Pint, a static analyzer for dynamics of Automata Networks
Loïc Paulevé

To cite this version:
Loïc Paulevé. Pint, a static analyzer for dynamics of Automata Networks. 14th International Conference on Computational Methods in Systems Biology (CMSB 2016), Sep 2016, Cambridge, United Kingdom. hal-01366730

HAL Id: hal-01366730
https://hal.science/hal-01366730
Submitted on 15 Sep 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Pint • Static Analyzer for Dynamics of Automata Networks

Loïc Paulevé <loic.pauleve@lri.fr>
CNRS/LRI, Univ. Paris-Sud, Paris-Saclay, France

Input Model
- Asynchronous Automata Networks [1]

 - a 0 ➔ 1 when b=0
 - a 0 ➔ 2 when c=0
 - b 1 ➔ 0 when a=0
 - b 0 ➔ 1 when a=2 and c=1
 - c 0 ➔ 1 when b=0
 - c 1 ➔ 2 when a=1 and b=0
 - c 2 ➔ 0 when b=1

 initial_state a=0, b=1, c=0

- Encoding of Boolean networks and multi-valued.
- Import from SBML-qual/GInsim using LogicalModel
 https://github.com/colomoto/logicalmodel

 $ logicalmodel sbml:an model.sbml model.an

- Other formats: SBGN-PD [2], Biocham, CellNetAnalyzer

Technologies
- Abstract interpretation: traces abstraction causality analysis (Local Causality Graphs)
 formal over-/-under-approximations of reachability
- Answer-Set Programming (ASP)
 logic programming for enumeration problems (NP)
- Implemented with OCaml programming language
- Free software: CeCILL licence

Main Features
- Static analysis of transient reachability
 Combines over- and under-approximation [3]

 $ pint-reach -i model.an g=1
 True/False/Incon

- Identification of cut sets: mutations for breaking goal
 Static analysis for under-approximation [4]

 $ pint-reach --cutsets 4 -i TCell-d.an BCL6=1
 "GP130"=1
 "STAT5"=0
 "C22B"=1, "IL6R"=1

- Identification of bifurcation transitions for goal
 Static analysis for under-approximation [5]

 $ pint-reach --bifurcations -i TCell-d.an BCL6=1
 "STAT5" 0 ➔ 1 when "IL2B"=1 ...

- Model reduction preserving goal reachability [1]

 $ pint-export --reduce-for-goal g=1 -i model.an
 -o reduced.an

- Other features: fixed points (SAT); transition graph analysis
 (attractors); stochastic simulation; embedded Boolean/Thomas
 networks (contrib M. Folschette); C bindings; interface with model-checkers
 (NuSMV, ITS, mole)

Applications to Biological Networks
- Gene regulatory networks; signalling pathways; etc.
- Tractable on very large networks (100-10,000 comp.)
 complexity of causality analysis: poly(nb automata,trs), exp(nb levels)

- Identification of cut sets for goal (mutations)

 - | Cutsets | TCell-d (101) | RBE2F (370) | MAPK (308) | PâD (21,000) |
 - | ≤4-cuts | 0.03s (27) | 0.06s (51) | 0.1s (34) | 3% (37) |
 - | ≤9-cuts | 0.03s (27) | 0.76s (334) | 0.5s (43) | 2.6h (1257) |

- Identification of bifurcations for goal

 - | Model | local trs | nb states | goal | 10s | 100s | 100s |
 - | TCell-d (101) | 384 | 4 ≥10² | RORGT=1 | 10s | 20s | 20s |
 - | ∥TGF | 7 | 25s | 4.2s |
 - | TGF (101) | 384 | KO | BCL6=1 | 10s | 20s | 20s |
 - | ∥MAPK | 10s | 25s | 20s |

- Goal-oriented reduction: make life easier for model-checking

<table>
<thead>
<tr>
<th>Model</th>
<th>local trs</th>
<th>nb states</th>
<th>Verification of reachable & unreachable states</th>
<th>Verification of cut set</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCell-d (101)</td>
<td>384</td>
<td>4 ≥10²</td>
<td>RORGT=1</td>
<td>10s</td>
</tr>
<tr>
<td>∥TGF</td>
<td>7</td>
<td>25s</td>
<td>4.2s</td>
<td></td>
</tr>
<tr>
<td>TGF (101)</td>
<td>384</td>
<td>KO</td>
<td>BCL6=1</td>
<td>10s</td>
</tr>
<tr>
<td>∥MAPK</td>
<td>10s</td>
<td>25s</td>
<td>20s</td>
<td></td>
</tr>
</tbody>
</table>

In all cases, reduction took less than 0.1s.
Properties are equivalent in the reduced models.

For more information...