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Adaptive multiresolution semi-Lagrangian discontinuous

Galerkin methods for the Vlasov equations

N. Besse1, E. Deriaz2, É. Madaule3

Abstract

We develop adaptive numerical schemes for the Vlasov equation by combin-
ing discontinuous Galerkin discretisation, multiresolution analysis and semi-
Lagrangian time integration. We implement a tree based structure in order
to achieve adaptivity. Both multi-wavelets and discontinuous Galerkin rely on
a local polynomial basis. The schemes are tested and validated using Vlasov-
Poisson equations for plasma physics and astrophysics.

Keywords: Vlasov-Poisson, discontinuous Galerkin methods, multi-wavelets,
multiresolution analysis, semi-Lagrangian methods, adaptive mesh re�nement

This answer the point xx of reviewer 1 (Roman number).
This answer the point xx of reviewer 2 (Roman number).
This answer the point xx of reviewer 3 (Roman number).

1. Introduction

Many numerical experiments are performed on the Vlasov-Poisson problem
since it is a well known (but not fully understood) system from plasma physics
and a major issue for future simulation of large scale plasmas. Our goal is to
develop adaptive numerical schemes using discontinuous Galerkin discretisation
combined with semi-Lagrangian description whose mesh re�nement is based
on multi-wavelets. In [16], the authors start from the standard formulation of
�nite-volume schemes for conservation laws and transform them into adaptive
�nite-volume schemes by using multiscale representations of the data. In a
same philosophy, starting from the standard formulation of the discontinuous
Galerkin method for conservation laws the authors of Refs. [3, 38, 28, 32, 27] use
a multi-wavelet representation of the unknowns to put these schemes into an
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adaptive setting. Following the spirit of these works, and in order to solve the
transport and continuity equations, we use a multi-wavelet representation of the
unknowns to transform the semi-Lagrangian discontinuous Galerkin schemes of
references [29, 36] into adaptive multiresolution versions. The discontinuous
Galerkin formulation enables high-order accuracy with local data for compu-
tation. It has recently been widely studied by Heath [30], Ayuso de Dios et

al. [4, 5], Cheng [12], Rossmanith et al. [37], Restelli et al. [33], etc. Those
are done with Eulerian description of the time resolution but Guo et al. [29]
or Qiu and Shu [36], Crouseilles et al. [19] or Bokanowski and Simarta [10]
performed semi-Lagrangian time resolution. We use multi-wavelets framework
for the adaptive part (more precisely, for the multiscale representation of the
distribution function of particles). Those have been heavily studied by Alpert et
al. [1, 2]. Some works merging multiscale resolution and discontinuous Galerkin
methods have been described by Archibald et al. [3] for convection based prob-
lems, by Müller et al. for non-linear hyperbolic conservation laws in the �nite
volume framework [32, 28] or for compressible �ows [27]. In the framework of
relativistic Vlasov equation, Besse et al. [7] presented the advantage of using
adaptive meshes. While they used wavelet representation, which requires large
data stencil, multi-wavelet representation coupled to discontinuous Galerkin dis-
cretisation only requires local stencil. This favours the parallelisation but an
e�cient parallel version of our numerical schemes (presented hereafter) will be
the matter of future work. Here we start with two semi-Lagrangian discontin-
uous Galerkin schemes which are presented in [36] and [29]. We call them the
SLDG [36] and CDG [29] schemes. We then modify these schemes to obtain
adaptive multiresolution schemes with an adaptive mesh coarsening and re�ne-
ment procedure. To achieve this aim, among other things detailed in Secs. 4, 5
and 6, the data are represented in a di�erent �nite-dimensional space which is
constructed by using a multi-wavelet basis [1, 2]. The multiscale representation,
given by the multi-wavelet basis, allows to give a well-de�ned and natural link
between local small scales of the distribution function (or data) and the local
size of the adaptive mesh. Then multi-wavelet representation of data is the
relevant tool to develop natural and e�cient criteria for designing an adaptive
mesh (re�nement versus coarsening) which follows the multiscale development
of the distribution function. Therefore we obtain new numerical schemes that
we call AMW-SLDG (Adaptive Multi-Wavelet SLDG) and AMW-CDG.

Let us note that the SLDG and CDG schemes are equivalent when we con-
sider the one-dimensional advection or continuity equations on a one-dimensional
grid with periodic boundary conditions. The proof is given in [36], where the
authors assumed that all interpolations involved in the schemes are exactly
computed.

It is important to start with two non-adaptive methods which can be proven
equivalent to see if our adaptive procedure introduces a bias or some di�erences
between them. For the moment there is no mathematical proof that the AMW-
SLDG and AMW-CDG schemes are equivalent. It is not only a di�cult task but
it remains a true open question. Actually we do not know if they are rigorously
equivalent. What is certain is that the proof performed in [36] can not be
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extended for non-conformal adaptive n-dimensional mesh (with n ≥ 2), which is
our case. Nevertheless we may expect that the AMW-SLDG and AMW-CGD
schemes are close to each other, and that our procedure does not break the
"symmetry" between these two schemes. A way to con�rm such intuition is to
make systematic comparisons of the AMW-SLDG and AMW-CDG schemes.

The paper is organised as follows. Sec. 2 presents the Vlasov-Poisson equa-
tions and their conservation properties. Sec. 3 deals with several discontinuous
Galerkin methods and their application in semi-Lagrangian framework. Sec. 4
describes the multi-wavelets used to get a multiscale reconstruction of the dis-
tribution function. In Sec. 5 we identify some numerical error sources which
are responsible for a loss of some conservation laws. A brief overview of nu-
merical implementation and a summary of the full algorithm are presented in
Sec. 6. Some numerical results in plasma physics and astrophysics are presented
in Sec. 7. Finally, the conclusion reminds the main points of our paper and gives
future perspectives of work.

2. The Vlasov-Poisson equation

We considered the following Vlasov equation

{
∂tf(x, v, t) + ∂x(vf(x, v, t)) + ∂v(E(x, t)f(x, v, t)) = 0, x ∈ Ωx, v ∈ R,
f(x, v,0) = f0(x, v),

(1)

where f(x, v, t) is the phase-space distribution function and E(x, t) is the elec-
tric �eld obtained from the Poisson equation

−∆Φ(x, t) = ρ(x, t) − 1, x ∈ Ωx (2a)

E(x, t) = −∂xΦ(x, t), (2b)

with Φ(x, t) the electric potential and ρ(x, t) the charge density linked to the
density distribution function f according to

ρ(x, t) = ∫
R
f(x, v, t)dv. (3)

This equation is written in adimensionnal variables using a �xed background of
ions such that the global plasma is neutral. This system is closed using periodic
boundary conditions and zero average for E(x, t). The set Ωx is a compact
domain of physical space with periodic boundary conditions. It is impossible
from a practical point of view to use an in�nite domain in v. For this reason most
of the time we consider a domain Ωv = [−L,L] with L large enough to ensure
Dirichlet boundary conditions. In our simulations, given our initial conditions,
we know that the solution remains bounded in velocity space by a decreasing
exponential (and uniformly in x). If we take a domain large enough in the
velocity direction we ensure that integrals are small enough to ensure that the
error is bounded by a small exponential. Such estimation has been used in many
semi-Lagrangian codes, such as the one from [6]. We call Ω = Ωx ×Ωv.
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Those equations represent the time evolution of a collisionless plasma dis-
tribution function and of its self-consistent electric �eld. This system satis�es
numerous conservation conditions that allow to qualify the performances of the
numerical methods.

� Conservation of maximum and minimum:

d

dt
( max
(x,v)∈Ω

f(x, v, t)) = 0,

d

dt
( min
(x,v)∈Ω

f(x, v, t)) = 0

� Conservation of Lp-norms, 1 ≤ p ≤∞:

d

dt
(∫

Ωx×R
∣f(x, v, t)∣p dxdv)

1/p
= 0, 1 ≤ p <∞, (4)

d

dt
(∥f∥∞) = d

dt

⎛
⎝

sup
(x,v)∈Ωx×R

∣f(x, v, t)∣
⎞
⎠
= 0, p =∞. (5)

Note that for physical distribution function, f0(x, v) ≥ 0 everywhere, so
∣f ∣ = f and total mass is equivalent to L1-norm

d

dt
∫

Ωx×R
f(x, v, t)dxdv = 0. (6)

Because positivity is rarely conserved during simulation (unless enforced),
there is often a di�erence between the numerical mass and the L1-norm.
Consequently we distinguish the two quantities in our diagnostics.

� Conservation of momentum:

d

dt
∫

Ωx×R
vf(x, v, t)dxdv = 0. (7)

� Conservation of total energy:

d

dt
(∫

Ωx×R
v2f(x, v, t)dxdv + ∫

Ωx

∣E(x, t)∣2 dx) = 0. (8)

In order to preserve the maximum principle (in particular the positivity)
for the distribution function, we could obviously use some limiters such as the
positivity-preserving limiter of Qiu and Shu [36]. Nevertheless our aim is to
evaluate the intrinsic properties of our schemes without adding an a posteriori
procedure to enforce the positivity or the maximum principle. Therefore in our
numerical simulations no limiter is used.
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3. Discontinuous Galerkin formulations

3.1. General formulation

We explain here the principle of the discontinuous Galerkin formulation on
a one-dimensional conservation law. Cockburn and Shu presented a large anal-
ysis of this formulation, mostly coupled with Runge-Kutta time resolution in,
i.g. [15]. We perform the time resolution of the Vlasov-Poisson problem using
Strang splitting. Indeed, here we use an (x,v)-area-preserving integrator in time
obtained by decomposing the dynamics in integrable Hamiltonian steps. A nat-
ural and simple choice is the Strang time-splitting strategy also known as the
centred leapfrog symplectic integrator. Roughly speaking, this intensively used
scheme (see [13, 23, 8, 6, 36, 18] and references therein) consists in splitting the
full transport operator into two easily integrable Hamiltonian transport oper-
ators � one in the physical space, the second one in the velocity � and solving
them successively in a right order to get high-order approximation in time of
the complete transport operator.

Let us consider the conservation equation

∂tf(x, t) + ∂x(a(x, t)f(x, t)) = 0. (9)

The discontinuous Galerkin formulation consists in solving a weak formulation
of the problem on each cell of the mesh with a space of test functions. More
precisely we �rst multiply (9) by a test function g ∈ G with G the space of
test functions which we do not specify yet. We then integrate it on each cell
Ii = [xi−1/2 , xi+1/2] of the domain partition to obtain the weak formulation

∫
Ii
∂tf(x, t)g(x)dx + ∫

Ii
∂x(a(x, t)f(x, t))g(x)dx = 0. (10)

The next stage is to perform an integration by part to pass the space derivative
onto the test function.

∫
Ii
∂tf(x, t)g(x)dx − ∫

Ii
a(x, t)f(x, t)∂xg(x)dx + [a(x, t)f(x, t)g(x)]

xi+1/2
xi−1/2

= 0.

(11)
Here comes the choice of the test function space G and numerical �uxes since the
�ux terms in (11) is meaningless when using discontinuous reconstruction at the
cell interfaces. This choice will determine the properties (stability, consistency,
accuracy, conservation) of the numerical scheme. For each cell we consider
{Pki }i, the set of polynomials of degree at most k on Ii and null outside of Ii. The
test functions g are then taken as basis functions of Pki . Most of the time those
are Legendre or Lagrange polynomials on Ii, but depending on the situation,
other polynomial basis may also be adequate. According to the philosophy of
these methods, we do a L2-projection of f on the underlying polynomial space

fh(x, t) =∑
i

k

∑
l=0

fl,i(t)pl,i(x) (12)
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Figure 1: Mesh representation and notations.

where {pl,i}l=0..k,i is a basis of Pki . The major advantage of this formulation is
that it is fully independent of the spatial order, which can be considered as a
parameter. and According to the Taylor series representation of the distribution
function, the error we commit with the polynomial projection is proportional
to ∆xk+1f (k+1), where f (k+1) is the k + 1-th derivative of f .

Let us now introduce the notations used in the next sections. We name
Ii = [xi−1/2 , xi+1/2] and Jj = [vj−1/2 , vj+1/2] the intervals respectively along the x
axis and along the v axis. The two dimensional cell Ti,j = Ii ×Jj is the tensorial
product of Ii in direction x and Jj in direction v as depicted on Fig. 1. The
Gauss-Lobatto nodes are noted xig (respectively vjg ) in direction x (respectively
v) and the associated weight is wig (respectively wjg ). Gauss weights are always
expressed for a quadrature formula on the interval [−1,1]. Pki is the space of
polynomials of degree at most K on cell Ii. In the two-dimensional case the
polynomial basis also is 2D and is obtained as tensorial product of the 1D basis.
We use the notation Pk,i,j(x, v) = pk1,i(x)pk2,j(v) with k = (k1, k2). For all our
work we used Legendre polynomials of degree up to k as basis of Pk([−1,1])
and a L2-normalisation. Superscript n is used to indicate time tn = n∆t and
fnh (x) = fh(x, tn). About characteristics, we call x the variable at time tn+1 and
we call x∗ the foot of the characteristic at time tn.

3.2. The semi-Lagrangian discontinuous Galerkin formulation

This formulation is taken from [36]. We only adapt it to obtain a formulation
in a two-dimension phase space and abbreviate it SLDG. The main idea is to
perform a time-integration of (11) and to transform it into a space-integration
using characteristics. We start from (11) and proceed to a time integration to
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t n+1

t n

xi−1 /2
xi−1 /2

*
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i−1 / 2

n⃗=(ntnx)=(01)
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Figure 2: Characteristic scheme for SLDG method.

obtain

∫
Ii
fn+1(x)g dx = ∫

Ii
fn(x)g(x)dx + ∫

tn+1

tn
∫
Ii
af(x, t)g′(x)dxdt

− ∫
tn+1

tn
((af(x, t)g(x))∣x−

i+1/2
− (af(x, t)g(x))∣x+

i−1/2
) dt, ∀g ∈ G. (13)

We respectively call the three integrals on the right hand side T0, T1 and T2.
The time integral in T1 and T2 are evaluated in a semi-Lagrangian fashion, We
start from Fig. 2. On this �gure, point x∗i−1/2 is the foot of characteristic arriving

at xi−1/2 at time t
n+1. Domain Ωi−1/2 is the region bounded by the three points

(xi−1/2 , t
n+1), (xi−1/2 , t

n) and (x∗i−1/2 , t
n). We integrate (9) over domain Ωi−1/2

and apply the divergence theorem.

0 =∫
Ωi−1/2

(∂tf(x, t) + ∂x(a(x, t)f(x, t))) dxdt

=∫
∂Ωi−1/2

(f(x, t)nt + af(x, t)nx) ds.
(14)

Therefore,

∫
xi−1/2

x∗
i−1/2

f(x, tn)dx = ∫
tn+1

tn
af(xi−1/2 , t)dt. (15)

Hence it is possible to write

T2 = g(x+i−1/2)∫
xi−1/2

x∗
i−1/2

fnh (x)dx − g(x−i+1/2)∫
xi+1/2

x∗
i+1/2

fnh (x)dx. (16)
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By �rst performing spatial integration using Gaussian quadrature rule on T1

and following the same process, the semi-Lagrangian formulation gives

T1 =∫
tn+1

tn
∫
Ii
afh(x, t)g′(x)dxdt

=∫
tn+1

tn

∆xi
2
∑
ig

afh(xig , t)g′(xig)wig dt

=∆xi
2
∑
ig

wigg
′(xig)∫

xig

x∗ig
fnh (x)dx.

(17)

Foot of characteristics are obtained by solving the ODE

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dx

dt
= a(x, t),

x(tn+1) = xi
(18)

between tn and tn+1.
As a consequence, (11) becomes

∫
Ii
fn+1
h (x)g(x)dx =∫

Ii
fnh (x)g(x)dx

+ ∆xi
2
∑
ig

wigg
′(xig)∫

xig

x∗ig
fnh (x)dx

+ g(x+i−1/2)∫
xi−1/2

x∗
i−1/2

fnh (x)dx

− g(x−i+1/2)∫
xi+1/2

x∗
i+1/2

fnh (x)dx.

(19)

One can clearly see that if g is chosen as a base function of Pki , then the left
hand side is simply fn+1

k,i and the �rst line of the right hand side is fnk,i. The
other terms are not simpli�ed.

In the two-dimensional case, integration over cell Ti,j requires an additional
integration in orthogonal direction. Polynomials are only de�ned on a reference
element [−1,1] and all variables and functions taken on this reference element
are indicated with a tilde. The Gauss weights are not included in this statement
since they are only used on this reference element. We de�ne k = (k1, k2) such
that k is the index for polynomials and coe�cients in two-dimension and, k1

is the corresponding index in direction x and k2 the corresponding index in
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Figure 3: Characteristic scheme for CDG.

direction v. This leads to the integration in the x direction

f̃n+1
k,Ti,j

=f̃nk,Ti,j

+ 2

∆xi
∑
jg

wjg
⎛
⎝∑ig

wig ∫
xig

x∗ig
fnh (x, vjg)dx p̃′k1(x̃ig)

⎞
⎠
p̃k2(ṽjg)

+ 2

∆xi
∑
jg

wjg
⎛
⎝∫

xi−1/2

x∗
i−1/2

fnh (x, vjg)dx p̃k1(x̃+i−1/2)−

∫
xi+1/2

x∗
i+1/2

fnh (x, vjg)dx p̃k1(x̃−i+1/2)
⎞
⎠
p̃k2(ṽjg)

(20)

with

fnk,Ti,j
=

∆xi∆vj

4
f̃nk,Ti,j

(21)

and in the v direction

f̃n+1
k,Ti,j

=f̃nk,Ti,j

+ 2

∆vj
∑
ig

wig
⎛
⎝∑jg

wjg ∫
vjg

v∗jg
fnh (xig , v)dv p̃′k2(ṽjg)

⎞
⎠
p̃k1(x̃ig)

+ 2

∆vj
∑
ig

wig
⎛
⎝∫

vj−1/2

v∗
j−1/2

fnh (xig , v)dv p̃k2(ṽ+j−1/2)−

∫
vj+1/2

v∗
j+1/2

fnh (xig , v)dv p̃k2(ṽ−j+1/2)
⎞
⎠
p̃k1(x̃ig).

(22)

3.3. The characteristic-discontinuous-Galerkin formulation

We take the algorithm for this method from [29] and we call it characteristic-
discontinuous Galerkin and abbreviate it CDG. Nevertheless it has previously
been called Lagrange-characteristic in [14] or Lagrange projection even sooner
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in [21] and [35]. It was even also in the framework of electron hole and drift
di�usion for semi conductors [20, 26]. As for the SLDG formulation, we only
adapt it to our two-dimensional problem. The starting point of the method is to
determine I∗i = [x∗i−1/2 , x

∗
i+1/2] using (18), as presented on the left part of Fig. 3.

The conservation equation (9) implies that

fn+1
h (x) = fnh (x∗) ∣

∂x∗

∂x
∣ . (23)

Multiplying (23) by g(x), integrating the result in the variable x on cell Ii, and
using the change of variable from x to x∗ in the right hand side of the resulting
equality, we then obtain

∫
Ii
fn+1
h (x)g(x)dx = ∫

I∗i
fnh (x∗)g(x(x∗))dx∗. (24)

Note that in the right hand side, the integration variable is x∗ but test function
g depends on variable x. These two variables are linked by (18). Variable x∗

is at time tn while x is at time tn+1. This second integral is sliced on each
sub-interval I∗i ∩ Il, and on every sub-interval the integral is computed using
Gaussian quadrature rule so that (24) becomes

∫
I∗i
fnh (x∗)g(x)dx∗ =∑

l
∫
I∗i ∩Il

fn+1
h (x∗)g(x(x∗))dx∗

=∑
l

⎛
⎝∑ig

wigf
n
h (x∗i,l,ig)g(x(x

∗
i,l,ig))

Γ(I∗i,l)
2

⎞
⎠
,

(25)

with Γ(I∗i,l) the length of I∗i ∩Il. Here we have I∗i = [x∗i−1/2 , x
∗
i+1/2], where x

∗
,i,l,ig

are foot of characteristics of Gauss points on I∗i ∩Il and xi,l,ig are the associated
end of characteristics on Ii. This process is illustrated on the right part of Fig. 3.
Here again, taking g = pk,i, the left hand side equal fn+1

k,i .
Performing just the same as previously we integrate on the orthogonal di-

rection over Jj to obtain the formulation in direction x

f̃n+1
k,Ti,j

=∑
jg

wjg ∑
l

∑
ig

wigf
n
h (x∗ig,l,jg , vjg)pk,l(xig,l,jg , vjg)

Γ(I∗i,l,jg)
∆xi

. (26)

Note that here, because the foot of characteristics depends on the orthogonal di-
rection, Γ also depends on the orthogonal direction. We do the same in direction
v:

f̃n+1
k,Ti,j

=∑
ig

wig ∑
l

∑
jg

wjgf
n
h (xig , v∗jg,l,ig)pk,l(xig , vjg,l,ig)

Γ(J∗j,l,ig)
∆vj

. (27)

The following three sections describe how we modify the SLDG and CDG
schemes and how we transform them into the adaptive AMW-SLDG and AMW-
CDG schemes. These adaptive schemes rely on a multi-wavelet representation
of the data (Sec. 4) and some special considerations concerning numerical eval-
uation of the integrals involved in the schemes (Sec. 5). The latter also relies
on a prediction procedure to achieve adaptive mesh re�nement (Sec. 6).
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4. Multi-wavelets representation

The multi-wavelets are a tool to build a multiscale representation of any
function belonging to a suitable functional space, typically L2. Their properties
in one dimension are detailed in [1]. It then has been widely used, such as [32]
and [28]. An algorithm for the construction of one-dimensional multi-wavelets
can be found in [2]. Let us remind the most important points from [1] about
multi-wavelets.

Polynomial multi-wavelets form a multiscale basis of L2([0,1]). Let us con-
sider a nested sequence of spaces

Vkn = {f ∣[2−nl ; 2−n(l+1)] ∈ Pk, l ∈ ⟦0 ; 2n − 1⟧} ,

where Pk is the set of polynomials of degree at most k. The dimension of Vkn is
2n(k + 1) and

Vk0 ⊂ Vk1 ⊂ ⋯ ⊂ Vkn ⊂ ⋯ ⊂ L2([0,1]), (28)

such that

closL2([0,1]) (
∞
⋃
n=0

Vkn) = L2([0,1]). (29)

Given an orthogonal basis {φj} of Vk0 , it is possible to obtain an orthogonal
basis {φnj,l(x)} of Vkn by dilatation and translation such that

φnj,l(x) = 2
n/2φj(2nx − l), j ∈ ⟦0 ; k⟧, l ∈ ⟦0 ; 2n − 1⟧, n ∈ N. (30)

It is always possible to �nd a space Wk
n such that

Vkn ⊕Wk
n = Vkn+1, Vkn�Wk

n, (31)

with Wk
n of dimension 2n(k + 1). As a consequence of (31), we have

Vkn = Vk0
n−1

⊕
η=0

Wk
η . (32)

Given an orthogonal basis {ψj} ofWk
0 , following (30), the piecewise polynomial

basis functions of Wk
n are {ψnj,l(x)} such that

ψnj,l(x) = 2
n/2ψj(2nx − l), j ∈ ⟦0 ; k⟧, l ∈ ⟦0 ; 2n − 1⟧. (33)

Functions φnj,l are called scaling functions while functions ψnj,l are called multi-
wavelets functions. In our case, scaling functions are Legendre polynomial
rescaled to the corresponding cell.

Once {φj} and {ψj} are known, it is then possible to build �lters h0
i,j , h

1
i,j ,

g0
i,j and g

1
i,j according to [1] such that we have a restriction operator

φi(x) =
√

2
k

∑
j=0

(h(0)
i,j φj(2x) + h

(1)
i,j φj(2x − 1)) , i ∈ ⟦0, k⟧, (34a)

ψi(x) =
√

2
k

∑
j=0

(g(0)i,j φj(2x) + g
(1)
i,j φj(2x − 1)) , i ∈ ⟦0, k⟧, (34b)
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and an interpolation operator

φi(2x) =
1√
2

k

∑
j=0

(h(0)
j,i φj(x) + g

(0)
j,i ψj(x)) , i ∈ ⟦0, k⟧, (35a)

φi(2x − 1) = 1√
2

k

∑
j=0

(h(1)
j,i φj(x) + g

(1)
j,i ψj(x)) , i ∈ ⟦0, k⟧. (35b)

Note that if you consider only polynomials of degree 0, you obtain Haar wavelets.
Starting from (31) it is possible to get the multiscale decomposition Pnf of

f at level m on scaling functions basis

Pnf(x) =
k

∑
j=0

s0
j,0φj(x) +

n−1

∑
m=0

2m−1

∑
l=0

k

∑
j=0

dmj,lψ
m
j,l(x), (36)

where coe�cients {smj,l} and {dmj,l} are obtained from a L2-projection on the
corresponding space,

snj,l =∫
2−n(l+1)

2−nl
f(x)φnj,l(x)dx, (37a)

dnj,l =∫
2−n(l+1)

2−nl
f(x)ψnj,l(x)dx. (37b)

Filters can be built for any polynomial basis. Alpert et al. [1] present their
construction for Legendre polynomial basis and Lagrange polynomial basis. In
our code we use only Legendre polynomial basis.

According to (34) � (36) it is possible to compute level m from level m + 1,
using

smi,l =
k

∑
j=0

(h(0)
i,j s

m+1
j,2l + h

(1)
i,j s

m+1
j,2l+1) , (38a)

dmi,l =
k

∑
j=0

(g(0)i,j s
m+1
j,2l + g

(1)
i,j s

m+1
j,2l+1) , (38b)

and level m + 1 from level m, using

sm+1
i,2l =

k

∑
j=0

(h(0)
j,i s

m
j,l + g

(0)
j,i d

m
j,l) , (39a)

sm+1
i,2l+1 =

k

∑
j=0

(h(1)
j,i s

m
j,l + g

(1)
j,i d

m
j,l) . (39b)

Formulae (38) � (39) can be extended to two-dimensional case using tensorial
products. Therefore space Wk

n becomes

Wk
n = {{φni,l(x)ψnj,l(y)}, {ψni,l(x)φnj,l(y)}, {ψni,l(x)ψnj,l(y)},

i, j ∈ ⟦0 ; k⟧, l ∈ ⟦0 ; 2n − 1⟧} . (40)
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levels di�erence
7 with 6 9.05942E − 14
6 with 5 7.10543E − 15
7 with 5 9.76996E − 14

Table 1: Di�erence of momentum between levels.

In order to perform restriction or projection in the two dimensional case the
restriction or projection operators are applied in the �rst direction then in the
second direction.

This means that there are two equivalent ways to consider fh(x, v), the
distribution function on a given cell, by using only coe�cients of levels m and
m + 1. The �rst way is to consider only the level m + 1

fh(x, v) = ∑
c=0,1,2,3

∑
q

φm+1
q,[c](x, v)s

m+1
q,[c]. (41)

In this case, q is the index over the two dimensional basis functions and c is
the index over the children cells. The second way is to consider the distribution
function at level m plus the details

fh(x, v) =∑
q

φmq (x, v)smq + ∑
Θ=a,b,c

∑
k

ψmk,[Θ](x, v)d
m
k,[Θ] (42)

where a, b and c respectively are the subspaces ofWk
n generated by {φni,l(x)ψnj,l(y)},

{ψni,l(x)φnj,l(y)} and {ψni,l(x)ψnj,l(y)}. The thresholding operation consists in
comparing the l2-norm of the details {dm.,[.]} to a given threshold and ignore it
where it is smaller than this threshold, that is,

if
⎛
⎝ ∑

Θ=a,b,c
∑
k

(dmk,[Θ])
2⎞
⎠

1/2

≤ ε0, then ignore details of level m, (43)

and repeat this operation until all details kept are assessed signi�cant, proceed-
ing from highest level to lowest level. This thresholding criterion is presented
for lp-norm of details in [7]; here we use only the l2-norm. Parameter ε0 and
maximum level of re�nement are chosen empirically to have a good description
of initial distribution function, with the possibility to follow details during sim-
ulation, but still big enough to have reasonable number of points and simulation
time. We refer to [7] for a discussion concerning thresholding, adaptivity and
optimality.

Multi-wavelets are built and used with respect to the L2-norm, which means
that part of the L2-norm depends on the multi-wavelet coe�cients and then the
L2-norm is not conserved when coarsening. Equations (41) and (42) also ensure
that moments of the distribution function f are conserved during coarsening up
to the degree of scaling functions, thanks to the orthogonality properties of the
multi-wavelet functions ψnj,l. This is con�rmed with numerical experiment. We

13



T 2T 1 T 1
*x i− /3 2

x i− /1 2
x i+ /1 2

v j+ /1 2

v j− /1 2

Figure 4: Transport of a 2D cell in one direction.

consider the distribution function

f(x, v) =
⎧⎪⎪⎨⎪⎪⎩

0 if v < 0,
v2√
2π

(1 + 0.05 cos(0.5x)) exp (−v
2

2
) else,

(x, v) ∈ [0,4π] × [−6,6]. (44)

For this distribution function, we consider uniform meshes with respectively 7,
6 and 5 level of re�nement and use polynomials of degree up to two for each
direction. We �rst express the distribution function on uniform mesh of level 7
and compute its �rst momentum in velocity vf(x, v), that is

∫
4π

0
∫

6

−6
vf(x, v)dv dx. (45)

We then compute the distribution function on uniform mesh of level 6 following
(38a) and compute the momentum. This means we only compute the scaling
coe�cients smi,l and eliminate the multi-wavelet coe�cients d

m
i,l. We do the same

to get the distribution function on uniform mesh of level 5 and compute the
momentum. The di�erence of momentum computed is displayed in Table 1.
This di�erence is of the magnitude of machine error which validate our code.

5. Error analysis

In this section we identify some sources of numerical error which are respon-
sible for a loss of some conservation laws. Therefore, by explaining their origin
and mechanism we could �nd a way to �x them.

5.1. Error linked to integration on transported cells

In this section we explain one of the limit and error source of our schemes.
We present it on a uniform mesh since it is su�cient to understand the source
of error and it is much easier than on non-conformal mesh.
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Let us start with the AMW-CDG method on uniform mesh and the equation

∂f

∂t
(x, v) + g(v)∂f

∂x
(x, v) = 0, (46)

where g(v) is a polynomial of degree m and m smaller than or equal to K the
degree of our Legendre polynomials. In our algorithm we then use K + 1 Gauss
points. We consider time tn.

On Fig. 4, domains T1 and T2 are bounded with black lines and domain T ∗1
in red is obtained by transporting T1 according to Sec. 3.3. Domains T1 ∩ T ∗1
and T2 ∩ T ∗1 are equivalent for the following mathematical analysis. Let us use
only T2 ∩ T ∗1 .

We start from

T ∗1 ∩ T2 =[xi−1/2 , x
∗
i−1/2] × [vj−1/2 , vj+1/2]

= ⋃
v∈[vj−1/2 ,vj+1/2 ]

[xi−1/2 ,P(v)]. (47)

with
x∗i−1/2 = P(v) = xi−1/2 + g(v)dt. (48)

Consequently, P ∈ Pm. According to the method we then must solve

∫
T ∗1 ∩T2

fnh (x∗, v)Pk1,k2(x(x∗), v)dx∗ dv =

∫
vj+1/2

vj−1/2

(∫
P(v)

xi−1/2

fnh (x∗, v)Pk1,k2(x(x∗, v), v)dx∗) dv. (49)

According to the resolution of characteristics equations (18), one has

x(x∗, v) = x∗ − g(v)dt. (50)

Here, x is a polynomial of degree one in the variable x∗ and a polynomial of
degree m in the variable v.

We proceed to the following change of variable

x∗ = a −P(v)
a − b

x + aP(v) − b
a − b

(51)

in order to integrate over rectangle (x, v) ∈ [a, b]× [vj−1/2 , vj+1/2]. Formula (47)
then becomes

∫
T ∗1 ∩T2

fnh (x∗, v)Pk1,k2(x(x∗), v)dx∗ dv =

∫
v2

v1
∫

b

a
fnh (a −P(v)

a − b
x + aP(v) − b

a − b
, v)

Pk1,k2 (x(a −P(v)
a − b

x + aP(v) − b
a − b

) , v) a −P(v)
a − b

dxdv. (52)
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We must then search the maximum degree of

fnh (a −P(v)
a − b

x + aP(v) − b
a − b

, v)Pk1,k2 (x(a −P(v)
a − b

x + aP(v) − b
a − b

) , v) a −P(v)
a − b

.

Let us write

fnh (x∗, v)Pk1,k2(x(x∗, v), v) =fnh (x∗, v)Pk1,k2(x∗ − g(v)dt, v)

=fnh (a −P(v)
a − b

x + aP(v) − b
a − b

, v)

Pk1,k2 (x(a −P(v)
a − b

x + aP(v) − b
a − b

− g(v)dt) , v) .

(53)

The distribution function fnh is a polynomial of degree K in x and in v. Then,
considering only monomials of highest degree, we obtain

((vmx)KvK)
fn
h

((vmx)KvK)
PK,K

vm

Jacobian of (51)

= x2Kv2K+2Km+m. (54)

Using K+1 Gauss points we can perform exact integration only for polynomials
of degree up to 2K+1. Consequently, according to (54), integral (52) is computed
exactly in direction x but not in direction v if m is larger than or equal to 1.
Then, as we implemented and use our AMW-CDG scheme, it does not conserve
mass.

For the AMW-SLDG method, starting from (46) and term T1 from (13), we
get

T1 =∫
Jj

⎡⎢⎢⎢⎢⎢⎢⎣

pk2(v)∫
Ii

⎛
⎜⎜
⎝
p̃k1(x̃(x))∫

x

x−g(v)dt
x∗

fnh (ξ, v)dξ
⎞
⎟⎟
⎠
dx

⎤⎥⎥⎥⎥⎥⎥⎦

dv

=∫
Ii

[p̃k1(x̃(x))∫
Jj
pk2(v) (∫

x

x−g(v)dt
fnh (ξ, v)dξ) dv ] dx.

(55)

In the second line, for a given x, the problem is equivalent to the one presented
above for AMW-CDG. This is also true for term T2 in (13). Consequently, as for
our AMW-CDG scheme, our implementation of AMW-SLDG does not conserve
mass.

In both case (AMW-CDG and AMW-SLDG) we see that an exact integration
would be a �rst step to mass conservation. An exact integration (considering a
possibly piecewise polynomial P(v)) would require to compute the equation of
the transported border. Since in our case, function g(v) is always known (it is
either v er Enh (x) depending on the direction) and a polynomial, the transported
border can always be computed. It is possible to integrate exactly polynomials
on domains with polynomial boundaries but the computation cost increases. In
addition, the fact that the boundary may be piecewise polynomial if g = Eh also
increases the complexity. However, this last point can be avoided if one consider
level of re�nement for the electric �eld Eh coarse enough.
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(a) Quadrature points on interval [a, b]. Red stars are the quadrature points. These
quadrature points give exact integration for polynomials of degree up to 3.

� ������ ��

(b) Quadrature points on interval [a, b]. Red stars are the quadrature points. Here
polynomials are independently de�ned on [a, (a + b)/2] and on [(a + b)/2, b]. The
quadrature points do not give exact integration.

Figure 5: Quadrature points on interval [a, b] when [a, b] is single segment and when it is two
segments.

Figure 6: Points for �ux computation. Blue stars correspond to the points where �ux are
computed on the big cell on the left. Red stars correspond to the points where �ux are
computed on the small cell on the right.

5.2. Error linked to �ux compensation

We perform most of our integration using quadrature formula with Gauss
points. For a one-dimensional mesh (uniform or not) and for conformal n-
dimensional mesh, n ≥ 2, this formula is exact because the quadrature points
are always adapted to each segment, as shown on Fig. 5a. In the case of non-
conformal mesh, we use a quadrature formula which is exact for given poly-
nomials. However, our distribution function is not a single polynomial on the
domain, as depicted on Fig. 5b. It is piecewise polynomial. Therefore, inte-
gration performed with Gauss quadrature does not give the exact value. This
particular case happen for the integration in direction v in equations (20) and
(26) and for the integration in direction x in equations (22) and (27).

In addition, in the case of non-conformal mesh, �uxes are not computed at
the same points for adjacent cells. This is illustrated on Fig. 6. The blue points
are quadrature points for the big cell on the left. The red points are quadrature
points for the small cell on the right. We clearly see that blue points do not
match red points. Consequently, the distribution function computed at the blue
points does not have the same value as the distribution function computed at
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the red points. Therefore there is no guaranty of �ux conservation.

5.3. Strang splitting error

The Strang splitting consists in solving the equation

∂tf =H(f) (56)

with the decomposition H = H1 + H2, where H1 and H2 can be integrated
separately. So we solve

∂tf =H1(f) +H2(f) (57)

from tn to tn+1 = tn +∆t by integrating f̃ such that

f̃(0) = fn, (58a)

∂tf̃ =H1(f̃), t ∈ [0, ∆t

2
] , (58b)

∂tf̃ =H2(f̃), t ∈ [∆t

2
,
3∆t

2
] , (58c)

∂tf̃ =H1(f̃), t ∈ [3∆t

2
,2∆t] . (58d)

Then we set fn+1 = f̃n+1.
Assuming H1 and H2 are linear operators which is almost since

H1(f) = v∂xf, (59a)

H2(f) = E(x)∂vf, (59b)

with the electric �eld E only reacting to large scales of the distribution function
f , we have order two error [22]

ε = ∆t3 ( 1

12
[H2[H2,H1]] −

1

24
[H1[H1,H2]]) (60)

where [H1,H2] = H1H2 −H2H1. Once symmetrized and applied to (59) this
yield the error for one time step

ε = ∆t3

24
(v2E”(x)∂vf − 2E(x)E′(x)∂vf − 2vE′(x)∂xf) . (61)

6. Algorithm and numerical implementation

This section is devoted to the description of our algorithm and to a few
implementation points. Our algorithm is as follows.

Step 1: initialisation. We project the distribution function f on the coarsest
level of mesh (usually level 0) and compute the details at same level. If
details are large enough, the cell is re�ned. We repeat this operation until
description of f is precise enough according to (43). The thresholding
used for re�nement is the same that will be used for coarsening on future
steps.
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(a) Initial mesh Mn. (b) Predicted mesh.

(c) Predicted mesh after
re�nement.

(d) Merged mesh Mn+1.

Figure 7: Drawing of mesh prediction.

Step 2: �rst step of Strang splitting. The �rst step of the Strang splitting is
a half time step in direction x only (from tn to tn + dt/2). Each step of
our Strang splitting can be divided into three stages.

� Prediction. We �rst predict the mesh by using a time explicit Eu-
lerian scheme to compute characteristics forward and to ensure that
the cell containing end point of characteristics are at least one level
�ner than their departure point. This prediction will enable the mesh
to follow the small structures and anticipate the creation of smaller
ones. Fig. 7 is an illustration of this process. Fig. 7a represents the
initial mesh Mn. Fig. 7b represents the mesh obtained by transport-
ing the initial meshMn. To do so we use an explicit Euler scheme to
transport the boundaries of each cell of Fig. 7a. We then make sure
that all the area described by the transported cell has the expected
level of re�nement. This process is illustrated in Fig. 8. Each cor-
ner (x, v) is transported to obtain a new corner (x + v dt, v). Then
we re�ne the mesh such that the area described by the transported
corners is at least of the same level of re�nement. Mesh of Fig. 7c is
obtained by adding one level of re�nement to mesh of Fig. 7b to an-
ticipate creation of smaller structures during the computation of the
time step. This choice of prediction is taken from [7]. While they add
a criterion to chose whether to add or not one level of re�nement,
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(a) Prediction of the transport of the grey
cell. The initial mesh is black. The con-
sidered cell is grey. Red and green arrows
show the displacement of the corner of the
cell and blue is the transported cell.

(b) Creation of the predicted mesh. In
blue is the transported cell and in black
are all the newly created cells.

Figure 8: Drawing of the transport prediction of the grey cell.

we do not have this criterion and always make the mesh one level
thinner. We refer to [7] for a discussion of accuracy and optimality
during the prediction step. Mesh Mn+1 of Fig. 7d is the merging of
initial mesh Mn (Fig. 7a) and the predicted mesh of Fig. 7c.
The prediction of the mesh is done using an independent structure
that contains the geometry but not the data. We manipulate two
trees. The one on Figs. 7a and 7d contains the distribution func-
tion while the one presented on Figs. 7b and 7c contains only the
geometry and its tree data. The mesh Mn+1 (for computation) must
be at least as locally re�ned as the initial mesh Mn, otherwise sig-
ni�cant details of the distribution function fnh would be lost during
the next computation step. The distribution function fnh known on
the mesh Mn (Fig. 7a) is projected on the mesh Mn+1 (Fig. 7d)
with all unknown thinner details set to zero. From (28) and thanks
to the merging of the predicted mesh with the initial mesh, there is
neither loss of information nor of moments conservation during the
prediction step (for moments of order lower than the degree of scaling
functions).

� Computation. The chosen numerical scheme (SLDG or CDG) is ap-
plied on the �nal mesh to update the distribution function. We solve

∂tf + ∂x(vf) = 0 (62)

between tn and tn+
1/2 , as presented in Secs. 3.2 and 3.3.

� Coarsening. We perform recursive coarsening operation according to
(43) in order to keep only the �nest signi�cant details.

Step 3: resolution of the Poisson equation. We solve the Poisson equation
using the distribution function obtained after Step 2. The �eld is always
computed on the �nest level of re�nement as its numerical cost is very
small compared to the phase space numerical cost.
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Step 4: second step of Strang splitting. The second step of Strang splitting
is a full time step in direction v only (from tn to tn+1). We solve

∂tf + ∂v(Ef) = 0. (63)

This step follows the scheme of Step 2 and uses data from Steps 2 and 3.

Step 5: third step of Strang splitting. The third and last step of Strang
splitting is identical to Step 2 (�rst step of Strang splitting) except that
it uses data from Step 4 and its result is the distribution function at time
tn+1.

The mesh is altered only at very speci�c steps. It is re�ned only during the
re�nement stage of of step 2, 4 and 5, and coarsened only during the coarsening
stage of these steps 2, 4 and 5. The mesh is �xed for the computation and the
evolution of the distribution function, and for solving the Poisson problem.

The mesh is organised as a tree structure, but unlike many tree structures we
do not concentrate data on leaf cells. In our case we remark that for computation
of data of levelm, considering or not cells of level higher thanm where they were
available had absolutely no impact on the solution. This means that coarse cells
are not a�ected by �ne details during the time integration process. Therefore,
storing the distribution function at every level according to (41) and using only
the coarsest signi�cant level (m where available or the coarsest level if level m
is not available) reduces the number of computation needed. This operation
requires to compute the distribution function on each cell of the tree at the end
of Step 2, 4 and 5 (at the end of each step the distribution function is known
only on leaves). The computational impact is signi�cant only when the mesh
becomes highly heterogeneous in terms of local density of cell.

Here is another optimisation we use. Let pk be the k-th normalised Legendre
polynomial. Then we have

∫
1

−1
pk(x)dx =

⎧⎪⎪⎨⎪⎪⎩

√
2/2 if k = 0,

0 else.
(64)

This is used in the computation of (20) � (22) to reduce the computational cost
where the integration domain includes full cells with

∫
Ii
f(x)dx =∫

Ii

K

∑
k=0

fkpk(x)dx

=f0 ∫
Ii
p0(x)dx

=f0

√
2/2.

(65)

This simpli�cation is particularly e�cient when the time step is large compared
to the size of cell.
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L1 L2 L∞

threshold ⟨h⟩ error order error order error order
0.1 4.47 2.57 - 0.401 - 0.210 -
0.01 2.09 0.0523 5.10 0.0149 4.32 0.0173 3.27
0.001 1.14 5.98e-3 4.43 1.39e-3 4.14 1.52e-3 3.60
1e-4 0.529 6.31e-4 3.89 1.46e-4 3.71 2.94e-4 3.08
1e-5 0.236 6.53e-5 3.60 1.42e-5 3.48 2.84e-5 3.03

(a) Error obtained with the AMW-SLDG scheme for polynomials of degree 2.

L1 L2 L∞

threshold ⟨h⟩ error order error order error order
0.1 4.47 0.786 - 0.179 - 0.357 -
0.01 2.43 0.0118 6.87 3.72e-3 6.33 6.81e-3 6.47
0.001 2.09 5.85e-3 6.42 1.34e-3 6.42 1.72e-3 6.99
1e-4 1.23 1.38e-3 4.92 3.03e-4 4.95 4.63e-4 5.16
1e-5 0.625 7.11e-5 4.73 1.76e-5 4.69 4.22e-5 4.59

(b) Error obtained with the AMW-SLDG scheme for polynomials of degree 3.

L1 L2 L∞

threshold ⟨h⟩ error order error order error order
0.1 4.47 2.57 - 0.401 - 0.210 -
0.01 2.09 0.0538 5.07 0.0149 4.31 0.0184 3.19
0.001 1.14 7.87e-3 4.23 1.77e-3 3.97 1.67e-3 3.54
1e-4 0.527 6.90e-4 3.85 1.45e-4 3.71 2.81e-4 3.09
1e-5 0.236 1.31e-4 3.36 2.36e-5 3.31 2.84e-5 3.03

(c) Error obtained with the AMW-CDG scheme for polynomials of degree 2.

L1 L2 L∞

threshold ⟨h⟩ error order error order error order
0.1 4.47 0.787 - 0.179 - 0.357 -
0.01 2.43 0.0118 6.87 3.72e-3 6.33 6.81e-3 6.47
0.001 2.09 5.88e-3 6.42 1.34e-3 6.42 1.72e-3 6.99
1e-4 1.24 1.45e-3 4.90 3.08e-4 4.95 4.63e-4 5.17
1e-5 0.626 1.18e-4 4.47 2.71e-5 4.49 5.57e-5 4.46

(d) Error obtained with the AMW-CDG scheme for polynomials of degree 3.

Table 2: Error for the rotation with AMW-SLDG and AMW-CDG schemes for polynomials
of degree 2 and 3.
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7. Numerical results

7.1. Linear transport: rotation

We consider the rotation problem

∂tf + v∂xf − x∂vf = 0, (x, v) ∈ [−10,10]2, (66a)

f(x, v,0) = exp (−(x − 5)2 − v2) . (66b)

The exact solution in time is

f(x, v, t) = exp (−(x ∗ cos(t) + v ∗ sin(t) − 5.)2 − (v ∗ cos(t) − x ∗ sin(t))2) .
(67)

we use ∆t = 10−5 and 1,000 time steps, which makes �nal time Tf = 10−2. Our
goal here is to check the order of convergence of the L2-error in phase space. We
perform simulations with polynomials of degree 2 and 3 as indicated in Table 2.
The maximum level of re�nement is 8 but is not reached in these simulations.
The threshold criteria is given in Table 2. For each threshold value, the average
phase-space discretisation step ⟨h⟩ is the average length of cell side over phase-
space and time, that is

⟨h⟩ = (LxLv(Nt + 1)
∑Nt

n=0C
n

)
1/2

, (68)

with Lx and Lv respectively the length of the domain in direction x and v, Nt
the number of time steps, and Cn the number of cells at time tn.

For polynomials of degree k we expect the error to be of order k + 1. We see
in Table 2 that for polynomials of degree 2 we obtain an error of order higher
than 3 (around 4.) For polynomials of degree 3, the error is also of order higher
than 4 (around 5). With more time steps (we try up to 1,400 time steps) we
observe a slow loss of the order of convergence for the error.

7.2. Burgers equation

We consider the Burgers' equation

∂tf(x, v, t) + ∂x(f(x, v, t)2)/2 = 0, (x, v) ∈ [0,2π] × [−1,1], (69a)

f(x, v,0) = 1 + sin(x). (69b)

We perform simulations with ∆t = 10−5 and 1,000 time steps for a �nal time
Tf = 10−2. The threshold criteria are given in Table 3. For each threshold
value, average size⟨h⟩ is the average length of cell side over space and time.
For this test case, we do not enforce the maximum level of re�nement. These
simulations are done either with polynomials of degree two or three, as indicated
in captions of Table 3. For polynomials of degree k, the order of the error is
expected to be k + 1. In the Table 3 we observe a convergence rate between
k +1/2 and k +1. Even if we do not always obtain the optimal convergence rate
k+1, we must point out that, in nonlinear cases, convergence rate may crucially
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L1 L2 L∞

threshold ⟨h⟩ error order error order error order
0.1 1.25 0.204 - 0.0860 - 0.0839 -
0.01 0.313 0.0105 2.14 3.80E -3 2.25 3.54E -3 2.28
0.001 0.157 1.30E -3 2.43 4.78E -4 2.50 4.65E -4 2.50
1E -4 0.0869 2.49E -4 2.51 9.00E -5 2.57 1.34E -4 2.41
1E -5 0.0412 2.40E -5 2.65 8.28E -6 2.71 1.00E -5 2.64

(a) Error obtained with the AMW-SLDG scheme for polynomials of degree 2.

L1 L2 L∞

threshold ⟨h⟩ error order error order error order
0.1 1.25 0.187 - 0.0612 - 0.0454 -
0.01 0.627 8.94E -3 4.38 2.99E -3 4.36 2.88E -3 3.98
0.001 0.313 5.26E -4 4.24 1.89E -4 4.17 2.09E -4 3.88
1E -4 0.198 1.78E -4 3.77 7.46E -5 3.64 1.09E -4 3.27
1E -5 0.157 3.28E -5 4.16 1.19E -5 4.11 1.38E -5 3.89

(b) Error obtained with the AMW-SLDG scheme for polynomials of degree 3.

L1 L2 L∞

threshold ⟨h⟩ error order error order error order
0.1 1.25 0.204 - 0.0860 - 0.0839 -
0.01 0.313 0.0105 2.14 3.80E -3 2.25 3.54E -3 2.28
0.001 0.157 1.30E -3 2.43 4.78E -4 2.50 4.65E -4 2.50
1E -4 0.0869 2.48E -4 2.52 9.00E -5 2.57 1.34E -4 2.41
1E -5 0.0412 2.30E -5 2.66 8.16E -6 2.71 1.03E -5 2.64

(c) Error obtained with the AMW-CDG scheme for polynomials of degree 2.

L1 L2 L∞

threshold ⟨h⟩ error order error order error order
0.1 1.25 0.187 - 0.0612 - 0.0454 -
0.01 0.627 8.94E -3 4.38 2.99E -3 4.36 2.88E -3 3.98
0.001 0.313 5.26E -4 4.24 1.89E -4 4.17 2.08E -4 3.88
1E -4 0.198 1.78E -4 3.77 7.46E -5 3.64 1.08E -4 3.27
1E -5 0.157 3.24E -5 4.16 1.19E -5 4.11 1.34E -5 3.91

(d) Error obtained with the AMW-CDG scheme for polynomials of degree 3.

Table 3: Error for the Burgers' equation with AMW-SLDG and AMW-CDG schemes for
polynomials of degree 2 and 3.
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(a) Initial distribution function.
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Figure 9: Initial distribution function and mesh for swirling deformation.

depend on the properties of the reconstruction operator (here multi-wavelets)
and on the geometric features of the mesh (here a two dimension non-conformal
adaptive mesh). Here, in order to understand better this behaviour, a careful
and rigorous mathematical analysis of the schemes for the Burgers equations
should be done. Nevertheless it is beyond the scope of this paper. Moreover
the nature and behaviour of the Burgers nonlinearity is quite di�erent from
the quadratic nonlinearity appearing in Vlasov-Poisson equations. Therefore,
in this paper, we do not pursue further with a �ner analysis.

7.3. Swirling deformation

We consider solving

∂tf − ∂x (g(x, v, t)f) + ∂v (g(v, x, t)f) = 0, x ∈ [−π;π], v ∈ [−π;π], (70)

with

g(x, v, t) = π cos2 (x
2
) sin(v) cos(πt

T
) , (71)

and T = 1.5. This test case is example 5.5 of [36].
The initial conditions are

f0(x, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if
√
x2 + (v − π/2)2 ≤ 0.30π and (∣x∣ ≥ π/20 or v ≥ 0.30π),

1 −
√
x2 + (v + π/2) if

√
x2 + (v + π/2) ≤ 0.30π,

1/4(1 + cos(π
√

(x + π/2)2 + v2) if
√

(x + π/2)2 + v2 ≤ 0.30π,

0 else.

The domain for this case is [−π,π]2. Final time is 1.5 and this simulation
is done using 100 time steps for a time step ∆t = 0.015. The maximum level
of re�nement is 8, level 0 being the full domain, and thresholding parameter is
ε0 = 0.01. Our polynomials are of degree up to 3 per direction.

The initial distribution function and the initial mesh are presented on Fig.
9. For convenience, oscillations at boundaries of the truncated cylinder have
been truncated on this plot. On Fig. 9b, each cross indicates a cell corner. It
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(a) Swirling at t=0.75.
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(b) Mesh at t=0.75.

(c) Swirling at t=1.10.
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(d) Mesh at t=1.10.

(e) Swirling at t=1.50.
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(f) Mesh at t=1.50.

Figure 10: Swirling deformation at various time for AMW-SLDG.

is obvious that our mesh is non-conformal, and according to equations (20)�
(22) and (26)�(27), conform mesh is not required. Although the mesh may
seem sparse, the distribution function on each cell is described using several
polynomials. For polynomials of degree up to k, there are (k + 1)2 polynomials
per cell. Consequently, in this case, the distribution function is described using
16 polynomials per cell.

Fig. 10 presents distribution function and mesh of the swirling deformation
during the deformation and at �nal time for AMW-SLDG scheme. In both case
the mesh follows very well the details of the distribution function, especially the
discontinuity of the cylinder. One can see that its sharp border matches with
high mesh re�nement along time, which is the expected behaviour. The results
of the two methods (AMW-SLDG and AMW-CDG) also look extremely similar
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Figure 11: Relative variations of numerical mass, L1 and L2-norms for swirling deformation.

during simulation and at �nal time. Because for all our test cases distribution
functions and meshes obtained with both methods always give results that can
hardly be distinguished, we only present them for one method.

One can clearly see that the �nal mesh is very di�erent from the initial mesh,
especially at the boundary of the truncated cone. Initially this part requires
many points because the distribution function is not C 1. However, the use of
a polynomial basis smooths the distribution function on each cell. After just a
few time steps, the distribution function acquires higher local regularity than it
initially had.

Since this case projects a strongly discontinuous function on a polynomial
space, the initial distribution function presents strong arti�cial oscillations and
it can hardly be considered good test case for conservation properties. Never-
theless, time evolution of numerical mass, L1-norm and L2-norm for this test
case are presented on Fig. 11 and show good conservations.

7.4. Landau damping

Landau damping is a standard test case to validate codes for Vlasov-Poisson
in two-dimensional phase-space for plasma physics. The initial distribution
function is a Gaussian function in velocity with a perturbation in space.

f0(x, v) =
(1 − α cos(x/2))√

2π
exp(−v

2

2
) , (x, v) ∈ [0,4π] × [−Lv, Lv], (72)
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Figure 12: Electric energy for weak Landau damping.

where Lv is large enough to ensure Dirichlet boundary condition. Usually Lv = 5
is su�cient. Two main values are chosen for α. First, α = 0.01 corresponds to the
linear Landau damping, also called weak Landau damping. With this small per-
turbation it is possible to get a linearised approximation on the electric energy
along time, and especially the damping rate. Secondly, α = 0.5 corresponds to
the non-linear Landau damping, also called strong Landau damping. Although
there is no analytical solution for this case, it has been heavily simulated and
there are many references to compare the damping rate in �rst stage and the
growth rate of second stage, such as [4], [37], [31] and many others. For both
linear and non-linear cases, �nal time is T = 100 with 103 time steps for a time
step ∆t = 0.1. The maximum level of re�nement is 5 for the weak Landau damp-
ing test case and 8 for the strong Landau damping one. We use polynomials
of degree up to 2 for each direction of space. Threshold is ε0 = 10−4 for weak
Landau damping, while it is ε0 = 10−2 for strong Landau damping.

For the weak Landau damping, at �nal time, the relative variation of mass
and the relative variation of L1-norm are around 2.8 × 10−7, the relative loss
of L2-norm is around 1.7 × 10−5, the relative variation of L∞-norm is almost
−0.7%, the relative loss of total energy is slightly less than 0.4% and momentum
remains between −1.5 × 10−10 and 0. Fig. 12 depicts the evolution of electric
�eld for the AMW-CDG and AMW-SLDG methods (red and green curves) and
the analytical damping (blue curve) for weak Landau damping. Here again the
two methods give very similar results. (It is possible to see a di�erence between
the AMW-CDG and AMW-SLDG methods in the long time behaviour.) The
expecting damping rate is also recovered until the details become �ner than
our thresholding criterion. On long time the electric �eld increase again. This
phenomenon is clearly due to the recurrence phenomena described in [13] and
[34]. For uniform mesh, the recurrence time is Tr = 2π/(k∆v). If we consider
the recurrence time computed using a uniform mesh with the maximum number
of cells, we have ∆v = 0.3125, which gives us a recurrence time Tr = 40.21. On
Fig. 12, we observe two recurrence phenomena. The �rst one is at time t = 38 and
the second one is around time t = 76. The numerical recurrence time Tr,num = 38
is in good agreement with the predicted one Tr = 40.21, since the relative error
is about 5.5%

Fig. 13 shows the distribution function at various time for strong Landau
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(a) Initial distribution function. (b) Distribution function at t=4.

(c) Distribution function at t=8. (d) Distribution function at t=20.

(e) Distribution function at t=50. (f) Distribution function at t=80.

Figure 13: Distribution function for strong Landau damping for the AMW-CDG scheme.
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(a) Mesh at t=4.

-4

-2

0

2

4

0 2 4 6 8 10 12

v

x

(b) Mesh at t=8.

Figure 14: Mesh for strong Landau damping for the AMW-CDG scheme.
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damping while Fig. 14 presents the mesh. These are obtained with the AMW-
CDG method. The distribution function can not be distinguished from the one
obtained with the AMW-SLDG method and meshes are extremely similar. At
time t=4 and t=8 it is clearly visible that the mesh is �ner where details of the
distribution function are more important. At large time, because �ne details are
present almost everywhere on the domain, the mesh is at its �nest level almost
everywhere for v ∈ [−4,4] and looks like a static non-uniform mesh which would
be thin for v ∈ [−4,4] and coarse outside.

Fig. 15 indicates the variation of the main diagnostics with both methods.
For this test case, the numerical mass is very well conserved but L1-norm varies
more, which is conform to the loss of positivity. None of the methods preserve
total energy but the damping rate and growing rate of electric energy match
the literature values. Even if not perfect, momentum appears to be quite well
conserved too. It will be easier to observe momentum time variation on bump-
on-tail since initial momentum is then not zero. The large increase of total
energy occurs during the �rst plasma period (about 12 time steps).

Fig. 16 displays the evolution of the number of cells and of the maximum
level of re�nement. If the maximum level is reached very fast, the number of
cells increases for a much longer time as the re�nement is local and small details
spread among the domain.

7.5. Two stream instability

We consider the initial condition

f0(x, v) =
v2

√
2π

(1 + 0.05 cos(0.5x)) exp(−v
2

2
) , (x, v) ∈ [0,4π] × [−6,6]. (73)

The �nal time is still 100 with 103 time steps for a time steps ∆t = 0.1. Maximum
level of re�nement still is 8 and our polynomial still are of degree up to 2. The
threshold is ε0 = 0.003. This initial condition and the domain for this test case
are the same as in [31].

Fig. 17 illustrates the distribution function and the mesh at di�erent times.
Those �gures are obtained using AMW-SLDG scheme but distribution function
obtained with AMW-CDG scheme can not be distinguished and meshes are very
similar. Here we can clearly see that the mesh follows details of the distribution
function during the vortex creation and on longer time.

Fig. 18 presents evolution of numerical mass, L1 and L2-norms, minimum
of the distribution function, total energy and momentum. Positivity is not
preserved, but numerical mass is well preserved since its relative variation is of
order 10−5. Relative variation of energy is at most of 0.7%, and absolute time
variation of momentum is less than 10−5 (starting from null initial momentum).
The minimum of the distribution function knows a peak to −0.0045 near t = 25
plasma period. Compared to the initial maximum of the distribution function
(about 0.31), this is a bit more than 1.5%. Although it is not presented here,
the maximum has a peak at the same time. This may be caused by Runge
phenomena where we try to describe some variations in the phase-space that
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(d) Minimum of distribution function.
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Figure 15: Relative variation of numerical mass, L1 and L2-norm and of total energy for
strong Landau damping. Variation of minimum, maximum, momentum and electric �eld for
strong Landau damping.
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Figure 16: Number of cells and level of re�nement for strong Landau damping.

have high amplitude over short time. On Fig. 18, the relative variation of
minimum is the variation of the minimum compared with the initial maximum
of the distribution function.

Fig. 19 depicts the distribution function as a function of particular energy
E(t) = v2/2 − φ(t) at �nal time with both schemes. We see that a stationary
state of BGK type has not been reached at the end of our simulation (t = 100)
since the distribution function is not a single-valued function of the energy E
(especially for small values of E). We also observe that until time t = 100
numerical dissipation is very small (see the decrease of L2-norm on Fig. 18, less
than 2%). This weak di�usion in terms of L2-norm re�ects well the power of
multi-wavelets representation in the Lebesgue space L2, because, contrary to
some usual interpolations schemes, such representation controls and minimises
the loss of L2-norm by choosing locally in an optimal way the details which
deserve to be conserved on discarded. To see the e�ect of numerical dissipation
we look at the behaviour of the solution on longer time. Using the same time
step ∆t = 0.1 and a coarser description in space (polynomials of degree two, 8
levels of re�nement, ε0 = 0.03) we perform some simulation up to t = 210. Fig. 20
shows the distribution function and its contour plot at �nal time obtained with
the AMW-SLDG scheme. The results obtained with the AMW-CDG scheme
are extremely similar. On this �gure we can see the impact of the coarsened
mesh on the smoothed distribution function. The corresponding plots of the
distribution function as a function of particular energy are on Fig. 21. At this
point we clearly have a single-valued function of the energy E. Therefore it
seems that at time t = 210, the solution has reached a stationary state of BGK
type. Moreover, beyond time t = 100 and before time t = 210 we observe greater
numerical di�usion, almost 4%, as presented on Fig. 22. Our conjecture is that
the numerical di�usion might play the part of the physical mechanism which
promotes the relaxation of the solution towards a stationary state of BGK type.
Actually we can not say if the convergence towards such stationary state of
BKG type comes from a true physical relaxation process or if it is a numerical
di�usion e�ect, because at this stage of the simulation, numerical di�usion �
in term of L2-norm � is not negligible.
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(c) Distribution function at t = 8 pp.
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(d) Mesh at t = 8 pp.

-4

-2

0

2

4

0 2 4 6 8 10 12

v

x

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(e) Distribution function at t = 20 pp.
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Figure 17: Distribution function and Mesh for two stream instability for AMW-SLDG.

33



-4

-2

0

2

4

0 2 4 6 8 10 12

v

x

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(i) Distribution function at t = 100 pp.

-4

-2

0

2

4

0 2 4 6 8 10 12

v

x

(j) Mesh at t = 100 pp.

Figure 17: Distribution function and Mesh for two stream instability for AMW-SLDG.
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Figure 18: Evolution of numerical mass, L1 and L2-norms, minimum of distribution function,
total energy and momentum for two stream instability.
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Figure 19: Distribution function as a function of particular energy at time Tf = 100.
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Figure 20: Distribution function for two stream instability with AMW-SLDG at time t = 210.
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Figure 21: Distribution function as a function of particular energy at time T = 210.
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Figure 22: Relative variation of the L2-norm for the two stream instability with ε0 = 0.03.

7.6. Bump on tail

We consider the initial condition

f0(x, v) =
(1 + 0.04 cos(0.5x))

10
√

2π
(9 exp(−v

2

2
) + 2 exp (−2(v − 4.5)2)) ,

(x, v) ∈ [0,20π] × [−9,9]. (74)

Final time is 300 with 3 × 103 time steps for a time step ∆t = 0.1. Maximum
level of re�nement is 8 and polynomial degree is 2. Threshold is ε0 = 3 × 10−3.

Fig. 23 presents the distribution function and mesh obtained with the
method AMW-SLDG. The method AMW-CDG gives extremely similar results.
Here we can see initial mesh slightly re�ned on the two beams. Along time it
follows and matches vortices during their formation, existence, and during their
merging.

Fig. 24 shows the number of cells and �nest level of computation during
simulation. During creation and existence of vortices the mesh is locally re�ned
to its maximum and the number of cells increases.

The relative variation of mass, of L1 and L2-norms and of total energy are
presented on Fig. 25. The four quantities are very well conserved compared to
some results presented in [31, 9]. Relative variations of mass and of L1-norm
show a di�erence between the two schemes, especially during the merging of
vortices.

7.7. Polar-like test cases

This part is devoted to experiment considering the following formulation of
Vlasov equation from [25] and [24]

∂tf(r, v, t) + ∂r (
v

ε
f(r, v, t)) + ∂v ((Eε(r, t) +Ξε(r, t)) f(r, v, t)) = 0, (75)

where the constant ε and �elds E and Ξ will be de�ned for each test case. Under
this formulation, the corresponding Poisson equation is

1

r
∂r(rEε(r, t)) = ρ(r, t). (76)
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Figure 23: Distribution function and Mesh for bump on tail with AMW-SLDG.
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Figure 24: Number of cells and maximum level for computation for bump on tail.

The boundary condition for equation (76) is Eε(0, t) = 0. This is necessary for
a solution to exist due to factor 1/r in the equation.

7.7.1. Focusing beam

For this case ε = 0.01, Eε is obtained by solving (76), and Ξε(r, t) = −r/ε.
The initial distribution is

f0(r, v) =
1√

2πvth
exp(− v2

2v2
th

)1[−0.75,0.75](r),

(r, v) ∈ [−1,1] × [−1.2,1.2], (77)

with vth = 0.0727518214392 and

1[a,b](r) =
⎧⎪⎪⎨⎪⎪⎩

0 if r < a or r > b,
1 else.

Final time is T = 100 with 103 time steps for a time step ∆t = 0.1. We use
polynomials of degree up to 2. Maximum level of re�nement is 8 and threshold
ε0 = 3 × 10−3.

Fig. 26 illustrates the distribution function and mesh obtained with AMW-
CDG. Method AMW-SLDG gives results that can not be distinguished. In
this test case, we can see the formation of a central vortex with two coiling
�laments. Fig. 27 presents the relative variation of numerical mass, L1 and
L2-norms. Here again the variation of mass and of L1-norm indicate that the
distribution function has some negative values.

7.7.2. Focusing channel

For this test case ε = 0.1, Eε is computed using (76) and

Ξε(r, t) = r (
−1

ε
+ cos2 ( t

ε
)) .
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Figure 25: Variation of mass, L1 and L2-norms and total energy for Bump on tail.

The initial distribution function is

f0(r, v) =
3

4vth
exp( −v

2

2v2
th

)1[−1.83271471003,1.83271471003](r), (r, v) ∈ [−3,3]2,

(78)
with vth = 0.0727518214392. This test case is detailed in [25].

Final time is T = 100 with 5 × 103 time steps for a time step ∆t = 0.02.
We use polynomials of degree up to 2. Maximum level of re�nement is 8 and
threshold is ε0 = 10−2.

Fig. 28 shows snapshots of the distribution function and mesh obtained
with AMW-SLDG. We obtain very similar result using AMW-CDG. The mesh
accurately follows the �lamentation of the distribution function.

7.8. Astrophysics test cases

In astrophysics, (1) becomes

{
∂tf(x, v, t) + ∂x(vf(x, v, t)) + ∂v(E(x, t)f(x, v, t)) = 0, x ∈ Ωx, v ∈ R,
f(x, v,0) = f0(x, v),

(79)

while (2) becomes

∆Φ(x, t) = 4π(ρ(x, t) − 1), x ∈ Ωx (80a)

E(x, t) = −∂xΦ(x, t), (80b)
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Figure 26: Distribution function and mesh for focusing beam with AMW-CDG.
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Figure 27: Relative variation of numerical mass, L1 and L2-norms for focusing beam.

Here, the �eld E is gravity �eld. Note that we still add the constant −1 in
Poisson equation for periodicity. The �rst simulation of Vlasov-Poisson for
gravitational case using discontinuous Galerkin method was done in [11].

7.8.1. Cold layer

We consider initial condition

f0(x, v) =
1

0.15
√

2π
exp(−(v − u(x))2

2 × 0.152
) , (x, v) ∈ [0,2π] × [−10,10], (81)

with
u(x) = 0.01 sin(x).

The �nal time is 40 with 2 × 103 time steps for a time step ∆t = 0.02. We
use polynomials of degree 2. The maximum level of re�nement is 8 and the
threshold is ε0 = 3 × 10−3. This test case is designed to always have cells on the
�nest level of re�nement.

Fig. 29 depicts the evolution of the distribution function and the mesh with
the initial condition and the coiling of �laments at t = 2, t = 4 and t = 6 with
the AMW-CDG scheme. Finally, our mesh becomes coarse and dissipation of
�laments at time t = 14 and t = 20 appears. Here again the distribution functions
from the two schemes (AMW-SLDG and AMW-CDG) can not be distinguished.
Periodicity is an artefact that we have introduced in our code and we can see its
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-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

v

x

(b) Initial mesh.

(c) Distribution function at t = 10.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

v

x

(d) Mesh at t = 10.

(e) Distribution function at t = 16.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

v

x

(f) Mesh at t = 16.

(g) Distribution function at t = 20.
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Figure 28: Distribution function and mesh for Focusing channel with AMW-SLDG.
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(a) Initial distribution function.
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Figure 29: Distribution function and mesh for initial conditions (81) with the AMW-CDG
scheme.
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(i) Distribution function at t=20.

-10

-5

0

5

10

0 1 2 3 4 5 6

v

x

(j) Mesh at t=20.

Figure 29: Distribution function and mesh for initial conditions (81) and during simulation
with the AMW-CDG scheme.
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Figure 30: Number of cells for initial condition (81).
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side e�ect at t = 6 on boundaries x = 0 and x = 2π, and later on the simulation.
The next test case 7.8.2 will be adapted to avoid this numerical artefact. We see
�laments that go under x = 0 or above x = 2π and appear on the other side. This
is a non-physical e�ect but a spurious result of periodicity. The �lamentation
and dissipation processes can be seen on Fig. 30 too. Filamentation occurs
between times t = 2 and t = 5 and the number of cells increases a lot during this
period. After time t = 12 dissipation becomes signi�cant, details are lost and
number of cells starts to decrease. The solution is not physical any-more.

7.8.2. Gaussian initial condition

We consider the Gaussian initial condition from Sec. 2.1.1 from [17]:

f0(x, v) = 4 exp(−(x2 + v2)
0.08

) , (x, v) ∈ [−2,2]2 (82)

with the proper normalisation to respect periodicity in Poisson equation. This
test case is designed with open boundary conditions so we adapted our domain
with their results to ensure an almost null distribution function everywhere on
boundaries.

The �nal time is T = 100 with 103 time steps for a time step ∆t = 0.1. We
use polynomials of degree up to 3. The maximum level of re�nement is 9 and
the threshold is ε0 = 3 × 10−3.

Fig. 31 displays the evolution of the distribution function and the mesh ob-
tained with the method AMW-SLDG. Results from the method AMW-CDG are
extremely similar. The simulation is performed on [−2,2]2 to enforce Dirichlet
boundary conditions, but because nothing happen outside of [−1,1], we only
present a zoom on [−1,1]. Because it is nearly impossible to distinguish �la-
ments on long time, Fig. 32 is a contour plot to highlight the very thin �laments
at �nal time. We clearly see the very thin �laments coiling without di�usion,
even thought the �laments are extremely close from each others. In this test
case the domain is large enough so that no numerical artefacts due to periodicity
occur. Fig. 33 shows the increase of number of cell as thin �laments appear and
coil.

The main diagnostics are presented on Fig. 34. Fig 34b and 34e show the
correlation between the increase of the L1-norm and the fall of the minimum.
The decrease of the L2-norm occurs at the same time. Step variation of mass
is typical of ampli�ed machine error variation.

7.8.3. Jeans instability

This test case is based on astrophysics formulation of the Vlasov equation
(79) but uses the same normalisation of the Poisson equation as plasma physics
(2). The initial condition is

f(x, v,0) =
exp (−v

2

2
)

√
2π

(1 −A cos(kx)) , (x, v) ∈ [0,2π/k] × [−Vc, Vc]. (83)
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(a) Initial distribution function.
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Figure 31: Distribution function and mesh for Gaussian initial distribution function and
evolution in astrophysics framework with the AMW-SLDG scheme.
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(i) Distribution function at t = 100.
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Figure 31: Distribution function and mesh for Gaussian initial distribution function and
evolution in astrophysics framework with the AMW-SLDG scheme.
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Figure 32: Distribution function contours at t = 100 for Gaussian initial distribution function
with the AMW-SLDG scheme.

47



0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100

N
u
m

b
e
r 

o
f 

c
e
ll
s

t

CDG
SLDG

(a) Number of cells.

5

5.5

6

6.5

7

7.5

8

8.5

9

0 20 40 60 80 100

M
a
x
im

u
m

 l
e
v
e
l

t

CDG
SLDG

(b) Maximum level.

Figure 33: Number of cells and maximum level for Gaussian initial condition.
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Figure 34: Variation of the main diagnostics for Gaussian distribution function.
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(c) Distribution function at t = 10.
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(e) Distribution function at t = 20.
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(g) Distribution function at t = 100.
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Figure 35: Distribution function and mesh for the Jeans instability with AMW-CDG scheme.
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Figure 36: Variation of the mains diagnostics for the Jeans instability.

We use the settings from [11]. We consider A = 0.01, k = 0.8 and Vc = 6. The
�nal time is Tf = 100 with 1,000 time steps, which gives ∆t = 0.1. We use
polynomials of degree 2 in each direction. The maximum level of re�nement is
8 and the threshold parameter is ε0 = 0.003.

The distribution function and the mesh obtained with the AMW-CDG scheme
are presented on Fig. 35. The results from the AMW-SLDG scheme are ex-
tremely similar. Variations of mass, L1 and L2-norms and momentum are dis-
played on Fig. 36. The two schemes (AMW-CDG and AMW-SLDG) give very
similar results. Fig. 37 depicts the distribution function as a function of the
particular energy E = v2/2 − φ(x). This �gure is very similar to Fig. 7a from
[11]. As in the two stream instability, Sec. 7.5, for small and moderate value
of the energy E, the distribution function f is not a single-valued function of
E. Then a stationary state of BGK type is not reached yet. We still observe
that numerical di�usion is very small until t = 100 (see Fig. 36c of L2-norm
evolution, the loss of relative L2-norm is less than 0.5%). In order to see the
e�ect of numerical di�usion at Tf = 100, we perform some simulations with the
threshold parameter ε0 = 0.01 and 7 levels of re�nement. The corresponding
plots of the distribution function as a function of the particular energy are pre-
sented on Fig. 38. The corresponding distribution function at time Tf = 100 is
displayed on Fig. 39. We observe on Fig. 38 that the distribution function f is
a single-valued function of the energy E. Then a stationary state of BGK type
seems to be reached. Moreover for such test-case we observe a greater numerical
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Figure 37: Distribution function as a function of particular energy for the Jeans instability
with few di�usion at time Tf = 100, with ε0 = 0.003 and 8 levels of re�nement.
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Figure 38: Distribution function as a function of particular energy for the Jeans instability
with higher di�usion at time Tf = 100 with ε0 = 0.01 and 7 levels of re�nement.
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Figure 39: Final distribution function for Jeans instability with AMW-CDG scheme, ε0 = 0.01
and 7 levels of re�nement
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Figure 40: Relative variation of the L2-norm for the Weak Jeans instability with ε0 = 0.01
and 7 levels of re�nement.

di�usion than in the �rst parameter setting (i.e. ε0 = 0.003, 8 levels of re�ne-
ment); let us see Fig. 40 where we observe a loss of relative L2-norm of 0.7%.
Therefore, as for the two stream instability (see Sec. 7.5), we may conclude the
same hypothesis about the role of numerical di�usion on the behaviour of the
solution.

7.9. Extension to the four-dimension problem

We extend the schemes to the four dimension problem. We still use direc-
tional splitting. Then the extension to four dimensions is just an addition of
one dimension steps, as presented Secs. 3.2 and 3.3. Adaptivity is achieved by
extended equations (40) to the four dimension problem.

We consider the equation

∂tf + vx∂xf − vy∂yf − x∂vxf + y∂vyf = 0 (84)

with initial condition

f0(x, y, vx, vy) = exp (−(x + 1)2 − (y − 3)2 − v2
x − v2

y)
− exp (−(x − 1)2 − (y + 3)2 − v2

x − v2
y) ,

(x, y, vx, vy) ∈ [−10,10]4. (85)

Equation (84) depicts the combination of a rotation in plan (x, vx) with angular
momentum +1 with a rotation in plan (y, vy) with angular momentum −1.

Final time of simulation is T = 2π with 200 time steps for a time step ∆t =
π/100. We use polynomials of degree at most 3. Maximum level of re�nement
is 6 and our threshold is ε0 = 10−10. The maximum level of re�nement is always
reached in this test case.

The projections presented on Figs. 41 and 42 are obtained using the formulae

Pf(x, y) = ∫
10

−10
∫

10

−10
f(x, y, vx, vy)dvx dvy (86)

with Pf(x, y) the projection on plane (x, y). The initial projection on plane
(vx, vy) is null because the two Gaussian compensate each other. Final time
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Figure 41: Initial projections.
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Figure 42: Projections at �nal time t = 2π with AMW-CDG.
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Figure 43: Variation of the main diagnostics for the four-dimensional test case.

T = 2π is supposed to give the exact same distribution function than initial
time. However, it is clear with the projection on plane (vx, vy) that we do
not have an exact numerical rotation, but still very close to the exact solution.
Fig. 42 is obtained with the AMW-CDG scheme. The AMW-SLDG scheme
gives extremely similar results. The projection en plane (vx, vy) enables to
see the integral of the di�erence between the numerical solution and the exact
solution as the integral of the exact solution on plane (vx, vy) is null.

Fig. 43 shows the evolution of mass, L1, L2 and L∞-norm the two methods.
The variation of total mass remains on range of slight ampli�cation of machine
error. Variation of L1 and L2-norms are small, less than 2% at most for the
L1-norm, and present some periodic peak. These are linked to the mesh and
derive from numerical artefacts. The total number of cells, displayed on Fig. 44,
is very stable with a small diminution at the beginning. The total number of
cells remains around 500,000 cells. If one used a uniform mesh scaled on our
�nest mesh, this would requires 16,777,216 cells. This means that we use only
3% of the computation that would be required for a uniform-mesh simulation.
Although the mass and norm variations are slightly better with the AMW-SLDG
scheme, we see that it also uses a very few more cells. Such four-dimensional
simulations show the potential of the AMW-SLDG and AMW-CDG schemes to
be used and work well in four dimensions.
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Figure 44: Number of cells in the four-dimensional test case.

8. Concluding remarks

We have implemented and tested an adaptive version of two numerical
schemes, namely the semi-Lagrangian discontinuous Galerkin scheme and the
characteristics-discontinuous Galerkin scheme. Both schemes include a mul-
tiresolution discretisation using a multi-wavelet representation. Most of the
time they give identical or extremely similar results. This observation is consis-
tent with the results of Ref. [36] and con�rm that our adaptive procedure does
not introduce a bias or break the symmetry between these two schemes. It is
an interesting and open problem to understand whether the AMW-SLDG and
AMW-CDG schemes are equivalent or not. In the a�rmative case, it is even
ambitious but crucial to show it. Both methods have proven to react very well to
multiscale decomposition and adaptive mesh. Our future works include a two-
dimensional relativistic Vlasov-Maxwell solver to compare our results with [7]
or a possible extension to a four-dimensional Vlasov-Poisson solver. A challeng-
ing problem is to perform a rigorous mathematical analysis of the AMW-SLDG
and AMW-CDG schemes to show their convergence and to obtain a priori error
estimates. Finally an e�cient parallel version of our algorithm will be a matter
of future work.
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