D Monnet

J Ninin

L Jaulin
email: luc.jaulin@ensta-bretagne.fr

Computing an Inner and an Outer Approximation of the Viability Kernel *

Keywords:

The viability kernel corresponds to the set of all state vectors of a controlled dynamic system that are viable, i.e., such that there exists an input such that the system will not enter inside a forbidden zone. In this paper, we propose a method which computes an inner and an outer approximation of the viability kernel in a guaranteed way. Our method is based on interval analysis and uses the notions of V-viability and capture basin. We illustrate our approach on the car on the hill problem. A software package has been developed to solve any 2D-problem.

Introduction

Safety verification of controlled systems has been approached with different tools such as viability theory [START_REF] Aubin | Viability Theory[END_REF], reachability analysis, or the concept of barrier function (see e.g., [START_REF] Bouissou | Computation of parametric barrier functions for dynamical systems using interval analysis[END_REF]). Safety is often expressed as a set of constraints in which the system must stay. For example, safety verification problems may consist of ensuring a safe configuration during the landing [START_REF] Bayen | Aircraft Autolander Safety Analysis Through Optimal Control-Based Reach Set Computation[END_REF] or the take off [START_REF] Seube | Aircraft take-off in windshear: A viability approach[END_REF] of an airplane, or collision avoidance [START_REF] Desilles | Collision analysis for an UAV[END_REF] with other aircraft. When we have an input to the system, we may want to find a controller which guarantees that the system is safe for all conditions. The set of all state vectors such that a system can stay (for the right input) within a set of constraints is called the viability kernel.

The computation of the viability kernel has been addressed by several methods. For low-dimensional problems and non-linear systems, most methods are based on gridding the state space [START_REF] Deffuant | Approximating Viability Kernels With Support Vector Machines[END_REF][START_REF] Saint-Pierre | Approximation of the viability kernel[END_REF], but due to the finite precision of the computer, gridding methods cannot be considered as guaranteed. For high-dimensional systems, the viability kernel can be approximated using methods based on Lagrangian methods [START_REF] Maidens | Lagrangian methods for approximating the viability kernel in high-dimensional systems[END_REF] for linear systems, or invariant sets [START_REF] She | Brief paper: Computing an invariance kernel with target by computing Lyapunov-like functions[END_REF] for polynomial systems. The viability kernel can also be approached using tools from the reachability analysis. Reachability analysis consists of computing the set of all state vectors that the dynamic system can reach from a given initial state. This problem has been considered with Hamilton-Jacobi equations [START_REF] Mitchell | Validating a Hamilton-Jacobi Approximation to Hybrid System Reachable Sets[END_REF], and was most recently approached with interval analysis [START_REF] Rego | Determination of inner and outer bounds of reachable sets through subpavings[END_REF]. If the target set belongs to a safe region, the viability kernel can be approximated by computing the set of state vectors from which the system can reach the target [START_REF] Kaynama | Computing the Viability Kernel Using Maximal Reachable Sets[END_REF]. Now, for our problem of computing the viability kernel, we cannot assume a priori that such a target set, included in the viability kernel, is available. Therefore, a subset of the viability kernel must be first computed in a reliable way.

In this paper, we consider low-dimensional and non-linear dynamic systems, and we propose to compute a guaranteed approximation of the viability kernel with interval analysis tools [START_REF] Jaulin | Applied Analysis[END_REF]. Instead of manipulating a set of points as gridding methods do, interval methods consider connected sets of state spaces. Using interval techniques, computations are reliable and guaranteed, which allows us to compute an inner and an outer approximation of the viability kernel.

This paper is organized as follows. Section 2 contains the notation and gives the definition of the viability kernel and the capture basin. In Section 3, we present the concept of V -viability, which will allow us to find subsets of the viability kernel. Section 4 provides theoretical results to compute the capture basin and Section 5 gives an algorithm to get an inner and an outer approximation of the viability kernel. In Section 6, we illustrate our approach with a two-dimensional example. Section 7 concludes this paper.

Notation and Definitions

In this paper, an interval is a continuous set, denoted as follows: [x] = [x, x], x ≤ x, with x the lower bound and x the upper bound. A vector of intervals [x] = ([x1], . . . , [xq]) is commonly called a box. A dynamic system S is defined by the following differential equation :

ẋ(t) = f (x(t), u(t)), u(t) ∈ U, (1)
where:

• x(t) ∈ R n is an evolution of the state variables,

• U is a compact subset of R m which represents the set of admissible values for the control,

• u ∈ U = {u : R + → U} is the control vector,

• f : R n ×U → R m is the evolution function of S. We assume that f is continuous, locally Lipschitzian and bounded in R n × U.

Let ϕ be the flow map of S, i.e., with the initial condition x0 = x(0) and a control function u(t), the system S reaches the state ϕ(t, x0, u) at time t.

Let us define the viability kernel and the capture basin of S.

Definition 2.1 Let S be a dynamic system and let K ⊆ R n be a compact set. The viability kernel of K under S is the set ViabS (K) of initial states x ∈ K from which at least one evolution does not leave K for all t ≥ 0. We have

ViabS (K) = {x ∈ K | ∃u ∈ U, ∀t ≥ 0, ϕ(t, x, u) ∈ K}.
We now define the capture set (also called robust invariant set), which is closely related to the concept of viability kernel.

Definition 2.2 Let T ⊂ K be a target. The capture basin of T viable in K under S is the set CaptS (K, T) of initial states x ∈ K from which at least one evolution of S in K reaches the target T in a finite time

CaptS (K, T) = {x0 ∈ K | ∃t ≥ 0, ∃u ∈ U , ϕ(t, x0, u) ∈ T, ϕ([0, t], x0, u) ⊆ K. . where ϕ([t1, t2], x0, u) = {x ∈ R n | ∃t ∈ [t1, t2], x = ϕ(t, x0, u)}. (2
)
3 V -Viability Definition 3.1 Consider a dynamic system S and a differentiable function

V : R n → R. S is said to be V -viable if ∀x ∈ R n such that V (x) = 0, ∃u ∈ U, ∇V (x) • f (x, u) < 0.
Figure 1 illustrates a V -viable system. For each point of the curve V (x) = 0 at least one potential evolution of S points strictly inward into the gray set, which represents V -1 (R -). This is the geometrical interpretation of ∇V (x) • f (x, u) < 0. The definition of V -viability implies the resolution of a quantified constraint satisfaction problem that can be solved with cylindrical decomposition [START_REF] Caviness | Quantifier Elimination and Cylindrical Algebraic Decomposition[END_REF] if V is polynomial or with methods based on interval analysis [START_REF] Hladík | Efficient solution of a class of quantified constraints with quantifier prefix Exists-Forall[END_REF] in the general case.

Theorem 3.1 Consider K a subset of R n . If S is V -viable and V -1 (R -) is a compact subset of K, then V -1 (R -) ⊆ ViabS (K).
Proof: Consider x ∈ K and the subset L of K defined by

L = {x ∈ K|V (x) ≤ 0} = V -1 (R -)
The contingent cone T L (x) to L at x ∈ L, V (x) = 0 can be defined with the gradient of V . According to [1, pp. 123], T L (x) is defined by

T L (x) = {y ∈ K| V (x) = 0 =⇒ ∇V (x), y ≤ 0}
Here we recall the definition of a viability domain [2, pp. 84]:

We shall say that a subset L ⊂ K is a viability domain of K if and only if

∀x ∈ L, f (x, U) ∩ T L (x) = ∅
As S is V -viable, we have:

∀x such as V (x) = 0, ∃u ∈ U, V (x), f (x, u) < 0 =⇒ f (x, U) ∩ T L (x) = ∅
Therefore, L is a viability domain. Moreover, according to the Local viability theorem [2, pp. 91], we have:

x0 ∈ L =⇒ ∃u ∈ U such as ∀t ≥ 0, ϕ(x0, t, u) ∈ K.
Thus, by definition, L ⊆ ViabS (K).

Theorem 3.1 can be used to prove that a set is inside the viability kernel of K. Figure 1 illustrates this by the gray set, which belongs to ViabS (K). To find a viable subset of the viability kernel, a function V must be chosen so that S has a high probability to be V -viable. Such a function can be found using Lyapunov theory [START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF][START_REF] Slotine | Applied Nonlinear Control[END_REF]. Some Lyapunov methods can approximate attraction domains of S [START_REF] Delanoue | An algorithm for computing a neighborhood included in the attraction domain of an asymptotically stable point[END_REF][START_REF] Ratschan | Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions[END_REF]. If S is Vviable and the second condition of Theorem 3.1 is checked, V -1 (R -) is proved to be a subset of ViabS (K).

Capture Basin of Viable Sets

In Section 3, a method to compute subsets of the viability kernel from the notion of V -viability is provided. These subsets represent a first approximation of ViabS (K). In order to obtain a better approximation, these viable subsets are enlarged with their capture basins.

The following theorem states that the capture basin of a subset of ViabS (K) is also a subset of ViabS (K). Theorem 4.1 Let S be a dynamic system, K be a closed subset of the state space of S, and T be a subset of K. If T ⊂ ViabS (K), then CaptS (K, T) ⊂ ViabS (K).

Algorithm to Compute Viab S (K)

In this section, we suppose that we have found a set E ⊆ ViabS (K) using techniques of Section 3. We present an algorithm that computes Vinner, a guaranteed inner approximation of CaptS (K, E), and H, a guaranteed approximation of the complement of ViabS (K) in K. This algorithm is an extension of the one presented in [START_REF] Lhommeau | Capture basin approximation using interval analysis[END_REF] to compute the viability kernel. We choose to subdivide the state space into boxes, so that we can easily use Proposition 4.2. Figure 2a shows the initial problem. Its representation with a subpaving is displayed in Figure 2b. for all

[x i] in S do 3:
Choose u ∈ U.

4: if [ϕ]([0, t], [x i], u) ⊆ K and [ϕ](t, [x i], u) ⊆ V inner then 5: V inner := V inner ∪ [x i], S := S \ [x i],
6:

else if [ϕ](t, [x i], U) ⊆ ((R n \ K) ∪ H) then 7: H := H ∪ [x i], S := S \ [x i],
8:

end if 9:
end for 10:

Bisect boxes of S. 11: end while 12: return V inner and H. Compared to the algorithm of [START_REF] Lhommeau | Capture basin approximation using interval analysis[END_REF], our version contains technical and computational improvements to accelerate the convergence:

• The enclosure of [ϕ] is computed using the technique of [START_REF] Chapoutot | Validated explicit and implicit Runge-Kutta methods[END_REF], which improves the quality of the bounds and increases the chance to include a box in Vinner or H.

• The data structure of Vinner and H is carefully implemented. A regular paver, represented by a binary tree, is used to perform fast intersections and set unions .

• In Algorithm 1, the subboxes composing S are divided only if it is not possible to prove that they belong to Vinner or H. In the algorithm presented in [START_REF] Lhommeau | Capture basin approximation using interval analysis[END_REF], S is entirely dividied into small boxes with the same size, then it tries to prove if they belong to Vinner or H. Algorithm 1 divides boxes only if needed; this allows it to include large boxes directly in Vinner or H.

These points aim to break down the exponential complexity of this algorithm.

6 Application to the Car on the Hill Problem

We illustrate our approach with the car on the hill problem. In this application, we want the car to stay on a landscape represented by the parametric function

g : s → -1.1 1.2 cos(1.2s) + 1.2 1.1 cos(1.1s) 2 ,
where s ∈ [0, 12] denotes the longitudinal variable. The function g is plotted on Figure 4. The acceleration of the car can be controlled within a limited range. We also consider a friction force that slows down the car. The dynamic system S associated with our problem is described by ẋ1(t) = x2(t), ẋ2(t) = -9.81 sin(ġ(x1(t))) -0.7x2(t) + u(t), where x1 = s represents the position of the car on the landscape, x2 = ṡ its velocity, and u ∈ [-2, 2] is the control function. The viability problem is formulated as follows:

we want to keep x1 between values 0 and 12 with a limit on the velocity of the car between -6 and 6. Thus, the set of constraints K is defined by

K = {x | x1 ∈ [0, 12], x2 ∈ [-6, 6]}.
We limit the precision on s and ṡ to 0.1. To compute ViabS (K) we first apply the method of Section 3 to find a subset E of ViabS (K). To do so, S is linearized around an equilibrium point of S. Then, a quadratic Lapunov function is computed for the linearized system. A function V is created from the Lyapunov function so that S is V -viable. This procedure is repeated for several equilibrium points. Figure 5 illustrates the result obtained. The elliptic shapes of subsets of ViabS (K) in Figure 5 come from the quadratic expressions of the Lyapunov functions. Moreover, the centers of these viable subsets correspond to a position of the car at the tops or bottoms of the hills with a null velocity, where the car is in an equilibrium state.

The computation took 10 seconds on a 2.5 GHz Intel Core i5-2450M processor with 6 Gb RAM. Next, we apply Algorithm 1 to compute an inner and outer approximation of ViabS (K). The result is shown in Figure 6. The CPU time is 1h 23min. The darkgray set corresponds to Vinner and is the largest set that we could prove to be viable in a guaranteed way. Nothing could be proved for the boxes of the white set. The light gray set is proved to be outside the viability kernel. The union of the white set and the dark-gray set corresponds to Vouter. Figures 5 and6 have been obtained with a solver available at http://www.ensta-bretagne.fr/monnet/Viabibex/.

Conclusion

This paper proposes an interval method to approximate the viability kernel of a nonlinear dynamic system. Our approach merges the concepts of V-viability and reachability analysis. An inner approximation of the viability kernel is computed on an infinite time horizon. Interval analysis tools ensure the reliability and provide a guarantee for all the results. The non-linear constraints on the evolution function enable application of our method to a large variety of problems. Numerical results for the car on the hill problem demonstrate the feasibility of our approach. Moreover, our method can be generalized to an n-dimensional problem.

Figure 1 :

 1 Figure 1: The vector field is displayed for several controls along the level curves of V .

Figure 2 : 1

 21 Figure 2: Subpaving representing the initial inner approximation for ViabS (K)

Figure 3 :

 3 Figure 3: Illustration of the method for characterizing ViabS (K)

Figure 4 :

 4 Figure 4: Car on the hill problem. We aimed to avoid the car falling off the cliffs at s = 0 and s = 12.

Figure 5 :

 5 Figure 5: Subsets of ViabS (K) are found with method of Section 3

Figure 6 :

 6 Figure 6: Approximations of the viability kernel.

Proof: Consider x0 ∈ CaptS (K, T). From the definition of CaptS (K, T), we have ∃t1 ≥ 0, ∃u1 ∈ U , ϕ(t1, x0, u1) ∈ T and ϕ([0, t1], x0, u1) ⊂ K.

Then, ∀t > 0, ϕ(t, x0, u) ∈ K. So, according to the definition of ViabS (K), we have x0 ∈ ViabS (K).

Proof: This proof is trivial since it comes from the definition of ViabS (K). Proposition 4.1 may be used to prove that a state belongs to CaptS (K, E) or does not belong to ViabS (K).

Proof: The proof of (i) and (ii) are the same of those of Proposition 4.1 considering sets of states variable instead of unique point.

Methods using interval arithmetic are able to compute a guaranteed enclosure of the flow map ϕ from an initial box [x0] of the state space, see [START_REF] Chapoutot | Validated explicit and implicit Runge-Kutta methods[END_REF][START_REF] Nedialkov | Validated solutions of initial value problems for ordinary differential equations[END_REF] for details. Using these techniques, it is possible to compute

• an enclosure [ϕ](t, [x0], U) of all evolutions ϕ(t, x, u) with all initial states x ∈ [x0] and all the possible control functions u ∈ U .

Such enclosures are generally overestimated. But if the size of the box [x0] is small enough, this estimation can be accurate.