situated Experiences for a Contextual Planning Guidance 5

weight(meeting(Alice, `1))<weight(getting copies(`2)). Re-
garding the intention set IB, the corresponding agent plan ex-
pression of Bob is: PB = get copies(`2);Alice!(con f irm getc);
exit � move(`1);meet(Alice);exit, which is built by using
the options and plan mappings. The resulting agent plan
expression for Bob is thus the following: act two succes-
sive processes. First, get the copies locally in `2 and con-
firm this to Alice (Alice!(con f irm getc)). Second, move to
`1 and meet Alice there. Pay attention that some actions
can be processed concurrently, so is the case in the Alice’
agent plan PA, for the two intention plans meet(Bob);exit
and Bob?(con f irm getc);exit.

4 Contextual Planning Management

The AgLOTOS operational semantics is basically derived
from the one of LOTOS. A pair (E,P) represents a pro-
cess identified by P, such that its behavior expression is
E. The semantic rules defining the possible elementary plan
changes are detailed in Table 3 which formalize how a pro-
cess can evolve under the execution of actions. In partic-
ular, the (Plan definition) rule specifies how a pair (E,P)
is changed to (E ′,P) under any action a. Actually, P := E
means to consider any (E,P) source pair and P a−→E ′ means
changing E to E ′ for P under the execution of a. As far as
AgLOTOS is concerned, these rules also represent the oper-
ational semantics of elementary plans, viewed as processes.

We now describe how the expression of an agent plan is
formed compositionally from the expressions of the inten-
tion plans of the agent, themselves built from an alternate of
elementary plans and their behavior expressions. The state
of an agent plan P, also called an agent plan configuration, is
denoted [P]. From the plan structure of any agent plan, such
configuration is described by associating a behavior expres-
sion to each elementary plan, and by composing them ac-
cording to the used algebraic operators.

The canonical rules of Definition 1, specify how [P] is
formed compositionally from some intention plan configu-
rations, like (E, P̂) (rule 1), themselves built from an alter-
nate of elementary plan configurations, like (Ek,Pk) (rule 2)
which represents an elementary plan identified by Pk, and its
behavior expression is Ek. Considering the example of Fig-
ure 3:
[P] =

(
(Eg, P̂g)|||(Em1♦Em2♦Em3, P̂m)

)
� (Ee1♦Ee2, P̂e)

Definition 1 Any plan configuration [P] has a generic rep-
resentation defined by the following two rules:

1.
P::=P̂ P̂::=♦k=1..n Pk Pk::=Ek

[P]::=(♦k=1..n Ek, P̂)

2.
P::=P1 � P2 �∈{|||,�}

[P]::=[P1] � [P2]

We will now define the planning state of the agent con-
textually, taking into account the agent location and a ter-
mination information about the different intention plans de-
fined for the agent.

Definition 2 A contextual planning state is a tuple (ps, `,T),
where ps is any planning state, ` corresponds to an expected
location for the agent, and T is the subset of intention plans
which are terminated.

Table 4 shows the operational semantic rules defining
the possible contextual planning state changes for the agent.
These rules are applied to produce a Contextual Planning
transition System, called CPS, from an initial contextual plan-
ning state, e.g. ([P], `, /0), meaning that the agent is initially
at location ` and the plan configuration [P] represents its
planning state. There are two kinds of transition rules:

Intention plan level: When an intention plan is assumed to
be treated, a transition (ps1,a, P̂, ps2), denoted ps1

a−→̂
P

ps2, expresses a change of intention configuration, from
ps1 to ps2. In table 4 (Intention plan level), the fist rule
assumes the execution of the action a from E a−→ E ′ and
P := E, whereas the second one highlights the termina-
tion case, keeping trace of the intention plan P̂ that is
going to be terminated. By calling PS the set of all the
possible intention plan configurations for the agent, the
transition relation is a subset of PS×Act×P̂ ×PS. For
sake of clarity, the transition (ps1,a,nil, ps2) is simply
denoted ps1

a−→ ps2.
Observe that due to the fact we consider a predictive
guidance in the CPS, only successful executions are taken
into account, thus abstracting that a plan may fail. More-
over, the semantics of the alternate operator is reduced to
the simple non-deterministic choice of LOTOS: ♦k=1..nEk≡
[]k=1..nEk in order to take into account every elementary
plan for achieving the corresponding intention.

Agent plan level: The possible changes of the contextual
planning states, like (ps, `,T), are expressed in Table 4.
In (Action) rules, the first one exhibits the case of a regu-
lar action, whereas the second one specifies the termina-
tion case of some intention plan, which is added to T . In
(Communication) rules, the action send x!(ν) (resp. re-
ceive x?(ν)) is constrained by the visibility of the agent
x in its neighborhood. In (Mobility) rules, the effect of
the action move(`′) yields the agent to be placed in `′.

5 Guidance Mechanism

From any set of intentions in the agent, denoted I, a Con-
textual Planning System is built by using the rules of Ta-
ble 4 and taking into account contextual information of three
kinds: (1) the reached location in a planning state, (2) the set

6 Ahmed-Chawki Chaouche et al.

Table 3 Semantic rules of elementary plan configurations

(Termination) exit δ−→ stop

(Action prefix) a∈O
a;E a−→ E

(Choice) E a−→ E ′

F [] E a−→ E ′ E [] F a−→ E ′

(Concurrency) E a−→ E ′ a/∈L∪{δ}
E |[L]| F a−→ E ′ |[L]| F

E a−→ E ′ a/∈L∪{δ}
F |[L]| E a−→ F |[L]| E ′

E a−→ E ′ F a−→ F ′ a∈L∪{δ}
E |[L]| F a−→ E ′ |[L]| F ′

(Hiding) E a−→ E ′ a/∈L
hide L in E a−→ hide L in E ′

E a−→ E ′ a∈L
hide L in E τ−→ hide L in E ′

(Sequence) E a−→ E ′ a 6=δ

E�F a−→ E ′�F
E δ−→ E ′

E�F τ−→ F

(Interruption) E a−→ E ′ a6=δ

E [> F a−→ E ′ [> F
E δ−→ E ′

E [> F δ−→ E ′

F a−→ F ′

E [> F a−→ F ′

(Relabeling) E a−→ E ′ a/∈{a1,...,an}
E[b1/a1,...,bn/an]

a−→ E ′[b1/a1,...,bn/an]

E
a−→ E ′ a=ak 1≤k≤n

E[b1/a1,...,bn/an]
bk−→ E ′[b1/a1,...,bn/an]

(Plan definition) P:=E E a−→ E ′

P a−→ E ′

of intention plans that are terminated when reaching a plan-
ning state, and (3), more globally, the set Λ of neighbors
currently known by the agent.

Definition 3 The CPS (Contextual Planning System) is a la-
beled Kripke structure 〈S,s0,Tr,L,T 〉 where:

– S is the set of contextual planning states,
– s0 = (ps, `, /0) ∈ S is the initial contextual planning state

of the agent, such that ps = [P]=plan(I) and ` represents
the current location of the agent,

– Tr ⊆ S×Act×S is the set of transitions. The transitions
are denoted s a−→ s′ such that s,s′ ∈ S and a ∈ Act,

– L : S→Θ is the location labeling function
– T : S→ 2P̂ is the termination labeling function which

captures the terminated intention plans.

In a CPS, any transition s a−→ s′ represents an action to
be performed. Like in the STRIPS description language (?),
the actions are associated with preconditions and effects. In
our approach, the preconditions only concern the contextual
information attached to the source state. Let pre(a) be the
precondition of any action a, e.g. pre(a(`)) = ` = L(s). In
Figure 4, the three actions that are not realizable are repre-
sented by dashed transitions from the states s2, s5 and s9.
From these states, pre(getc(`2)) = `2 6= L(s).

In order to guide the agent efficiently, the planning pro-
cess can select an execution trace which maximizes the num-
ber of intentions that can be achieved. This can be captured
over the set Σ ⊆ 2Tr of all the possible traces of the CPS. We

introduce the notion of maximum trace based on the map-
ping end : Σ→ 2P̂ , used to specify the set end(σ) of the dif-
ferent terminated intention plans that occur in a trace σ ∈ Σ .
Let ΣMAX represent the set of maximum traces of the CPS.
For instance, the trace carried out by s0→ s2→ s5→ s9 in
Figure 4, will not be represented because it is not a maxi-
mum trace. Hence, there are only 10 maximum traces in this
CPS.

From an algorithmic point of view, the configurations
having the maximum number of terminated intention plans
could be straightforwardly detected by parsing the CPS struc-
ture, with regards to the set of terminated intention plans
of each built configuration. By labeling these configurations
with a specific proposition MAX, the search of maximum
traces is reduced to the traces which satisfy the CTL (Com-
putational Tree Logic) property AF(MAX).

The consistency of a set of intentions I can also be checked
over some trace σ of the CPS, in particular in two extreme
cases:

– if |end(σ)|= |I|, meaning that all the intentions of I are
consistent,

– if |end(σ)| = 0, there is no satisfied intention, so the
agent plan P is contextually inappropriate with respect
to the set of intentions I.

Learning from Situated Experiences for a Contextual Planning Guidance 7

Table 4 Semantic rules of intention and agent configurations

Intention plan level

(Action) E
a−→E ′ a∈Act

(E,P̂)
a−→(E ′,P̂)

E
δ−→E ′ E=exit

(E,P̂)
τ−→̂
P

(E ′,P̂)

Agent plan level

(Action) ps
a−→ps′ a∈Act

(ps,`,T)
a−→(ps′,`,T)

ps
τ−→̂
P

ps′

(ps,`,T)
τ−→(ps′,`,T∪{P̂})

(Communication) ps
x!(ν)−−−−→ps′ x∈Λ

(ps,`,T)
x!(ν)−−−−→(ps′,`,T)

ps
x?(ν)−−−−→ps′ x∈Λ

(ps,`,T)
x?(ν)−−−−→(ps′,`,T)

(Mobility) ps
move(`′)−−−−−→ps′ 6̀=`′

(ps,`,T)
move(`′)−−−−−→(ps′,`′,T)

ps
move(`)−−−−→ps′

(ps,`,T)
τ−→(ps′,`,T)

(Sequence) ps1
a−→ps′1 a∈Act

ps1�ps2
a−→ps′1�ps2

ps1
τ−→̂
P

ps′1

ps1�ps2
τ−→̂
P

ps′1�ps2

(Parallel) ps1
a−→ps′1 a∈Act

ps1|||ps2
a−→ps′1|||ps2

ps1
τ−→̂
P

ps′1

ps1|||ps2
τ−→̂
P

ps′1|||ps2

ps1
a−→ps′1 a∈Act

ps2|||ps1
a−→ps2|||ps′1

ps1
τ−→̂
P

ps′1

ps2|||ps1
τ−→̂
P

ps2|||ps′1

Application to the scenario

We reconsider the scenario of Section 3 to achieve the inten-
tions of Bob in a concurrent way: [PB] = ((Eg, P̂g)|||(Em, P̂m))

is the agent plan configuration considered for Bob.
The pairs (Em, P̂m) and (Eg, P̂g) are two intention plan con-
figurations of Bob ; The first one corresponds to the inten-
tion meeting(Alice, `1) and the second to getting copies(`2),
such that
Em = move(`1);meet(Alice);exit and
Eg = get copies(`2);Alice!(con f irm getc);exit.

The Contextual Planning System of Bob, denoted CPSB,
is illustrated in Figure 4. It is built from the initial CPS state,
s0 = ([PB], `2, /0), taking into account the current location `2
of Bob. In the figure, the dashed edges represent the un-
realized transitions from the states s ∈ {s2,s5,s8}, because
pre(getc) = `2 6∈ L(s).

An example of maximum trace derived from s0 is the
following, expressing that Bob got the copies before moving
to the meeting with Alice:
((Eg, P̂g) ||| (Em, P̂m))

getc−−−−−→ ((E ′g, P̂g) ||| (Em, P̂m),`2, /0)
con f irm−−−−−→

((E ′′g , P̂g) ||| (Em, P̂m),`2, /0) τ−−−−→
P̂g

((Em, P̂m),`2,{P̂g})
move(`1)−−−−−−→

((E ′m, P̂m),`1,{P̂g}) meet−−−−−→ ((E ′′m, P̂m),`1,{P̂g}) τ−−−−−→
P̂m

((stop, P̂m),`1,{P̂g, P̂m})

6 Planning Guidance from Past-Experiences

Based on the CPS structure, we augment the planning pro-
cess with a rich learning mechanism dedicated to improve
selection of elementary plans in the LibP library and to guide
the agent to achieve as many concurrent intentions as possi-
ble.

In the CPS structure, the different traces capture both the
concurrency of intentions and the choice of an alternative
for each of these intentions. These are implicitly expressed
through the interleaving of actions that composed the se-
lected elementary plans. In this section, we focus on actions
and their performances in order to reinforce the quality of
maximum traces that are offered. The agent can keep track
of past-experiences obtained when running actions, and can
learn the gain of re-using some action in a given context. In-
stead of the simplest way which consists of considering the
actions of each CPS state separately, we propose to evaluate
an overall gain for each maximum traces of the CPS, so as
to order them.

Figure 5 shows different FIFO queues recording the suc-
cesses ’1’ and failures ’−1’, with respect to some action a.
Such structure is generalized to all possible actions and is
called the Learned Contextual Experiences structure of the
planning process (LCE for short). More precisely, if a cer-

8 Ahmed-Chawki Chaouche et al.

s0

s2

move

s1

s4

getc

getcmove

s3

s7

confirm

move

s5

meet

s8

getc

s11

s9

s12

getc

s14

τm

ℓ1

ℓ2

ℓ2

ℓ1

ℓ1ℓ1

ℓ1

ℓ1, {P̂m}

, {P̂m}s6

s10

τg

move

s13

s15

ℓ2, {P̂g}

ℓ1, {P̂g}

ℓ1, {P̂g}

ℓ1, {P̂g, P̂m}

confirm

confirm

confirm

ℓ1, {P̂m}

ℓ1

ℓ1

ℓ2

meet

meet

meet

τg

τg

τgτm

τm

τm

Fig. 4 The CPSB corresponding to the plan PB

ℓ0 Locations

Experiences

ℓ1 ℓn

b

−1

1
1
−1

−1
−1
1

1
−1

1

1

a

1

2
3

K

Fig. 5 Learned Contextual Experiences of an action a

tain outcome o ∈ {1,−1} is obtained for the performance
of an action a in some location `, it is pushed in the queue
LCEa(`).

Due to the high dynamicity of AmI systems, we accord
with a common heuristics such that the more recent an exe-
cution outcome is the more pertinent it is. Each queue for an
action is parametrized by a pair (f ,K) where f is a function
called pertinence function and K is the maximum size of this
queue.

– In order to tackle the data explosion problem when an-
alyzing its past-experiences, the queue is bounded by K
experiences and assumed to be finite, hence the perti-
nence function domain. This implies that an outcome
value beyond a maximum position are not pertinent, with
respect to the values in the queue.

– The pertinence function f : 1..K→R associates a weight
for each outcome value stored in a queue. As an interest-
ing case, for any index x of the queue, f (x) = 1

x yields

much more importance for any outcome value corre-
sponding to x.

The contextual gain value Ga(`) ∈ [−1,1] of an action
a in some location ` directly relates to the successes and
failures during the past-experiences of a in `. From a non
empty queue LCEa(`), Ga(`) is computed by applying the
pertinence function on each outcome value, knowing that
the size of the queue is 0 < k ≤ K:

Ga(`) =
∑

k
j=1(o j ∗ f (j))

∑
k
j=1 f (j)

(1)

In the case where LCEa(`) = /0, Ga(`) is set to ’0’ corre-
sponding to a middle gain value. This allows characterizing,
at the agent level, that the action a in ` is not already ex-
plored. Hence, the non-explored actions can be privileged
against the exploited ones having a gain less 0.

By extension, the different Ga(`) values allow us to as-
sign a gain G(tr) to each CPS transition tr = (ps, `,T) a−→
(ps′, `′,T ′) ∈ Tr. The quality of each (maximum) trace is
computed as follows, in order to guide the agent with the
trace of the best quality.

Q(σ) =
∑

σ
tr G(tr)
|σ | (2)

Application to the scenario

The Learned CPSB of Bob is highlighted in Figure 6. The
dotted transitions do not support any maximum trace (s0→

Learning from Situated Experiences for a Contextual Planning Guidance 9

s0

s2s1

s4

getc

move

s3

s7

confirm

s5

s8

s11

s9

s12

s14

ℓ1

ℓ2

ℓ2

ℓ1

ℓ1

ℓ1

ℓ1, {P̂m}

ℓ1, {P̂m}s6

s10

τg

move

s13

s15

τg

τm

ℓ2, {P̂g}

ℓ1, {P̂g}

ℓ1, {P̂g}

ℓ1, {P̂g, P̂m}

confirm

ℓ1, {P̂m}

ℓ1

ℓ1

ℓ2

0.28

-0.64

1.00

1.00

0.33

0.33

meet

Fig. 6 The Learned CPSB corresponding to the plan PB

s2→ s5→ s9), then are neglected during the guidance phase.
For the other transitions, their gains are computed. For in-

stance, the values G(s1
con f irm−−−−→ s3)=−0.64 and G(s4

con f irm−−−−→
s7) = 0.28 are obtained by considering, the LCE of Bob
sampled in Table 5, knowing that the action of both tran-
sitions is Alice!(con f irm getc) (con f irm for short) and the
fact that the respective source locations of these transitions
are L(s1) = `2 and L(s4) = `1 . In Figure 6, two maximum
traces are highlighted by a bold line, such that the interme-
diary parts distinguish them. By computing the respective
quality of these traces, the bold one appears to be more rel-
evant that the mixed bold/dashed one, and can be offered to
the execution process as the optimal trace (σopt).

Table 5 LCE samples for Bob

con f irm 1 2 3 4 ... K
`1 1 −1 1 −1
`2 −1 −1 1

move(`1)
`2 1 −1

exitg
`1 1 1 1
`2 1 1 1

The given guidance is driven by Algorithm 1, yielding an
optimal maximum trace, σopt , from a set I of intentions. As
the planning process acts as a service provider, it must also
notify the case where there is no possible maximum trace.

Consequently, this is useful to drive the mental process to
revise the agent intentions according to the current context.

Algorithm 1 Contextual guidance process
1: Require:

I: set of weighted intentions;
LCE: Learned Contextual Experiences module;

2: Build P from I;
3: Construct the CPS from P;
4: Extract ΣMAX from the CPS;
5: if ΣMAX 6= /0 then
6: Enrich the CPS-L from the CPS and LCE;
7: Order ΣMAX from the CPS-L;
8: Return σopt among the ones of ΣMAX ;
9: else

10: Return /0;
11: end if

7 Complexity of the CPS approach

The hardness of the CPS-L computation mainly comes from
the building of the CPS, since the computation of perfor-
mance information only require to parse the LCE structure
linearly. To evaluate a worst case complexity of the CPS-L,
our approach consists in studying the concurrent complexity
coming from the agent plan structure. To this end, we pro-
pose to reduce the operators of an agent plan configuration
[P] in order to only focus on the parallel and the sequential
compositions, as follows:

10 Ahmed-Chawki Chaouche et al.

– The parallel composition (E1 |||E2) is more complex than
the interruption one (E1 [> E2) and the concurrent ones
(E1 ||E2 and E1 |[L]|E2),

– The sequential composition (E1� E2) is more complex
than the non-deterministic choice one (E1 []E2).

We deduce that the worst case complexity of [P] can be
bounded by the complexity of an expression formed of a par-
allel composition of sequential components. As far as com-
plexity is concerned, this is analogous to a composition of
words, hence a number of traces in the CPS of order:

O
(
(n1 +n2 + ...+nk)!
n1!∗n2!∗ ...∗nk!

)
(3)

taking into account that [P] can be transformed in a parallel
composition of k sequential components (sub-traces) such
that ni is the length of the ith sub-trace.

From this result, it is then not surprising that a certain
form of combinatorial explosion could appear in the CPS-
L, as the number and the length of the (assimilated) parallel
components increase. This is in fact a standard result of con-
current systems, however, here limited by the fact that only
one agent is concerned and the fact that the real size of the
CPS-L decreases by the number of actions whose precon-
ditions cannot be contextually satisfied. Moreover, we con-
sider that the number of intentions to be dealt with at a mo-
ment is reasonably small and that the lengths of the intention
plans are small. These reasonable criteria tend to constrain
the hardness of an agent plan configuration and the corre-
sponding CPS-L.

8 Discussion and Related Work

We have presented in this paper, a contextual model for am-
bient agents which provides a mechanism to guide them
contextually. In this section, we discuss the different points
of view of the proposed approach, about both planning and
learning techniques taking into account the guidance mech-
anism.

Planning

Considering MAS as a distributed systems composed of com-
municating entities is not new, however the first proposals
either do not include any built-in capacity for ”lookahead”
type of planning or they do it only at the implementation
level without a well defined semantics. Many BDI agent-
centric approaches have been proposed to cope with the dy-
namic of the agent’s environment. In (?), a hierarchical model
(HTN) is proposed to better control the scheduling of plans
in BDI agents, following an alternating goal-plan oriented

strategy. Later on the same bases, ? showed how to specify
and test learning approaches in some particular cases.

Our model is also agent-centric and accords with the
principle of tightly controlling plans from the BDI mental
attitudes. In contrast with the former works, the achieve-
ment of different intentions can be simultaneously consid-
ered and concurrently executed, in a higher level planning
model. Conflicts are assumed to be solved by the mental pro-
cess of the agent, however with the help of intention priori-
ties. It is worth noticing that the conflicts which are caused
by the contextual information are taken into account when
building a CPS from the intention set. Dealing with action
dependencies has already been studied in the literature in or-
der to restrain the agent activity. In particular a GraphPlan
planner can efficiently produce a global plan as a flow of ac-
tions that corresponds to the subset of the desires (i.e. goals)
that could be executed concurrently (?). However, Graph-
Plan only deals with some of the possible scheduling be-
tween actions, since it follows a global time step approach.
In contrast, our approach takes all the possible cases into
account.

BDI languages

In the literature there are a number of BDI agent program-
ming languages (?), highlighting different aspects or mod-
ules developed in agent software like goals, planning and or-
ganization, e.g. Jadex (?), Jason (?), JIAC (?) and 2APL (?).
Since 2006, BDI agent-centric approaches emerge to cope
with the dynamicity of the agent environment. In particu-
lar, the work of ? has extended some existing formal spec-
ification models dedicated to distributed systems, in order
to specify actions in plans while integrating BDI ingredi-
ents within plans in a unified way. Nevertheless, our formal
algebraic language based on LOTOS, appears to be more
expressive in its capacity to represent plans as concurrent
processes as well as concurrent actions. It is also possible to
handle action and plan failures in the AgLOTOS language
and the HoA architecture. Moreover in our approach, a clear
separation exists between the mental and planning levels.
Actually, our planning process behaves like a service that
could be embedded in existing BDI architectures.

Validation

The verification task standardly applied to MAS is mainly
driven by a global vision of the system, e.g. in (?). In (?),
the reuse of some program checking techniques is proposed,
based on a BDI representation of the system state space.
Moreover, in order to cope with the well-known combina-
torial explosion of states, abstraction/reduction techniques

Learning from Situated Experiences for a Contextual Planning Guidance 11

are applied over the BDI states. One could consider intro-
ducing similar techniques within AmI agents, however, the
high-level dynamics usually effective in an AmI environ-
ment could introduce too much states to consider, even after
reduction. In our paper, the proposed guidance technique,
is agent-centric so can be seen as a reduction of the system
combinatorial explosion problem to the contexts handled by
the agent.

Learning

Learning is the general approach to improve the behavior of
intelligent agents from experimental-based information. It
has been involved at different levels of the agents. Learning
was first investigated at the mental level of BDI agents either
to improve the BDI deliberation from some learned knowl-
edge e.g. (?) or to produce a new plan with respect to some
objective e.g. (?). Learning was also used to reinforce the
selection of plans among different possible alternatives. In
particular, a decision tree was introduced by ? to represent
the different contexts in which the agent behaves. Indeed,
the behavior of the agent is learned from the successes and
failures of the executions of the agent’s plans. The idea to
take profit from the past execution experiences was adapted
in (?) bringing out an on-line technique, based on a hier-
archical goal-plan structure, in order to make the selection
of some alternative according to the failures of the previous
ones.

In this paper, we follow a similar idea, but unlike the
former proposals, our approach is not only online but also
adaptive: it is driven by the maximization of intention sat-
isfactions, in order to guide the agent through the different
paths implied by the concurrency of actions.

The learned CPS can be viewed as a reinforcement learn-
ing for the selection of elementary plans but based on the
successes and failures of the executed actions. Actually, the
selection of a path implies the selection of some alternative
for each intention plan. Moreover, as we aim to tackle ambi-
ent systems with limited experiences, our relevance function
favors a detailed representation of the action past-experiences,
instead of an abstract overall view counting successes and
failures, generally based on huge number of repetitive ac-
tions. The queues recording the past-experiences are bounded
in order to tackle the combinatorial complexity introduced
by their management. This approach is compatible with the
idea of forgetting useless history. Regarding the pertinence
function, our technique is in line with earlier propositions
like the Q-learning algorithm. The last one learns a qual-
ity value for each action taking into account that the known
values become deprecated as the time progresses, under a
function like ε = 1/t. In our context, the applied forgetting
function (1/x) allows us to privilege the most recent past-
experiences according to a logical recording time.

Recently, the work of (?) introduces a reinforcement learn-
ing technique dedicated to a domotic ambient system. The
proposed platform is able to learn the acts of a human by
recording a set of perceptions for each act. It can react in-
stead of the human to the change of perceptions. The fact
that this works under approximation, yields some similari-
ties with our work which takes failures into account, how-
ever, without considering any plan construction or mental
references.

As a learning alternative, other works proposed proba-
bilistic systems in the frame of repetitive scenarios. A Markov
Decision Process approach is proposed in (?) to reinforce
learning in BDI agents, whereas a probabilistic function is
proposed in (?) to introduce a certain capacity to explore
new plans, against the use of plans experimentally known
as successful. Both approaches are based on a huge number
of repetitive experiences, so they could be ineffective in the
case of ambient systems where agents must behave in real
time, within a dynamic environment. Moreover, as we focus
on user assistance, we can claim that each plan is certainly
executed only a few times. Our alternative which consists
of a history structure for each action seems relevant in the
case of ambient systems, since the forgetting function ap-
plied to the known experiments can capture the fact that the
changes in the agent environment can deprecate some past
experiences on some action or plan.

9 Conclusion

The algebraic language AgLOTOS appears to be a power-
ful way to express an AmI agent plan as a set of concurrent
processes, helped by an adapted plan library describing el-
ementary plans. Based on any current set of intentions, the
semantics of AgLOTOS allows to build a Contextual Plan-
ning System (CPS), from which all the maximum traces of
situated actions can be evaluated, each one representing an
execution plan maximizing the satisfaction of the set of in-
tentions.

The main contribution of this paper was to improve the
guidance mechanism based on the CPS in order to mini-
mize the risk of a plan failure. To do that, the CPS struc-
ture is enriched with learning information extracted from the
past-experiences of the executions of actions. This is used to
qualify each action contextually, hence to qualify each max-
imum trace.

We demonstrate in this paper that the complexity of our
planning approach mainly comes from the interleaving of
the situated actions in the CPS. As discussed in the paper, the
combinatorial effect should be reasonably handled, however,
we now aim at improving the CPS guidance by introducing
partial search techniques. Moreover, observing that the pro-
posed CPS only focuses on spatial information, we aims at

12 Ahmed-Chawki Chaouche et al.

enriching the learning techniques with temporal aspects, to
propose a spatio-temporal guidance.

References

