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The nonlinear Schrödinger equation with derivative cubic nonlinearity admits a family of solitons, which are orbitally stable in the energy space. In this work, we prove the orbital stability of multi-solitons configurations in the energy space, under suitable assumptions on the speeds and frequencies of the composing solitons. The main ingredients of the proof are modulation theory, energy coercivity and monotonicity properties.

Introduction

We consider the nonlinear Schrödinger equation with derivative nonlinearity:

iu t + u xx + i|u| 2 u x = 0. (dNLS)
The unknown function u is a complex-valued function of time t ∈ R and space x ∈ R.

The derivative nonlinear Schrödinger equation was originally introduced in Plasma Physics as a simplified model for Alfvén waves propagation, see [START_REF] Mjlhus | On the modulational instability of hydromagnetic waves parallel to the magnetic field[END_REF][START_REF] Sulem | The nonlinear Schrödinger equation[END_REF]. Since then, it has attracted a lot of attention from the mathematical community. Let us give a few examples. It was first studied using integrable methods by Kaup and Nevel [START_REF] Kaup | An exact solution for a derivative nonlinear Schrödinger equation[END_REF]. Later on, Hayashi and Ozawa [START_REF] Hayashi | The initial value problem for the derivative nonlinear Schrödinger equation in the energy space[END_REF][START_REF] Hayashi | On the derivative nonlinear Schrödinger equation[END_REF] obtained local well-posedness in the energy space H 1 (R). Local well-posedness in low regularity spaces H s (R), s 1/2 was investigated by Takaoka [START_REF] Takaoka | Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces[END_REF]. The problem of global well-posedness for small mass initial data in low regularity spaces has attracted the attention of a number of authors, see e.g. [START_REF] Colliander | Global well-posedness for Schrödinger equations with derivative[END_REF][START_REF] Colliander | A refined global well-posedness result for Schrödinger equations with derivative[END_REF][START_REF] Guo | Global well-posedness for the derivative nonlinear Schrödinger equation in H 1 2 (R)[END_REF][START_REF] Miao | Global well-posedness for Schrödinger equation with derivative in H 1 2 (R)[END_REF]. When considered on the torus, local existence in H s (T) was proved by Herr [START_REF] Herr | On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition[END_REF] for s 1/2. Results for s < 1/2 were recently obtained by Takaoka [START_REF] Takaoka | A priori estimates and weak solutions for the derivative nonlinear Schrödinger equation on torus below H 1/2[END_REF]. A probabilistic approach to local existence was initiated by Thomann and Tzvetkov [START_REF] Thomann | Gibbs measure for the periodic derivative nonlinear Schrödinger equation[END_REF]. Recently, Wu [START_REF] Wu | Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space[END_REF][START_REF] Wu | Global well-posedness on the derivative nonlinear Schrödinger equation[END_REF] proved global existence in H 1 (R) for initial data u 0 having mass M (u 0 ) = 1 2 u 0 2 L 2 less than threshold 2π. The method introduced by Wu was extend to the torus by Mosincat and Oh [START_REF] Mosincat | A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle[END_REF]. Despite the amount of studies devoted to (dNLS), existence of blowing up solutions remains a totally open problem. Global existence was recently investigated using integrability techniques by Liu, Perry and Sulem [START_REF] Liu | Global Existence for the Derivative Nonlinear Schrodinger Equation by the Method of Inverse Scattering[END_REF][START_REF] Liu | Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data[END_REF] and by Pelinovsky and Shimabukuro [START_REF] Pelinovsky | Existence of global solutions to the derivative NLS equation with the inverse scattering transform method[END_REF]. Analysis of singular profiles in a supercritical version of (dNLS) was performed by Cher, Simpson and Sulem [START_REF] Cher | Local structure of singular profiles for a Derivative Nonlinear Schrödinger Equation[END_REF].

Before presenting our results, we start with some preliminaries. Under gauge transformations, (dNLS) may take various (equivalent) forms. In particular, if

v(t, x) = exp - i 2 x -∞
|u(t, y)| 2 dy u(t, x), 

then v solves iv t + v xx + i(|v| 2 v) x = 0. (1) 
Under the form (dNLS), the derivative nonlinear Schrödinger equation is sometimes referred to as the Chen-Liu-Lee equation [START_REF] Chen | Integrability of nonlinear Hamiltonian systems by inverse scattering method[END_REF]. The form (1) might be called the Kaup-Newell equation [START_REF] Kaup | An exact solution for a derivative nonlinear Schrödinger equation[END_REF]. The form [START_REF] Bellazzini | Multi-solitary waves for the nonlinear Klein-Gordon equation[END_REF] is the Gerdzhikov-Ivanov equation [START_REF] Gerdzhikov | A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures[END_REF]. Yet another notable (but apparently not christened) form of (dNLS) is obtained setting

z(t, x) = exp i 2 x -∞
|u(t, y)| 2 dy u(t, x).

Then z solves

iz t + z xx - i 2 |z| 2 z x + i 2 z 2 zx + 3 16 |z| 4 z = 0. (3) 
The equation (3) played a central role in the papers on global well-posedness [START_REF] Wu | Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space[END_REF][START_REF] Wu | Global well-posedness on the derivative nonlinear Schrödinger equation[END_REF]. Since all these derivative nonlinear Schrödinger equations are related via gauge transformations, any result on one of the forms can a priori be transfered to the other forms. Depending on the aim, some form usually turns out to be much easier to work with than the others. In this paper, we will mostly use the form (dNLS). Interestingly, given a solution u of (dNLS) and λ > 0, then

u λ (t, x) = 1 √ λ u t λ 2 ,
x λ is also a solution of (dNLS). In particular, (dNLS) is L 2 -critical. However, its behavior widely differs from the one of its celebrated power-type counter part, the 1d quintic nonlinear Schrödinger equation. In particular, (dNLS) is not invariant by the pseudo-conformal transformation and no explicit (and in fact not at all) blow-up solution is known for (dNLS). Another main difference between (dNLS) and quintic NLS is that the former one is not invariant by a Galilean transform.

The equation (dNLS) can be written in Hamiltonian form as

iu t = E ′ (u),
where the Hamiltonian (or energy) is given by

E(u) = 1 2 u x 2 L 2 + 1 4 Im R |u| 2 ūu x dx.
At least formally, the Hamiltonian E is conserved along the flow of (dNLS). In addition, two other quantities are conserved: the mass and the momentum, defined by

M (u) = 1 2 u 2 L 2 , P (u) = 1 2 Im R uū x dx.
Note that (dNLS) is an integrable equation (see e.g. [START_REF] Kaup | An exact solution for a derivative nonlinear Schrödinger equation[END_REF]) and there exists in fact an infinity of conservation laws (see e.g. [START_REF] Tsutsumi | On solutions of the derivative nonlinear Schrödinger equation[END_REF]). However, our goal here is to study the properties of the solutions of (dNLS) with a robust method not relying on its algebraic peculiarities. Our approach may be applied to other similar non-integrable equations, e.g. the generalized derivative nonlinear Schrödinger equations considered in [START_REF] Abou Salem | Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation[END_REF][START_REF] Fukaya | Instability of solitary waves for a generalized derivative nonlinear Schrdinger equation in a borderline case[END_REF][START_REF] Liu | Focusing singularity in a derivative nonlinear Schrödinger equation[END_REF][START_REF] Liu | Stability of solitary waves for a generalized derivative nonlinear Schrödinger equation[END_REF][START_REF] Ohta | Instability of solitary waves for nonlinear Schrödinger equations of derivative type[END_REF].

As is now well-known, given real parameters ω > 0 and -2 √ ω < c 2 √ ω, there exist traveling waves solutions of (dNLS) of the form R ω,c (t, x) = e iωt φ ω,c (x -ct).

The profiles φ ω,c are unique up to phase shifts and translations (see e.g. [START_REF] Colin | Stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF]) and are given by an explicit formula (see Section 2 for details). The stability of the solitary waves of (dNLS) was considered in [START_REF] Colin | Stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF][START_REF] Guo | Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation[END_REF][START_REF] Kwon | Orbital stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF]. In particular, in [START_REF] Colin | Stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF], Colin and Ohta proved that for any (ω, c) ∈ R 2 with c 2 < 4ω, the solitary wave R ω,c is orbitally stable. The orbital stability of the lump soliton in the case c = 2 √ ω was considered very recently by Kwon and Wu in [START_REF] Kwon | Orbital stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF]. The stability theory for a more general version of (dNLS) was developed in [START_REF] Liu | Stability of solitary waves for a generalized derivative nonlinear Schrödinger equation[END_REF] by Liu, Simpson and Sulem.

Multi-solitons are solutions to (dNLS) that behave at large time like a sum of solitons. They can be proved to exist by inverse scattering transform (see [START_REF] Kaup | An exact solution for a derivative nonlinear Schrödinger equation[END_REF] for (dNLS) or [START_REF] Zakharov | Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media[END_REF] for the cubic nonlinear Schrödinger equation), using energy methods (see [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF][START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF][START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF] for the nonlinear Schrödinger equation or e.g. [START_REF] Delebecque | Multi-speed solitary waves of nonlinear Schrödinger systems: theoretical and numerical analysis[END_REF][START_REF] Ianni | Multi-speed solitary wave solutions for nonlinear Schrödinger systems[END_REF] for Schrödinger systems) or with fixed point arguments (see [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF][START_REF] Le Coz | Fast-moving finite and infinite trains of solitons for nonlinear Schrödinger equations[END_REF][START_REF] Coz | Infinite soliton and kink-soliton trains for nonlinear Schrödinger equations[END_REF] for the nonlinear Schrödinger equation).

As each individual solitary wave of (dNLS) is stable, it is reasonable to investigate the stability of a sum of solitary waves; this will be our goal in this paper. Precisely, we want to show that, under some conditions, if the initial data is close to a sum of solitons profiles, then the associated solution of (dNLS) will behave for any positive time as a sum of solitons. To our knowledge, no information was available so far on the stability of these multi-solitons configurations.

To study the stability of multi-solitons, several approaches are possible. One can work in weighted spaces and get asymptotic stability results for multi-solitons configurations [START_REF] Perelman | Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations[END_REF][START_REF] Rodnianski | Asymptotic stability of N-soliton states of NLS[END_REF]. An alternative approach, when the underlying equation is integrable, is to take advantage of the integrable structure to obtain stability (in a relatively restricted class of functions), see e.g. [START_REF] Gérard | Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation[END_REF]. Finally, one can work in the energy space, and this is what will be done in this paper. We will prove a result in the same family as the results obtained by Martel, Merle and Tsai for the Kortwegde Vries equation [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] and the twisted nonlinear Schrödinger equation [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF]. This approach was later extended to the Gross-Pitaevskii equation by Bethuel, Gravejat and Smets [START_REF] Béthuel | Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation[END_REF] and to the Landau-Lifshitz equation by de Laire and Gravejat [START_REF] De Laire | Stability in the energy space for chains of solitons of the Landau-Lifshitz equation[END_REF]. Instability results are available in [START_REF] Combet | Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension[END_REF][START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF].

Our main result is the following.

Theorem 1.1. Let N ∈ N. For j = 1, . . . , N let ω j ∈ (0, ∞), c j ∈ (-2 √ ω j , 2 √ ω j ), x j ∈ R and θ j ∈ R. Let (φ j ) = (φ ωj ,cj
) be the corresponding solitary wave profiles given by the explicit formula [START_REF] Chen | Integrability of nonlinear Hamiltonian systems by inverse scattering method[END_REF]. For j = 2, . . . , N , let

σ j = 2 ω j -ω j-1 c j -c j-1 .
Assume that for j = 2, . . . , N we have

σ j > 0 and c j-1 < σ j < c j . (4) 
Then there exist α > 0, L 0 > 0, A 0 > 0 and δ 0 > 0 such that for any u 0 ∈ H 1 (R), L > L 0 and 0 < δ < δ 0 , the following property is satisfied. If

u 0 - N j=1 e iθj φ j (• -x j ) H 1 δ
and if for all j = 1, . . . , N -1,

x j+1 -x j > L,
the solution u of (dNLS) with u(0) = u 0 is globally defined in H 1 (R) for t 0, and there exist functions x1 (t), . . . , xN (t) ∈ R, and θ1 (t), . . . , θN (t) ∈ R, such that for all t 0,

u(t) - N j=1 e i θj (t) φ j (• -xj (t)) H 1 A 0 δ + e -αL .
Remark 1.2. We can further describe the behavior of the functions θj and xj , see Proposition 4.1. In particular, they are of class C 1 and verify the dynamical laws

∂ t xj ∼ c j , ∂ t θj ∼ ω j .
Hence the behavior of e i θj (t) φ j (• -xj (t)) is close to the one of R ωj ,cj (t).

Remark 1.3. As we are trying to prove a stability result for the multi-solitons configuration, it natural to assume that we start with well ordered solitary waves, i.e.

c 1 < c 2 < • • • < c N , and 
x 1 < x 2 < • • • < x N .
This prevents the crossing of solitary waves at a later time.

As in [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF], the stronger condition (4) that we impose on the parameters of the waves is needed for technical purposes.

A consequence of (4) is that

ω 1 < ω 2 < • • • < ω N .
In other words, the larger the amplitude is, the faster the soliton should travel. This is somehow reminiscent from what happens in the context of the Kortewegde Vries (KdV) equation, where speed and amplitude are controlled by the same parameter [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF]. Another similitude with the KdV equation, consequence of (4), is that our solitons should all be traveling to the right (i.e. with positive speeds), except for the first one, which is allowed to travel to the left (i.e. with negative speed).

The speed/frequency ratio condition is different from the equivalent one in [37, condition (A3)]. In particular, [37, condition (A3)] allows for the solitary waves to have equal frequencies, in which case the only condition for the speeds is to be strictly increasing. This is ruled out by [START_REF] Brézis | A relation between pointwise convergence of functions and convergence of functionals[END_REF].

An example of a range of parameters verifying ( 4) is given by

ω j = j 2 + 1, c j = 2j, j = 1, . . . , N.
It is not hard to construct many other examples.

Remark 1.4. The constant α in Theorem 1.1 can be made explicit: α = 1 32 ω ⋆ , where ω ⋆ is the minimal decay rate of the solitons defined in [START_REF] Gérard | Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation[END_REF].

Remark 1.5. Our theorem does not cover the case where one of the solitons is a lump soliton, i.e. when c j = 2 √ ω j for some j = 1, . . . , N . Indeed, lump solitons are significantly different from the other solitons (algebraic decay instead of exponential decay, weaker stability, etc.), which prevent to include them in our analysis.

Remark 1.6. The main technical differences between (NLS) and (dNLS) are that the later one is not any more Galilean invariant and there is no scaling between solitons. Nevertheless the proof of our result is largely inspired by the proof of [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF]Theorem 1]. As far as possible, we have tried to keep the same (or similar) notations.

Our strategy for the proof of Theorem 1.1 is, as in [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF][START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF], the following. We use a bootstrap argument, which goes as follows. Assume that an initial data u 0 is located close enough to a sum of soliton profiles, and that the associated solution u to (dNLS) stays until some time T in a neighborhood of size ε of a sum of (modulated) solitons profiles. The bootstrap argument tells us that, in fact, u stays until the same time T in a neighborhood of size ε/2 of a sum of (modulated) solitons profiles. This allows us to extend the time T up to ∞ and proves the stability of the configuration. To obtain the bootstrap result, we rely on several ingredients. First, we need a modulation result around the soliton profiles. As usual, modulation is obtained via the Implicit Function Theorem, with here the particularity that we rely on explicit calculations to prove invertibility of the Jacobian. This is a specific feature of (dNLS) which allows us to modulate in a more natural way than in [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF]. The second ingredient is a coercivity property for a linearized action functional. The functional is based on the linearized action around each soliton, which we prove to be coercive (up to some orthogonality conditions). The third ingredient is a series of monotonicity properties for suitably localized mass/momentum functionals. These monotonicity properties are involved in a crucial way in the control of the modulation parameters.

The rest of the paper is organized as follows. In Section 2 we review and develop the stability theory for a single solitary wave. In particular, we obtain a coercivity property for the linearized action functional around a single soliton using variational characterizations. In Section 3 we state the bootstrap argument and prove Theorem 1.1. Section 4 is devoted to the modulation result. In section 5 we derive the monotonicity properties of localized mass/momentum functionals. Section 6 deals with the construction of the action-like linearized functional for the sum of solitons and its coercivity properties. In Section 7 we control the modulation parameters using the monotonicity properties. Finally, in Section 8 we prove the bootstrap result. The Appendix A contains explicit formulas that we use at several occasions in the paper.

Notation. The space L 2 (R) is considered as a real Hilbert space with the scalar product

(u, v) 2 = Re R uvdx.
Whenever an inequality is true up to a positive constant, we use the notation or . Throughout the paper, the letter C will denote various positive constants whose exact value may vary from line to line but is of no importance in the analysis.

Solitary Waves and Stability Theory

We will need for the study of the stability of a sum of solitary waves some tools coming from the stability theory of a single solitary wave. These tools are however not immediately available in the literature and we need to introduce them ourselves in this section. We believe that the results presented in this section are of independent interest and may be useful for further studies of (dNLS).

Recall that given parameters ω > 0 and |c| < 2 √ ω, there exist traveling waves solutions of (dNLS) of the form

R ω,c (t, x) = e iωt φ ω,c (x -ct).
The profile φ ω,c is unique up to phase shifts and translations (see e.g. [START_REF] Colin | Stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF]) and is given by the explicit formula

φ ω,c (x) = ϕ ω,c (x) exp c 2 ix - i 4 x -∞ |ϕ ω,c (ξ)| 2 dξ (5) 
where

ϕ ω,c (x) = √ ω 4ω -c 2 cosh x 4ω -c 2 - c 2 √ ω -1 2 . ( 6 
)
The profile is also the unique (up to phase shifts and translations) solution to the elliptic ordinary differential equation

-φ xx -i|φ| 2 φ x + ωφ + icφ x = 0, (7) 
and it is also a critical point of the action functional S,

S = S ω,c = E + ωM + cP.
For future reference, note that the function ϕ ω,c verifies the equation

-ϕ xx + ω - c 2 4 ϕ - 1 2 Im (ϕ φx ) ϕ + c 2 |ϕ| 2 ϕ - 3 16 |ϕ| 4 ϕ = 0, or, since ϕ ω,c is real, -ϕ xx + ω - c 2 4 ϕ + c 2 |ϕ| 2 ϕ - 3 16 |ϕ| 4 ϕ = 0. ( 8 
)
From the explicit formula (5), we see that φ ω,c is exponentially decaying. Precisely, for any α < 1 we have

|∂ x φ ω,c (x)| + |φ ω,c (x)| C α e -α ω-c 2 4 |x| . (9) 
Note that this decay is not affected by a Gauge transform or a Galilean transform.

The main result of this section is the following coercivity property.

Proposition 2.1 (Coercivity for one solitary wave). For any ω, c ∈ R with 4ω > c 2 , there exists µ ∈ R such that for any ε ∈ H 1 (R) verifying the orthogonality conditions

(ε, iφ ω,c ) 2 = (ε, ∂ x φ ω,c ) 2 = (ε, φ ω,c + iµ∂ x φ ω,c ) 2 = 0,
we have

H ω,c (ε) := S ′′ ω,c (φ ω,c )ε, ε ε 2 H 1 . Remark 2.2. If c < 0, then we can choose µ = 0.
Remark 2.3. Following the classical approach by Weinstein [START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF] (see e.g. [START_REF] Coz | Standing waves in nonlinear Schrödinger equations[END_REF] for an introduction), one obtains as a corollary of Proposition 2.1 the orbital stability of solitary waves.

Notation. Many quantities defined in this paper will depend on ω and c. For the sake of clarity in notation, we shall very often drop the subscript ω, c and dependency in ω and c will be only understood.

For future reference, we give the explicit expression of S ′′ (φ)ε:

S ′′ (φ)ε = -∂ xx ε -i|φ| 2 ∂ x ε -2iRe(φε)φ x + ωε + ic∂ x ε, (10) 
and the explicit expression of H:

H(ε) = ε x 2 L 2 + Im R |φ| 2 εε x dx + 2 R Re(φε)Im(φ x ε)dx + ω ε 2 L 2 + cIm R εε x dx.
The proof of Proposition 2.1 makes use of the following minimization result. Define for v ∈ H 1 (R) the Nehari functional corresponding to [START_REF] Colin | Stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF] by

I(v) = I ω,c (v) = v x 2 L 2 + Im R |v| 2 vv x dx + ω v 2 L 2 + cIm R vv x dx.
Remark that I(v) = ∂ ∂t S(tv) |t=0 . Define the minimum of the action S on the Nehari manifold by

m N = inf{S(v); v ∈ H 1 (R) \ {0}, I(v) = 0}
and let the set of minimizers be denoted by

G N := {v ∈ H 1 (R) \ {0}; I(v) = 0, S(v) = m N }.
Proposition 2.4. Let ω, c ∈ R be such that 4ω > c 2 . Then m N > 0 and φ ω,c is up to phase shift and translation the unique minimizer for m N , that is

G N = {e iθ φ ω,c (x -y); θ, y ∈ R}.
Proposition 2.4 was first obtained by Colin and Ohta [7, Lemma 10]. For the sake of completeness, we reproduce here the proof.

We will make use of the following two classical lemmas (see [START_REF] Brézis | A relation between pointwise convergence of functions and convergence of functionals[END_REF][START_REF] Fröhlich | Stability of Coulomb systems with magnetic fields. I. The one-electron atom[END_REF][START_REF] Lieb | On the lowest eigenvalue of the Laplacian for the intersection of two domains[END_REF]).

Lemma 2.5. Let (v n ) be a bounded sequence in H 1 (R). Assume that there exists p ∈ (2, ∞) such that lim sup

n→∞ v n L p > 0.
Then there exist

(y n ) ⊂ R and v ∞ ∈ H 1 (R) \ {0} such that (v n (• -y n )) has a convergent subsequence to v ∞ weakly in H 1 (R). Lemma 2.6. Let 2 p < ∞ and (v n ) be a bounded sequence in L p (R). Assume that v n → v ∞ a.e. in R. Then v n p L p -v n -v ∞ p L p -v ∞ p L p → 0, as n → ∞. Proof of Proposition 2.4. Step 1. We show that m N > 0. Let v ∈ H 1 (R) \ {0} be such that I(v) = 0. Introduce the notation L(v) = L ω,c (v) = v x 2 L 2 + ω v 2 L 2 + cIm R vv x dx
and remark that

L(v) = v x - ic 2 v 2 L 2 + ω - c 2 4 v 2 L 2 .
Using I(v) = 0, we have

v 2 H 1 v x - ic 2 v 2 L 2 + ω - c 2 4 v 2 L 2 = -Im R |v| 2 vv x dx v 4 H 1 .
Therefore there exists δ > 0 independant of v such that

v 2 H 1 > δ.
In addition, we have

S(v) = S(v) - 1 4 I(v) = 1 4 L(v) v 2 H 1 > δ > 0. Therefore m N > 0.
Step 2. We show that

m N = 1 4 inf{L(v); v ∈ H 1 (R) \ {0}, I(v) 0}.
Indeed, let v ∈ H 1 (R) \ {0} be such that I(v) < 0. Then there exists λ ∈ (0, 1) such that I(λv) = 0. Moreover,

m N S(λv) = S(λv) - 1 4 I(λv) = 1 4 L(λv) = λ 2 4 L(v) < 1 4 L(v).
Step 3. We show convergence of the minimizing sequences.

Let (v n ) ⊂ H 1 (R) \ {0} be such that I(v n ) = 0 for all n ∈ N and S(v n ) → m N as n → ∞.
In the sequel, all statements will be true up to the extraction of a subsequence. The sequence (v n ) is bounded from above and below in H 1 (R). Moreover, we claim that lim sup

n→∞ v n L 6 > 0.
Indeed, assume by contradiction that lim n→∞ v n L 6 = 0. Then from I(v n ) = 0 and by Cauchy-Schwartz inequality, we have

v n 2 H 1 L(v n ) = -Im R |v n | 2 vn ∂ x v n dx v n 3 L 6 ∂ x v n L 2 → 0.
It is a contradiction with the boundedness from below of (v n ) in H 1 (R). Therefore lim sup n→∞ v n L 6 > 0 and we can apply Lemma 2.5 to obtain the existence of

v ∞ ∈ H 1 (R) \ {0} and (y n ) ⊂ R such that v n (• -y n ) ⇀ v ∞ weakly in H 1 (R), v n (• -y n ) → v ∞ a.e.
From now on, we replace v n by v n (• -y n ). By weak convergence we have

L(v n ) -L(v n -v ∞ ) -L(v ∞ ) → 0. ( 11 
)
By Lemma 2.6 we have

v n 4 L 4 -v n -v ∞ 4 L 4 -v ∞ 4 L 4 → 0, (12) 
v n 6 L 6 -v n -v ∞ 6 L 6 -v ∞ 6 L 6 → 0. ( 13 
)
Remark that for any v ∈ H 1 (R) we can rewrite I(v) as

I(v) = v x - ic 2 v + i 2 |v| 2 v 2 L 2 + ω - c 2 4 v 2 L 2 + c 2 v 4 L 4 - 1 4 v 6 L 6 . (14) 
Introduce the functions w n and w ∞ defined by

w n = ∂ x v n - ic 2 v n + i 2 |v n | 2 v n , w ∞ = ∂ x v ∞ - ic 2 v ∞ + i 2 |v ∞ | 2 v ∞ .
Then w n ⇀ w ∞ in L 2 (R) and we have 12),( 13) and ( 14), this gives

w n 2 L 2 -w n -w ∞ 2 L 2 -w ∞ 2 L 2 → 0. Combined with (
I(v n ) -I(v n -v ∞ ) -I(v ∞ ) → 0. ( 15 
)
Step 4. We show that the minimal element v ∞ verifies I(v ∞ ) 0. Assume by contradiction that I(v ∞ ) > 0. From [START_REF] Fröhlich | Stability of Coulomb systems with magnetic fields. I. The one-electron atom[END_REF] and since I(v n ) = 0, we have [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF], we obtain

lim n→∞ I(v n -v ∞ ) = -I(v ∞ ) < 0. Therefore, by Step 2, L(v n -v ∞ ) > 4m N . Combining this with lim n→∞ L(v n ) = 4m N and
L(v ∞ ) = lim n→∞ (L(v n ) -L(v n -v ∞ )) 0.
However v ∞ = 0 and thus L(v ∞ ) > 0, which is a contradiction. Therefore I(v ∞ ) 0.

Step 5. We prove that v ∞ achieves the minimum for m N . We have

4m N L(v ∞ ) lim n→∞ L(v n ) = 4m N . Therefore L(v ∞ ) = lim n→∞ L(v n ) and thus v n → v ∞ strongly in H 1 (R). This implies I(v ∞ ) = 0 and therefore S(v ∞ ) = m N .
Step 6. Conclusion. The last step of the proof consists in proving that v ∞ is in fact a solution of [START_REF] Colin | Stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF]. As v ∞ is a minimizer for m N , there exists a Lagrange

multiplier λ ∈ R such that S ′ (v ∞ ) = λI ′ (v ∞ ). Therefore 0 = I(v ∞ ) = S ′ (v ∞ ), v ∞ = λ I ′ (v ∞ ), v ∞ . Since I ′ (v ∞ ), v ∞ = 2L(v ∞ ) + 4Im |v ∞ | 2 v∞ ∂ x v ∞ dx = -2L(v ∞ ) < 0,
we necessarily have λ = 0. This implies that v ∞ is a solution of [START_REF] Colin | Stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF]. Since by uniqueness any solution of ( 7) can be written for some θ, y ∈ R as

v ∞ = e iθ φ ω,c (• -y),
this concludes the proof of Proposition 2.4.

With Proposition 2.4 in hand, we can now proceed to the proof of Proposition 2.1.

Proof of Proposition 2.1. For simplicity in notation we drop the subscript ω, c in φ ω,c and simply write φ instead. We shall follow more or less the scheme of proof already used in [START_REF] Bellazzini | Multi-solitary waves for the nonlinear Klein-Gordon equation[END_REF]. We start by rewriting S ′′ (φ) (see [START_REF] Combet | Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension[END_REF]) as a two by two matrix operator acting on (Re(ε), Im(ε)):

S ′′ (φ) = -∂ xx + ω + 2Re(φ)Im(φ x ) 2Im(φ)Im(φ x ) + |φ| 2 ∂ x -c∂ x -2Re(φ)Re(φ x ) -|φ| 2 ∂ x + c∂ x -∂ xx + ω -2Im(φ)Re(φ x ) .
Step 1. Global spectral picture. Since φ is exponentially localized, S ′′ (φ) can be considered as compact perturbation of

-∂ xx + ω -c∂ x c∂ x -∂ xx + ω .
Therefore its essential spectrum is [ω -c 2 4 , ∞) and by Weyl's Theorem its spectrum in (-∞, ω -c 2 4 ) consists of isolated eigenvalues. Due to the variational characterization Proposition 2.4, S ′′ (φ) admits at most one negative eigenvalue. Using that φ satisfies to the Nehari constraint I(φ) = 0, we have

S ′′ (φ)φ, φ = 2Im R |φ| 2 φφ x dx = -2L(φ) < 0.
This implies that the operator S ′′ (φ) has exactly one negative eigenvalue.

Step 2. Non-degeneracy of the kernel. We claim that ker(S ′′ (φ)) = span{iφ,

φ x }. Write ε = exp i c 2 x - 1 4 x -∞ |φ| 2 dy k - iϕ 2 x -∞ ϕRe(k)dy ,
where ϕ = ϕ ω,c is the real part of φ given explicitly in formula [START_REF] Cher | Local structure of singular profiles for a Derivative Nonlinear Schrödinger Equation[END_REF]. Then

S ′′ (φ)ε = -k xx + ω - c 2 4 k + i 1 2 ϕϕ x Im(k) -i 1 2 ϕ 2 Im(k x ) + c 2 ϕ 2 k + cϕ 2 Re(k) - 3 16 ϕ 4 k - 12 16 ϕ 4 Re(k).
Separating in real and imaginary part, we obtain

S ′′ (φ)ε = L + Re(k) + iL -Im(k),
where

L + = -∂ xx + ω - c 2 4 + 3c 2 ϕ 2 - 15 16 ϕ 4 , L -= -∂ xx + ω - c 2 4 + c 2 ϕ 2 - 3 16 ϕ 4 + ϕϕ x 2 - ϕ 2 2 ∂ x .
Hence proving non-degeneracy for S ′′ (φ) amounts to proving non-degeneracy of L + and L -. That is, we want to prove that

ker(L + ) = span{ϕ x }, ker(L -) = span{ϕ}. Since ϕ satisfies (8), it is clear that L -ϕ = 0. Let v ∈ H 2 (R) \ {0} be such that L -v = 0.
Consider the Wronskian of ϕ and v:

W = ϕ x v -ϕv x .
It verifies the equation

W ′ = - ϕ 2 2 W
and therefore it is of the form

W (x) = Ce -1 2 x 0 ϕ 2 (y)dy . Since ϕ, v ∈ H 2 (R), we have lim x→±∞ ϕ(x) = lim x→±∞ ϕ x (x) = lim x→±∞ v(x) = lim x→±∞ v x (x) = 0. Therefore, lim x→±∞ W (x) = 0,
which is possible only if W ≡ 0. Therefore v ∈ span{ϕ} and this proves nondegeneracy of L -. The non-degeneracy of L + follows from similar arguments.

Step 3. Construction of a negative direction. Differentiating [START_REF] Colin | Stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF] with respect to ω and c, we observe that

S ′′ (φ)∂ ω φ = -φ, S ′′ (φ)∂ c φ = -iφ x .
Let µ ∈ R to be chosen later and define

ψ = ∂ ω φ + µ∂ c φ.
We have

S ′′ (φ)ψ, ψ = -φ, ∂ ω φ -µ φ, ∂ c φ -µ iφ x , ∂ ω φ -µ 2 iφ x , ∂ c φ .
Moreover, using (70)-(72), we get

φ, ∂ ω φ = ∂ ∂ω M (φ ω,c ) = -c ω √ 4ω -c 2 , φ, ∂ c φ = ∂ ∂c M (φ ω,c ) = 2 √ 4ω -c 2 , iφ x , ∂ ω φ = ∂ ∂ω P (φ ω,c ) = 2 √ 4ω -c 2 , iφ x , ∂ c φ = ∂ ∂c P (φ ω,c ) = -c √ 4ω -c 2 .
This gives

S ′′ (φ)ψ, ψ = c ω -4µ + cµ 2 1 √ 4ω -c 2 . ( 16 
)
Therefore, since 4ω -c 2 > 0, there always exists µ such that

S ′′ (φ)ψ, ψ < 0.
Let such a µ be fixed now. If c < 0, we can choose µ = 0. If c = 0, we can choose µ = 1 and if c > 0 we can choose µ = 2 c . Step 4. Positivity. Let us now denote by -λ and ξ the negative eigenvalue of S ′′ (φ) and its corresponding normalized eigenvector, i.e.

S ′′ (φ)ξ = -λξ, ξ L 2 = 1.
We write the decomposition of ψ along the spectrum of S ′′ (φ):

ψ = αξ + ζ + η, with α ∈ R, α = 0, ζ ∈ ker(S ′′ (φ)
) and η in the positive eigenspace of S ′′ (φ). In particular, we have

S ′′ (φ)η, η η 2 L 2 . Take ε ∈ H 1 (R) \ {0} such that the following orthogonality conditions hold (ε, iφ) 2 = (ε, ∂ x φ) 2 = (ε, φ + iµφ x ) 2 = 0.
We also write the decomposition of ε along the spectrum of S ′′ (φ):

ε = βξ + ρ, with ρ in the positive eigenspace of S ′′ (φ). Since -φ -iµφ x = S ′′ (φ)ψ = -αλξ + S ′′ (φ)η, we have 0 = -(φ + iµφ x , ε) 2 = S ′′ (φ)ψ, ε = -αβλ + S ′′ (φ)η, ρ , thus S ′′ (φ)η, ρ = αβλ. From Cauchy-Schwartz inequality, we have (αβλ) 2 = S ′′ (φ)η, ρ 2 S ′′ (φ)η, η S ′′ (φ)ρ, ρ .
In addition, since S ′′ (φ)ψ, ψ < 0, we have

S ′′ (φ)η, η < α 2 λ.
Therefore,

S ′′ (φ)ε, ε = -β 2 λ + S ′′ (φ)ρ, ρ -β 2 λ + (αβλ) 2 S ′′ (φ)η, η > -β 2 λ + (αβλ) 2 α 2 λ = 0.
Step 5. Coercivity. To obtain the desired coercivity property, we argue by contradiction. Let ε n be such that ε n H 1 = 1 and

lim n→∞ S ′′ (φ)ε n , ε n = 0. By boundedness, there exists ε ∞ ∈ H 1 (R) such that ε n ⇀ ε ∞ weakly in H 1 (R).
On one hand, by weak convergence, ε ∞ verifies the orthogonality conditions

(ε ∞ , iφ ω,c ) 2 = (ε ∞ , ∂ x φ ω,c ) 2 = (ε ∞ , φ ω,c + iµφ x ) 2 = 0.
In particular, if ε ∞ ≡ 0, then, by Step 4, we have

S ′′ (φ)ε ∞ , ε ∞ > 0.
On the other hand, we remark that S ′′ (φ)ε, ε = H(ε) can be written

H(ε) = ε x -i c 2 ε 2 L 2 + ω - c 2 4 ε 2 L 2 + Im R |φ| 2 εε x dx + 2 R Re(φε)Im(φ x ε)dx.
By weak convergence of ε n , exponential localization of φ and φ x and compactness of the injection of H 1 into L 2 for bounded domain, we have

S ′′ (φ)ε ∞ , ε ∞ lim n→∞ S ′′ (φ)ε n , ε n = 0.
Therefore we must have ε ∞ = 0. Since ε n H 1 = 1, there exists δ > 0 such that

∂ x ε n -i c 2 ε n 2 L 2 + ω - c 2 4 ε n 2 L 2 > δ.
Moreover, since lim n→∞ S ′′ (φ)ε n , ε n = 0, we have

Im R |φ| 2 ε ∞ (ε ∞ ) x dx + 2 R Re(φε ∞ )Im( φx ε ∞ )dx < -δ < 0.
However, it is a contradiction with ε ∞ = 0. Hence the coercivity result Proposition 2.1 holds.

The Bootstrap Argument

This section is devoted to the proof of Theorem 1.1 using a bootstrap argument which will be proved later.

Let

c 1 < • • • < c N and 0 < ω 1 < • • • < ω N be
such that c 2 j < 4ω j for j = 1, . . . , N and the speed-frequency ratio assumption (4) is verified. Let (φ j ) = (φ ωj ,cj ) be the corresponding solitons profiles. We define the minimal decay rate of the profiles by

ω ⋆ = min    ω j - c 2 j 4 ; j = 1, . . . , N    . ( 17 
)
Define also the minimal relative speed c ⋆ by

c ⋆ = min {|c j -c k |; j, k = 1, . . . , N, j = k} . (18) 
Given A 0 , L, δ > 0, define a tubular neighborhood of the N -soliton profiles by

V(δ, L, A 0 ) =    u ∈ H 1 (R); inf xj>xj-1+L θj ∈R u - N j=1 e iθj φ j (• -x j ) H 1 < A 0 δ + e -1 32 ω⋆L    .
Theorem 1.1 is a straightforward consequence of the following bootstrap result.

Proposition 3.1 (Bootstrap).

There exist A 0 > 1, fixed, and L 0 > 0 and δ 0 > 0 such that for all L > L 0 , 0 < δ < δ 0 the following property is satisfied.

If u 0 ∈ H 1 (R) verifies u 0 ∈ V(δ, L, 1), and if t ⋆ > 0 is such that for all t ∈ [0, t ⋆ ] the solution u of (dNLS) with u(0) = u 0 verifies u(t) ∈ V(δ, L, A 0 ), then for all t ∈ [0, t ⋆ ] we have u(t) ∈ V δ, L, A 0 2 .
Being performing the proof of Proposition 3.1, let us indicate how it implies Theorem 1.1.

Proof of Theorem 1.1. Since u 0 ∈ V(δ, L, 1), and u is continuous in H 1 (R), there exists a maximal time t ⋆ ∈ (0, ∞] such that for all t ∈ [0, t ⋆ ) we have

u(t) ∈ V(δ, L, A 0 ).
Arguing by contradiction, we assume that t ⋆ < ∞. By Proposition 3.1, for all t ∈ [0, t ⋆ ) we have

u(t) ∈ V δ, L, A 0 2 .
By continuity of u in H 1 (R), there must exist t ⋆⋆ > t ⋆ such that for all t ∈ [0, t ⋆⋆ ) we have u(t) ∈ V(δ, L, A 0 ). This however contradicts the maximality of t ⋆ . Hence t ⋆ = ∞. This concludes the proof.

The rest of this paper is devoted to the proof of Proposition 3.1. From now on, we assume that we are given

A 0 > 1, L > L 0 = L 0 (A 0 ) > 0 and 0 < δ < δ 0 = δ 0 (A 0 ) such that u 0 ∈ V(δ, L, 1)
, and there exists t ⋆ > 0 such that for all t ∈ [0, t ⋆ ] the solution u of (dNLS) with u(0) = u 0 verifies u(t) ∈ V(δ, L, A 0 ). In the sequel, we shall always assume t ∈ [0, t ⋆ ].

Modulation

We first explain how to decompose u close to the sum of solitons. Roughly speaking, we project u on the manifold of the sum of soliton profiles modulated in phase, speed, space and scaling. Since we impose the modulated speed and scaling to have the same ratio as the original speed and scaling, we in fact modulate on a family of 3N parameters. Proposition 4.1 (Modulation). For δ and 1/L small enough, the following property is verified. For j = 1, . . . , N there exist (unique)

C 1 -functions θj : [0, t ⋆ ] → R, ωj : [0, t ⋆ ] → (0, ∞), xj : [0, t ⋆ ] → R, cj : [0, t ⋆ ] → R
such that if we define modulated solitons Rj and ε by

Rj (t) = e i θ(t) φ ωj (t),cj(t) (• -xj (t)), ε(t) = u(t) - N j=1 Rj (t),
then ε satisfies for all t ∈ [0, t ⋆ ] the orthogonality conditions (the constants µ j are given by Proposition 2.1)

ε, i Rj 2 = ε, ∂ x Rj 2 = ε, Rj + µ j i∂ x Rj 2 = 0, j = 1, . . . , N. (19) 
The scaling and speed parameters verify for all t ∈ [0, t ⋆ ] and for any j = 1, . . . , N the relationship

cj (t) -c j = µ j (ω j (t) -ω j ). ( 20 
)
Moreover, there exists C > 0 such that for all t ∈ [0, t ⋆ ] we have

ε(t) H 1 + N j=1 (|ω j (t) -ω j | + |c j (t) -c j |) CA 0 δ + e -1 4 ω⋆L , (21) 
xj+1 (t) -xj (t) > L 2 , for j = 1, . . . , N -1, ( 22 
)
and the derivatives in time verify

N j=1 |∂ t cj | + |∂ t ωj | + ∂ t θj -ωj + |∂ t xj -cj | C ε(t) H 1 + Ce -1 4 ω⋆L . (23) 
Finally, at t = 0 the estimate does not depend on A 0 and we have

ε(0) H 1 + N j=1 (|ω j (0) -ω j | + |c j (0) -c j |) C δ + e -1 4 ω⋆L . ( 24 
)
Remark 4.2. We modulate here in a different way as in [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF]. First, we (artificially) modulate also in speed, whereas in [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF] modulation was only on phase, position and scaling. Second, we modulate in position on the full profile φ ω,c , whereas in [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF] modulation in position was done only on the modulus of the profile (the equivalent of ϕ ω,c in our setting). The way we modulate is more natural, but it introduces a technical difficulty in the proof of the modulation result. Precisely, the Jacobian given by ( 26) is not diagonal and its invertibility is not obvious. We are able to overcome this difficulty in our setting thanks to our knowledge of the explicit expressions of the profiles.

Proof of Proposition 4.1. The existence and regularity of the functions ( θj , xj , ωj , cj ) follow from classical arguments involving the Implicit Function Theorem. The main difficulty here is that we have a non-diagonal Jacobian, and proving its invertibility requires an additional argument compare to the usual setting. The modulation equations ( 23) are obtained via the combination of the equation verified by ε with the orthogonality conditions [START_REF] Guo | Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation[END_REF]. We only give the important steps of the proof. Let q = θ1 , . . . , θN ; x1 , . . . , xN ; ω1 , . . . , ωN ; v ∈ R 3N × H 1 (R) and q 0 = θ 1 , . . . , θ N ; x 1 , . . . , x N ; ω 1 , . . . , ω N ;

N j=1 e iθj φ j (• -x j ) .

For a given q, define the speeds cj by

cj = c j + µ j (ω j -ω j ). ( 25 
)
Define also the modulated profiles Rj and the difference ε by

Rj = e i θ φ ωj ,cj (• -xj ), ε = v - N j=1 Rj , Consider the function Φ : R 3N × H 1 (R) → R 3N defined by Φ = (Φ 1 , Φ 2 , Φ 3 ) with Φ 1 j = ε, i Rj 2 , Φ 2 j = ε, ∂ x Rj 2 , Φ 3 j = ε, Rj + iµ j ∂ x Rj 2 . Note that ∂ε ∂ θj q=q0 = -iR j , ∂ε ∂ xj q=q0 = ∂ x R j ,
and by the relationship (25), we have

∂ε ∂ ωj q=q0 = -(∂ ω R j + µ j ∂ c R j ) .
Then,

dΦ 1 j d θj q=q0 = -R j 2 L 2 = -8 arctan 2 √ ω j + c j 2 √ ω j -c j , dΦ 2 j dx j q=q0 = ∂ x R j 2 L 2 = 8ω j arctan 2 √ ω j + c j 2 √ ω j -c j ,
where the explicit values come from the formulas in ( 63) and (66). Using

R j + iµ j ∂ x R j = M ′ (R j ) + µ j P ′ (R j ),
and ( 70)-( 72), we have

dΦ 3 j dω j q=q0 = -(∂ ω R j + µ j ∂ c R j , R j + iµ j ∂ x R j ) 2 = -∂ ω M (R j ) + µ j (∂ c M (R j ) + ∂ ω P (R j )) + µ 2 j ∂ c P (R j ) = c j ω j -4µ j + c j µ 2 j 1 4ω j -c 2 j < 0,
where at the last inequality we recalled ( 16) and the choice of µ j . Moreover, since x j+1 -x j > L, when j = k, for l = 1, 2, 3 we have

dΦ l j d θk q=q0 = dΦ l j dx k q=q0 = dΦ l j dω k q=q0 = O(e -1 2 ω⋆L ).
We easily verify that

dΦ 3 j d θj q=q0 = (-iR j , R j + iµ j ∂ x R j ) 2 = 0, dΦ 3 j dx j q=q0 = (∂ x R j , R j + iµ j ∂ x R j ) 2 = 0.
Furthermore, using the explicit expression of φ j as well as the formulas (63)-(64), we have

dΦ 1 j dx j q=q0 = - dΦ 2 j d θj q=q0 = (∂ x R j , iR j ) 2 = (∂ x φ j , iφ j ) 2 = ∂ x ϕ j + ic 2 ϕ j - i 4 |ϕ j | 2 ϕ j , iϕ j 2 = c 2 ϕ j 2 L 2 - 1 4 ϕ j 4 L 4 = -2 4ω j -c 2 j .
The Jacobian matrix of the derivative of the function q → Φ(q) with respect to ( θj , xj , ωj ) is the 3 × 3 block matrix

DΦ =      dΦ 1 j d θk dΦ 1 j dx k dΦ 1 j dω k dΦ 2 j d θk dΦ 2 j dx k dΦ 2 j dω k dΦ 3 j d θk dΦ 3 j dx k dΦ 3 j dω k      q=q0 . ( 26 
)
Each block is diagonal up to O(e -1 2 ω⋆L ). All terms on the main diagonal are nonzero and have been explicitly computed. The block terms at (3, 1) and (3, 2) are of order O(e -1 2 ω⋆L ). Therefore, the determinant of the matrix is

det(DΦ) = N j=1 cj ωj -4µ j + c j µ 2 j 4ω j -c 2 j • • N j=1   -64ω j arctan 2 √ ω j + c j 2 √ ω j -c j 2 + 2 4ω j -c 2 j 2   + O(e -1 2 ω⋆L ).
Consider the function f (ω, c) defined by

f (ω, c) = 8 √ ω arctan 2 √ ω + c 2 √ ω -c -2 4ω -c 2 .
By explicit calculations, we have

∂ c f (ω, c) = 2(c + 2 √ ω) √ 4ω -c 2 > 0.
Moreover, at c = -2 √ ω the function starts with f (ω, -2 √ ω) = 0. This implies that f (ω, c) > 0 for all (ω, c) ∈ R 2 with 4ω > c 2 . As a consequence, for any j = 1, . . . , N we have

64ω j arctan 2 √ ω j + c j 2 √ ω j -c j > 2 4ω j -c 2 j 2 , (27) 
and we infer that det(DΦ) = 0. Hence we can apply the Implicit Function Theorem to Φ to obtain the existence of a function q1 = ( θj , xj , ωj ) from [0, t ⋆ ] to R 3N such that for any t ∈ [0, t ⋆ ] we have Φ(q 1 (t), u(t)) = 0.

We refer the reader to [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF] for the regularity of the modulation parameters. This concludes the first part of the proof.

We now want to obtain the modulation equations [START_REF] Herr | On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition[END_REF]. Recall first that u is a solution of (dNLS), hence it verifies

iu t = E ′ (u). Since u = N j=1 Rj + ε, the equation verified by ε is iε t + N j=1 -∂ t θj Rj -i∂ t xj ∂ x Rj + i∂ t ωj ∂ ω Rj + iµ j ∂ c Rj = E ′ N j=1 Rj + ε .
By exponential localization of the solitons and ( 22), we have

E ′ N j=1 Rj + ε = N j=1 E ′ Rj + E ′′ Rj ε + O e -1 4 ω⋆L + O ε 2 H 1 .
Recall that each Rj verifies the equation

E ′ ( Rj ) + ωj M ′ (R j ) + cj P ′ (R j ) = 0.
Therefore, the equation for ε can be written as

iε t + N j=1 (ω j -∂ t θj ) Rj + (c j -∂ t xj )i∂ x Rj + i∂ t ωj ∂ ω Rj + µ j ∂ c Rj = N j=1 E ′′ Rj ε + O e -1 4 ω⋆L + O ε 2 H 1 .
One can see already the modulation equations appearing. For convenience, we denote by Mod(t) the vector of modulation equations, i.e.

Mod(t) = ωj -∂ t θj , cj -∂ t xj , i∂ t ωj j=1,...,N .
Differentiating with respect to time the orthogonality conditions [START_REF] Guo | Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation[END_REF], we obtain

0 = -iε t , Rj 2 + ε, i∂ t Rj 2 , (28) 
0 = iε t , i∂ x Rj 2 + ε, ∂ t ∂ x Rj 2 , ( 29 
) 0 = iε t , i Rj -µ j ∂ x Rj 2 + ε, ∂ t ( Rj + iµ j ∂ x Rj ) 2 . (30) 
We have

ε, i∂ t Rj 2 + ε, ∂ t ∂ x Rj 2 + ε, ∂ t ( Rj + iµ j ∂ x Rj ) 2 (1 + |Mod(t)|) ε L 2 .
Using the equation for ε, for the first term in the left hand side of (28), we get

-iε t , Rj 2 = (ω j -∂ t θj ) Rj 2 L 2 + (c j -∂ t xj ) i∂ x Rj , Rj 2 + ∂ t ωj i(∂ ω Rj + µ j ∂ c Rj ), Rj 2 + (1 + |Mod(t)|)O e -1 4 ω⋆L + O ( ε H 1 ) .
For the first term in the left hand side of (29), we get

-iε t , i∂ x Rj 2 = (ω j -∂ t θj ) Rj , i∂ x Rj 2 + (c j -∂ t xj ) ∂ x Rj 2 L 2 + ∂ t ωj i(∂ ω Rj + µ j ∂ c Rj ), i∂ x Rj 2 + (1 + |Mod(t)|)O e -1 4 ω⋆L + O ( ε H 1 ) .
For the first term in the left hand side of [START_REF] Lieb | On the lowest eigenvalue of the Laplacian for the intersection of two domains[END_REF], there are some cancellations, and we get

-iε t , i Rj -µ j ∂ x Rj 2 = ∂ t ωj i(∂ ω Rj + µ j ∂ c Rj ), i Rj -µ j ∂ x Rj 2 + (1 + |Mod(t)|)O e -1 4 ω⋆L + O ( ε H 1 ) .
Remark that, in contrary to what happens in [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF], the ε term is still of order 1 and not of order 2 (unless µ = 0, but this is ruled out by our assumptions on the (c j )).

The attentive reader will have noticed the appearance of the same elements as in the matrix DΦ. We have indeed

M   ωj -∂ t θj cj -∂ t xj ∂ t ωj   = (1 + Mod(t)) O ( ε L 2 ) + O e -1 4 ω⋆L
, for M = (m kl ), where

m 11 = Rj 2 L 2 , m 12 = i∂ x Rj , Rj 2 , m 21 = Rj , i∂ x Rj 2 , m 22 = ∂ x Rj 2 L 2 , m 31 = i Rj -µ j ∂ x Rj , Rj 2 , m 32 = i Rj -µ j ∂ x Rj , i∂ x Rj 2 , m 13 = i(∂ ω Rj + µ j ∂ c Rj ), Rj 2 , m 23 = i(∂ ω Rj + µ j ∂ c Rj ), i∂ x Rj 2 , m 33 = i(∂ ω Rj + µ j ∂ c Rj ), i Rj -µ j ∂ x Rj 2 .
Using the explicit values of the coefficients (m kl ) (see above calculations for DΦ), we obtain

M =       8 arctan 2 √ ωj +cj 2 √ ωj -cj 2 4ω j -c 2 j * 2 4ω j -c 2 j 8ω j arctan 2 √ ωj +cj 2 √ ωj -cj * 0 0 -cj ωj -4µj +cj µ 2 j √ 4ωj -c 2 j       .
Hence M is invertible using the same arguments as to prove that DΦ is, see in particular ( 27), and we can infer that

N j=1 ωj -∂ t θj + |c j -∂ t xj | + |∂ t ωj | ε H 1 + e -1 4 ω⋆L .
This concludes the proof.

We complete this section by giving estimates on the interaction between Rj and Rk when j = k.

Lemma 4.3 (Interaction estimates One). There exists a function

g ∈ L ∞ t L 1 x (R, R d )∩ L ∞ t L ∞ x (R, R d
) such that for all j, k = 1, . . . , N such that j = k, we have

| Rj | + |∂ x Rj | + |∂ ω Rj | + |∂ c Rj | e -ω⋆|x-xj| . e -ω⋆|x-xj| e -ω⋆|x-x k | e -1 2 ω⋆|xj-x k | g(t, x).
Moreover, if (21)-( 23) hold, then

|x j -xk | 1 2 (L + c ⋆ t).
Proof. We first remark that, by the exponential decay of the soliton profiles [START_REF] Colliander | A refined global well-posedness result for Schrödinger equations with derivative[END_REF] and the definition (17) of ω ⋆ , for j = 1, . . . , N , we have

| Rj | + |∂ x Rj | + |∂ ω Rj | + |∂ c Rj | e -ω⋆|x-xj| . There exists g ∈ L ∞ t L 1 x (R, R d ) ∩ L ∞ t L ∞ x (R, R d ) such that e -ω⋆|x-xj| e -ω⋆|x-x k | e -1 2 ω⋆|xj -x k | g(t, x), Indeed, let g jk (t, x) = e -1 2 ω⋆(|x-xj|+|x-x k |) . One can then take g(t, x) = j =k g j,k (t, x).
In view of ( 21)-( 23), we can chose δ and 1/L small enough such that for any j = k we have

|x j -xk | L 2 + 1 2 c ⋆ t.
This concludes the proof.

Monotonicity of Localized Conservations Laws

We are using an energy technique to control the main difference ε between u and the sum of modulated solitons Rj . The energy technique consists in using the coercivity of a linearized action functional related to the conservation laws and the solitons. It can be viewed as a generalization of the method used to prove stability of a single soliton. The main difference when considering a sum of solitons is that we need to introduce a localization procedure around each soliton. We recover this way the desired coercivity property, but the price to pay is that the quantities involved are no longer conserved. Controlling their variations in time becomes a main issue, which is dealt with using monotonicity properties.

The localization procedure is the following. Let ψ : R → [0, 1] be a smooth cut-off function such that

ψ(x) = 0 for x -1, ψ(x) = 1 for x 1, ψ ′ (x) > 0 for x ∈ (-1, 1), (ψ ′ (x)) 2 ψ(x), (ψ ′′ (x)) 2 ψ ′ (x), for all x ∈ R. For j = 2, . . . , N , set σj = 2 ωj (0) -ωj-1 (0) cj (0) -cj-1 (0) . (31) 
Recall that (ω j ) and (c j ) verify the speed-frequency ratio assumption (4). Therefore, for δ and 1/L small enough and by the estimate on the modulation parameters at initial time [START_REF] Ianni | Multi-speed solitary wave solutions for nonlinear Schrödinger systems[END_REF] we have max(c j-1 , cj-1 (0)) < σj < min(c j , cj (0)), j = 2, . . . , N.

Set

x σ j = xj-1 (0) + xj (0) 2 , a = L 2 64 ,
and define

ψ 1 ≡ 1, ψ j (t, x) = ψ x -x σ j -σj t √ t + a , j = 2, . . . , N, ψ N +1 ≡ 0.
We define the cut-off functions around the j-th solitary wave by

χ j (t, x) = ψ j (t, x) -ψ j+1 (t, x), j = 1, . . . , N.
The reason for the introduction of cut-off functions of this form will become clear in the proof of the monotonicity properties. We define the following functional, which is made by the combination of localized masses and momenta around each solitary wave, weighted with the corresponding modulated parameters ωj (0) and cj (0) at t = 0:

I(t) = 1 2 N j=1 R ωj (0)|u| 2 + cj (0)Im(uū x ) χ j dx. ( 32 
)
The following monotonicity property for I will be a key feature of the proof of Theorem 1.1. Proposition 5.1 (Monotonicity One). If δ and 1/L are small enough, then for all t ∈ [0, t ⋆ ], we have

I(t) -I(0) 1 L sup s∈[0,t] ε(s) 2 L 2 + e -1 16 ω⋆(c σ ⋆ t+L) .
To prove Proposition 5.1, it is convenient to rewrite I using the functionals defined for j = 2, . . . , N by

I j (t) = 1 2 R σj 2 |u| 2 + Im(uū x ) ψ j dx.
Lemma 5.2 (Decomposition of the functional I). We have

I(t) = ω1 (0)M (u) + c1 (0)P (u) + N j=2 (c j (0) -cj-1 (0))I j (t).
The proof of Lemma 5.2 consists in a simple rearrangement of the sum in the definition (32) of I using the definition (31) of σj . We omit the details.

Proposition 5.1 is a consequence of Lemma 5.2, the conservation of mass and momentum, and the following monotonicity result for each of the functionals I j . Proposition 5.3 (Monotonicity Two). If δ and 1/L are small enough, then for any j = 2, . . . , N and t ∈ [0, t ⋆ ] we have

I j (t) -I j (0) 1 L sup s∈[0,t] ε(s) 2 L 2 + e -1 16 ω⋆(c σ ⋆ t+L) .
Proof of Proposition 5.3. Fix j ∈ {2, . . . , N }. To express the time derivative of I j in a form to which we can give a sign, we will use a Galilean transformation. We define v by

u(t, x) = e i σj 2
x-x σ j -σj 2 t v(t, x -x σ j -σj t). We insist on the fact that since (dNLS) is not Galilean invariant, v is not a solution of (dNLS) anymore. It satisfies the modified equation

iv t + v xx + i|v| 2 v x - σj 2 |v| 2 v = 0,
and we have

I j (t) = 1 2 R Im(vv x )ψ x √ t + a dx.
One realizes that the advantage of introducing I j is that there is now no mass factor in the expression of I j in terms of v. Computing the time derivative, we obtain

∂ ∂t I j (t) = - 1 √ t + a R |v x | 2 + 1 2 Im |v| 2 vv x + σj 8 |v| 4 ψ x x √ t + a dx + 1 4(t + a) 3 2 R |v| 2 ψ xxx x √ t + a dx - 1 4(t + a) 3 2 R Im(xvv x )ψ x x √ t + a dx.
We distribute the last term between the quadratic terms. Using Young's inequality, we have

1 4(t + a) 3 2 R Im(xvv x )ψ x x √ t + a dx 1 8 √ t + a R |v x | 2 ψ x x √ t + a dx+ 1 8(t + a) 3 2 R |v| 2 x √ t + a 2 ψ x x √ t + a dx.
In addition, since ψ x is supported on [-1, 1], we have

1 8(t + a) 3 2 R |v| 2 x √ t + a 2 ψ x x √ t + a dx 1 8(t + a) 3 2 R |v| 2 ψ x x √ t + a dx.
We also apply Young's inequality to the derivative part of the nonlinear term:

1 √ t + a R 1 2 Im |v| 2 vv x ψ x x √ t + a dx 1 8 √ t + a R |v x | 2 ψ x x √ t + a dx + 1 2 √ t + a R |v| 6 ψ x x √ t + a dx.
Summarizing, we have obtained that

∂ ∂t I j (u) - 1 √ t + a R 3 4 |v x | 2 - 1 2 |v| 6 + σj 8 |v| 4 ψ x x √ t + a dx + 1 4(t + a) 3 2 R |v| 2 1 2 ψ x + ψ xxx x √ t + a dx. ( 33 
)
By assumption (4) we have σ j > 0, thus we also have σj > 0 (for δ and 1/L small enough). Therefore, to obtain the (quasi)-monotonicity of I j , it is sufficient to bound the L 2 -term and the nonlinear term with power 6. This is allowed by the following claims.

Claim 5.4. For δ and 1/L small enough and for any t ∈ [0, t ⋆ ], we have

|x|< √ t+a |v| 2 dx 2 ε 2 L 2 + O e -1 16 ω⋆(c σ ⋆ t+L) .
Claim 5.5. For δ and 1/L small enough and for any t ∈ [0, t ⋆ ], we have

R |v| 6 ψ x x √ t + a dx 1 4 R |v x | 2 ψ x x √ t + a dx + 1 t + a ε 2 L 2 + O e -1 16 ω⋆(c σ ⋆ t+L) .
Proof of Claim 5.4. By definition of v as a Galilean transform of u, we have

|v(t, x)| 2 = |u(t, x + x σ j + σj t)| 2 2 N k=1 Rk (t, x + x σ j + σj t) 2 + 2 ε(t, x + x σ j + σj t) 2 . ( 34 
)
By exponential decay of the solitons profiles and the control ( 21) on the modulation parameters (ω k ) and (c k ), we have

N k=1 Rk (t, x + x σ j + σj t) 2 N k=1 e -ω⋆|x-x k (t)+x σ j +σj t| . Assume that |x| < √ t -a. We have |x -xk (t) + x σ j + σj t| |x k (t) -x σ j -σj t| -|x|, which for |x| < √ t + a < √ t + √ a = √ t + L 8 gives |x -xk (t) + x σ j + σj t| |x k (t) -x σ j -σj t| - √ t - L 8 .
If k j, then using the dynamical system [START_REF] Herr | On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition[END_REF] verified by the modulation parameters we get

∂ t xk ∂ t xj c j - c σ ⋆ 8 .
Since in addition xk (0) xj (0), we have

xk (t) -x σ j -σj t c j - c σ ⋆ 8 t + xj (0) -x σ j -σj t c σ ⋆ 8 t + xj (0) -xj-1 (0) 2 ,
where for the last inequality we have used

x σ j = (x j (0)+x j-1 (0))/2 and c j -σ j c σ ⋆ 4 . Therefore, using xj (0) > xj-1 (0) + L/2, we get |x -xk (t) + x σ j + σj t| c σ ⋆ 8 t - √ t + L 8 . (35) 
Choose now L large enough so that min t 0

c σ ⋆ 16 t - √ t + L 16 > 0. Then c σ ⋆ 8 t - √ t + L 8 = c σ ⋆ 16 t + L 16 + c σ ⋆ 16 t - √ t + L 16 c σ ⋆ 16 t + L 16 ,
and we infer from [START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF] that

|x -xk (t) + x σ j + σj t| c σ ⋆ 16 t + L 16 .
Arguing in a similar fashion for k j -1 allows us to obtain, for L large enough,

N k=1 Rk (t, x + x σ j + σj t) 2 N k=1 e -1 16 ω⋆(c σ ⋆ t+L) . (36) 
Combining ( 34) and [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] gives the desired conclusion.

For further reference, we state here a Lemma which can be obtained using similar arguments as in Claim 5.4.

Lemma 5.6 (Interaction Estimates Two). There exists a function

g ∈ L ∞ t L 1 x (R, R d )∩ L ∞ t L ∞ x (R, R d ) such that for all j, k = 1, . . . , N such that j = k, we have e -ω⋆|x-xj| χ k (t, x) e -1 32 ω⋆(c σ ⋆ t+L) g(t, x), where c σ ⋆ = min {|σ j -c k |; j, k = 1, . . . , N, j = 1} . (37) 
Let us recall without proof the following technical lemma from [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF][START_REF] Merle | Existence of blow-up solutions in the energy space for the critical generalized KdV equation[END_REF] that is used for the proof of Claim 5.5.

Lemma 5.7. Let w ∈ H 1 (R) and let h 0 be a C 2 bounded function such that √ h is C 1 and (h x ) 2 h. Then R |w| 6 hdx 8 supp(h) |w| 2 dx 2 R |w x | 2 hdx + R |w| 2 (h x ) 2 h dx ,
where supp(h) denotes the support of h.

Proof of Claim 5.5. From the technical result Lemma 5.7, we infer that

R |v| 6 ψ x x √ t + a dx 8 |x|< √ t+a |v| 2 dx 2 × × R |v x | 2 ψ x x √ t + a dx + 1 t + a R |v| 2 (ψ xx ) 2 ψ x x √ t + a dx .
Using Claim 5.4 and the fact that by construction (ψxx) 2 ψx 1, we get for δ and 1/L small enough that

R |v| 6 ψ x x √ t + a dx 1 4 R |v x | 2 ψ x x √ t + a dx + 1 2(t + a) |x|< √ t+a |v| 2 dx, 1 4 R |v x | 2 ψ x x √ t + a dx + 1 t + a ε 2 L 2 + O(e -1 16 ω⋆(c σ ⋆ t+L) ).
This finishes the proof of Claim 5.5.

Let us now conclude the proof of Proposition 5.3. Coming back to (33) and using σj > 0 and Claims 5.4 and 5.5, we get

∂ t I j (t) 1 (t + a) 3 2 ε(t) 2 L 2 + e -1 16 ω⋆(c σ ⋆ t+L) .
Integrating between 0 and t, we obtain (using in particular a = L 2 /64)

I j (t) -I j (0) 1 L sup s∈[0,t ⋆ ] ε(s) 2 L 2 + e -1 16 ω⋆(c σ ⋆ t+L) ,
and this finishes the proof.

For convenience, we also introduce here functionals similar to I j but with a different parameter σ. They will be useful when we will control the modulation parameters. For j = 2, . . . , N , let τ j be such that cj-1 (0) < τ j < cj (0).

For any j = 2, . . . , N , we define

ψ j,τj (t, x) = ψ x -x σ j -τ j t √ t + a , I j,τj (t) = 1 2 R τ j 2 |u| 2 + Im(uū x ) ψ j,τj dx.
Then following the same proof as for Proposition 5.3 we get the following result.

Proposition 5.8 (Monotonicity Three). If δ and 1/L are small enough, then for any j = 2, . . . , N and t ∈ [0, t ⋆ ] we have

I j,τj (t) -I j,τj (0) 1 L sup s∈[0,t ⋆ ] ε(s) 2 L 2 + e -1 16 ω⋆(c τ ⋆ t+L) ,
where

c τ ⋆ = min {|τ j -c k |; j, k = 1, . . . , N, j = 1} .

Linearized Action Functional and Coercivity for N Solitons

For j = 1, . . . , N , we define an action functional related to the j-th soliton by

S j (v) = E(v) + ωj (0)M (v) + cj (0)P (v).
For the sum of N solitons we define an action-like functional S which will correspond to S j locally around the j-th soliton. The functional S is given by

S(t) = E(u(t)) + I(t),
where I is the functional composed of localized masses and momenta defined in [START_REF] Liu | Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data[END_REF].

It is classical when working with solitons and related solutions of nonlinear dispersive equations to introduce functionals related to the second variation of the action. In our context, we will work with the functional H, obtained as follows.

We set c⋆ = min{c ⋆ , c σ ⋆ }, where c ⋆ and c σ ⋆ are given by ( 18) and (37).

Lemma 6.1 (Expansion of the action). For t ∈ [0, t ⋆ ], we have

S(t) = N j=1 S j (φ ωj (0),cj(0) ) + 1 2 H(t) + N j=1 O |ω j (t) -ωj (0)| 2 + o( ε 2 H 1 ) + O(e -1 32 ω⋆(c⋆t+L) ), (38) 
where

H(t) = ε x 2 L 2 + N j=1 Im R | Rj | 2 εε x + Rj ∂ x Rj (ε) 2 + Rj ∂ x Rj |ε| 2 dx + N j=1 ωj (t) R |ε| 2 χ j dx + cj (t)Im R εε x χ j dx .
Proof. Writing u = N j=1 Rj + ε, we expand in the components of S. For the energy, we have

E(u) = E N j=1 Rj + E ′ N j=1 Rj ε + 1 2 E ′′ N j=1 Rj ε, ε + o( ε 2 H 1 ).
From Lemma 4.3 (Interaction Estimates One), we have

E N j=1 Rj = N j=1 E Rj + O(e -1 4 ω⋆(c⋆t+L) ), E ′ N j=1 Rj ε = N j=1 E ′ Rj ε + O(e -1 4 ω⋆(c⋆t+L) ), E ′′ N j=1 Rj ε, ε = N j=1 E ′′ Rj ε, ε + O(e -1 4 ω⋆(c⋆t+L) ).
From Lemma 5.6 (Interaction Estimates Two), we also have

1 2 R |u| 2 χ j dx = N j=1 M ( Rj ) + 2 N j=1 M ′ ( Rj )ε + 1 2 R |ε| 2 χ j dx + O(e -1 32 ω⋆(c σ ⋆ t+L) ), 1 2 Im R uū x χ j dx = N j=1 P ( Rj ) + 2 N j=1 P ′ ( Rj )ε + 1 2 Im R εε x χ j dx + O(e -1 32 ω⋆(c σ ⋆ t+L) ).
Recall that, for j = 1, . . . , N , the function Rj verifies

E ′ ( Rj ) + ωj (t)M ′ ( Rj ) + cj (t)P ′ ( Rj ) = 0.
Therefore, we have 39) A Taylor expansion in ωj gives (using that Rj (0) is a critical point of S j )

S(t) = N j=1 S j ( Rj ) + N j=1 (ω j (0) -ωj (t))M ′ ( Rj )ε + N j=1 (c j (0) -cj (t))P ′ ( Rj )ε + 1 2 N j=1 E ′′ Rj ε, ε + N j=1 ωj (0) 1 2 R |ε| 2 χ j dx + N j=1 cj (0) 1 2 R εε x χ j dx + O(e -1 32 ω⋆(barc⋆t+L) ) + o( ε 2 H 1 ). (
S j ( Rj (t)) = S j ( Rj (0)) + O(|ω j (t) -ωj (0)| 2 ). (40) 
Moreover, using phase and translation invariance, we have

S j ( Rj (0)) = S j (φ ωj (0),cj(0) ). ( 41 
)
Using the relation [START_REF] Guo | Global well-posedness for the derivative nonlinear Schrödinger equation in H 1 2 (R)[END_REF] between ω and c and the last orthogonality condition on ε in [START_REF] Guo | Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation[END_REF], for all j = 1, . . . , N we obtain

(ω j (0) -ωj (t))M ′ ( Rj )ε + (c j (0) -cj (t))P ′ ( Rj )ε = (ω j (0) -ωj (t)) M ′ ( Rj ) + µ j P ′ ( Rj ) ε = (ω j (0) -ωj (t)) Rj + iµ j ∂ x Rj , ε 2 = 0.
From Young's inequality and using again the relation [START_REF] Guo | Global well-posedness for the derivative nonlinear Schrödinger equation in H 1 2 (R)[END_REF] between ω and c, for all j = 1, . . . , N we have

(ω j (0) -ω(t)) 1 2 R |ε| 2 χ j dx + (c j (0) -c j (t)) 1 2 R εε x χ j dx |ω j (0)-ω(t)| 2 + ε 4 H 1 .
Therefore, the term in the second line of (39) becomes 1 2

N j=1 E ′′ Rj ε, ε + N j=1 ωj (0) 1 2 R |ε| 2 χ j dx + N j=1 cj (0) 1 2 R εε x χ j dx = 1 2 H(t) + N j=1 O(|ω j (t) -ωj (0)| 2 ) + o( ε 2 H 1 ).
Together with ( 39), ( 40) and [START_REF] Mosincat | A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle[END_REF], this gives the desired result [START_REF] Merle | Existence of blow-up solutions in the energy space for the critical generalized KdV equation[END_REF].

As a consequence of the coercivity of each linearized action S ′′ j given by Proposition 2.1, we have global coercivity for H. Lemma 6.2 (Coercivity). There exists κ > 0 such that for all t ∈ [0, t ⋆ ] we have

H(t) κ ε 2 H 1 .
Before doing the proof, we explain how to control ε H 1 using the coercivity property Lemma 6.2 and the first monotonicity result Proposition 5.1. Lemma 6.3. For all t ∈ [0, t ⋆ ], we have

ε(t) 2 H 1 1 L sup s∈[0,t] ε(s) 2 L 2 + ε(0) 2 H 1 + N j=1 |ω j (t) -ωj (0)| 2 + e -1 32 ω⋆L .
Proof. From the Taylor-like expansion of S in Lemma 6.1 at 0 and t ∈ [0, t ⋆ ], we get

S(t) -S(0) = 1 2 (H(t) -H(0)) + N j=1 O |ω j (t) -ωj (0)| 2 + o( ε(t) 2 H 1 ) + o( ε(0) 2 H 1 ) + O(e -1 32 ω⋆L ).
By definition of S and conservation of the energy, we have S(t) -S(0) = I(t) -I(0).

In addition, H is quadratic in ε, hence

H(0) ε(0) 2 H 1 .
Taking into account the coercivity of H given by Lemma 6.2, we obtain

ε(t) 2 H 1 H(t) I(t) -I(0) + N j=1 |ω j (t) -ωj (0)| 2 + ε(0) 2 H 1 + e -1 32 ω⋆L . ( 42 
)
The conclusion then follows from the first monotonicity result Proposition 5.1.

Proof of Lemma 6.2. We write H(t) as

H(t) = N j=1 |ε x | 2 + ωj (t)|ε| 2 + cj (t)Im(εε x ) χ j (t) dx + N j=1 Im R | Rj | 2 εε x + Rj ∂ x Rj (ε) 2 + Rj ∂ x Rj |ε| 2 dx = N j=1 |ε x | 2 + ωj (t)|ε| 2 + cj (t)Im(εε x ) + Im | Rj | 2 εε x + Rj ∂ x Rj (ε) 2 + Rj ∂ x Rj |ε| 2 χ j (t) dx + O e -1 16 ω⋆L ε 2 H 1 N j=1 H j (t) + O e -1 16 ω⋆L ε 2 H 1 .
Now we need another cut-off function defined as in [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF]. Let Λ be a smooth positive function satisfying

Λ = 1 on [-1, 1], Λ ∼ e -|x| on R, |Λ ′ | Λ.
Moreover, we fix B : 1 ≪ B ≪ L, and denote Λ j (x) = Λ(

x-xj(t) B

). Then for some small c > 0,

χ j ≥ Λ j -e -cL/B , supp(χ j -Λ j ) ⊂ {x : |x -xj (t)| ≥ B}, |Λ ′ j | 1 B Λ j . Let z j = ε Λ j . Then |∂ x ε| 2 Λ j = |∂ x z j | 2 + 1 4 |z j | 2 Λ ′ j Λ j 2 -Re z j ∂ x zj Λ ′ j Λ j . This implies R |∂ x z j | 2 dx - C B R (|∂ x z j | 2 + |z j | 2 )dx R |∂ x ε| 2 Λ j dx R |∂ x z j | 2 dx + C B R (|∂ x z j | 2 + |z j | 2 )dx. ( 43 
)
Moreover, we have

ε∂ x ε = z j ∂ x zj Λ j -|z j | 2 Λ ′ j 2Λ 2 j ,
and therefore,

Im(ε∂ x ε)Λ j = Im(z∂ x zj ). ( 44 
)
Now, using the localization of Rj , we rewrite H j as

H j (t) = |ε x | 2 + ωj (t)|ε| 2 + cj (t)Im(εε x ) + Im | Rj | 2 εε x + Rj ∂ x Rj (ε) 2 + Rj ∂ x Rj |ε| 2 Λ j (t) dx + |ε x | 2 + ωj (t)|ε| 2 + cj (t)Im εε x (χ j -Λ j ) dx + O(e -1 16 ω⋆B ) ε 2 H 1 . (45) 
Using ( 43) and ( 44) we have

|ε x | 2 + ωj (t)|ε| 2 + cj (t)Im(εε x ) + Im | Rj | 2 εε x + Rj ∂ x Rj (ε) 2 + Rj ∂ x Rj |ε| 2 Λ j (t) dx ≥ |∂ x z j | 2 + ωj (t)|z j | 2 + cj (t)Im z j ∂ x zj + Im | Rj | 2 z j ∂ x z j + Rj ∂ x Rj (z j ) 2 + Rj ∂ x Rj |z j | 2 dx - C B |z j | 2 dx =H ω(t),cj(t) (z j ) - C B |z j | 2 dx. (46) 
From the the orthogonality conditions [START_REF] Guo | Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation[END_REF], we have for j = 1, . . . , N, z j , i Rj

2 = z j , ∂ x Rj 2 = z j , M ′ ( Rj ) + µ j P ′ ( Rj ) 2 e -1 16 ω⋆B z j L 2 ,
after suitable perturbation (for example, let zj = z j +a 1 i Rj +a 2 ∂ x Rj +a 3 (M ′ ( Rj )+ µ j P ′ ( Rj )) for |a j | e -1 16 ω⋆B z L 2 , j = 1, 2, 3), we obtain from Proposition 2.1 and [START_REF] Pelinovsky | Existence of global solutions to the derivative NLS equation with the inverse scattering transform method[END_REF], that for some small constant κ ′ > 0,

H ω(t),cj(t) (z j ) ≥ κ ′ (|∂ x z j | 2 + |z j | 2 ) dx ≥ κ ′ - C B (|∂ x ε| 2 + |ε| 2 )Λ j dx.
Hence, from [START_REF] Sulem | The nonlinear Schrödinger equation[END_REF], we obtain that

|ε x | 2 + ωj (t)|ε| 2 + cj (t)Im(εε x ) + Im | Rj | 2 εε x + Rj ∂ x Rj (ε) 2 + Rj ∂ x Rj |ε| 2 Λ j (t) dx ≥ κ ′′ (|∂ x ε| 2 + |ε| 2 )Λ j dx, (47) 
where

κ ′′ = κ ′ -2C B . Furthermore, since c2 j < 4ω j , we have ν(|∂ x ε| 2 + |ε| 2 ) ≥ |∂ x ε| 2 + ωj (t)|ε| 2 + cj (t)Im ε∂ x ε ≥ ν(|∂ x ε| 2 + |ε| 2 ),
for some small ν > 0 and ν = 3(1 + ω 2 j ). Hence, using χ j ≥ Λ j -e -cL/B , we find

|∂ x ε| 2 + ωj (t)|ε| 2 + cj (t)Im ε∂ x ε (χ j -Λ j ) dx ≥ ν ′ |∂ x ε| 2 + |ε| 2 (χ j -Λ j ) dx, (48) 
where ν ′ = ν -νe -cL/B . Choosing L large enough, we have ν ′ > 0. Inserting [START_REF] Takaoka | Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces[END_REF] and ( 48) into [START_REF] Rodnianski | Asymptotic stability of N-soliton states of NLS[END_REF], we obtain that

H j (t) ≥ 2κ |∂ x ε| 2 + |ε| 2 χ j dx,
where κ = 1 2 min{ν ′ , κ ′′ }. Since N j=1 χ j = 1, this proves the lemma.

Control of the modulation parameters

With Lemma 6.3 in hands, the only thing left to control are the modulation parameters ωj . We prove the following result.

Lemma 7.1. For all t ∈ [0, t ⋆ ], we have

N j=1 |ω j (t) -ωj (0)| sup s∈[0,t] ε(s) 2 H 1 + e -1 32 ω⋆L .
Getting control over the modulation parameters is not an easy task for Schrödinger like equations. Indeed, a useful tool for that aim are monotonicity properties of localized conservation laws. For the Korteweg-de Vries equation, the localized mass satisfies this monotonicity property and can be used directly to control the modulation parameters (see [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF]). For (dNLS) and (NLS), the monotonicity is verified only for the momentum and nothing similar is available for the mass (or the energy). This is the reason why one has to use several cut-off functions, in order to transfer the information from the momentum to the Q j -quantity defined below. This was one of the main ideas introduced in [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF]. The argument here is however more involved due to our choice of orthogonality conditions.

We first make the following claim.

Claim 7.2. For all t ∈ [0, t ⋆ ], we have

N j=2 |I j (t) -I j (0)| 1 L sup s∈[0,t] ε(s) 2 H 1 + ε(0) 2 H 1 + N j=1 |ω j (t) -ωj (0)| 2 + e -1 32 ω⋆L .
Proof. From (42) the proof of Lemma 6.3, the decomposition of I from Lemma 5.2, and conservation of mass and momentum, we get

ε(t) 2 H 1 N j=2 (c j (0) -cj-1 (0)) (I j (t) -I j (0)) + N j=1 |ω j (t) -ωj (0)| 2 + ε(0) 2 H 1 + e -1 32 ω⋆L . ( 49 
)
On one hand, for all j = 1, . . . , N such that I j (t) -I j (0) 0, by Proposition 5.3 we have

|I j (t) -I j (0)| 1 L sup s∈[0,t] ε(s) 2 L 2 + e -1 16 ω⋆L . (50) 
On the other hand, since by assumption c j > c j-1 , we have for δ, 1/L small enough that cj (0) -cj-1 (0) > 0 for all j = 1, . . . , N . Thus for all j = 1, . . . , N such that I j (t) -I j (0) < 0, ( 49)-( 50) imply

|I j (t) -I j (0)| 1 L sup s∈[0,t] ε(s) 2 H 1 + N j=1 |ω j (t) -ωj (0)| 2 + ε(0) 2 H 1 + e -1 32 ω⋆L .
Combining these two facts gives the desired conclusion.

As announced, we introduce the conserved quantity Q j combining the mass and momentum:

Q j (u) = M (u) + µ j P (u).
Remark that, due to the choice of µ j after (16), and using the explicit calculations (70) and (71), we have

d dω j Q j (φ ωj ,cj ) ωj =ωj = c j ω j -4µ j + c j µ 2 j 1 4ω j -c 2 j < 0. (51) 
Moreover, due to the orthogonality condition [START_REF] Guo | Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation[END_REF], we have

Q j ( Rj (t) + ε) = Q j ( Rj (t)) + O( ε 2 H 1 )
. Using (Q j ) j=1,...,N , we will be able to control the parameter (ω j ) j=1,...,N . To do this, we first need the following claim.

Claim 7.3. For any j = 1, . . . , N we have

Q j Rj (t) -Q j Rj (0) sup s∈[0,t] ε(s) 2 H 1 + N k=1 |ω k (t) -ωk (0)| 2 + e -1 32 ω⋆L .
Proof. Let j = 1, . . . , N . We set the notations,

m(u) = 1 2 |u| 2 ; p(u) = 1 2 
Im(uū x ); q j (u) = m(u) + µ j p(u).

Then we can rewrite I j as

I j (t) = R 1 2 σj m(u) + p(u) ψ j dx = 1 2 σj 2σ -1 j -µ j R 2σ -1 j -µ j -1 q j (u) + p(u) ψ j dx. (52) 
We assume that 2σ -1 j -µ j = 0 (otherwise, the formulas ( 54)-( 57) can be obtained more simply). We introduce the constants

λ j = 1 2 σj 2σ -1 j -µ j -1 , a j = 2σ -1 j -µ j -1 .
Then (52) becomes

λ j I j (t) = R (a j q j (u) + p(u)) ψ j dx. (53) 
Similarly, we rewrite I j,τj as λ j,τj I j,τj (t) = R a j,τj q j (u) + p(u) ψ j,τj dx, where we have set

λ j,τj = 1 2 τ j 2τ -1 j -µ j -1 , a j,τj = 2τ -1 j -µ j -1 .
In addition to [START_REF] Wu | Global well-posedness on the derivative nonlinear Schrödinger equation[END_REF], we also need another formula of I j (t) based on q j-1 when j 2.

I j (t) = 1 2 σj 2σ -1 j -µ j-1 R 2σ -1 j -µ j-1 -1 q j-1 (u) + p(u) ψ j dx.
Here, we also assume that 2σ -1 j -µ j-1 = 0. Let

γ j = 1 2 σj 2σ -1 j -µ j-1 -1 , b j = 2σ -1 j -µ j-1 -1 , then γ j I j (t) = R (b j q j-1 (u) + p(u)) ψ j dx.
Similarly, we also rewrite I j,τj as

γ j,τj I j,τj (t) = R b j,τj q j-1 (u) + p(u) ψ j,τj dx,
where we have set

γ j,τj = 1 2 τ j 2τ -1 j -µ j-1 -1 , b j,τj = 2τ -1 j -µ j-1 -1 .
Take a small constant ǫ 0 > 0, and set the constants τ 1 j , . . . , τ 4 j such that a j,τ 1 j = a j + ǫ 0 , a j,τ 2 j = a j -ǫ 0 , b j+1,τ 3 j = b j+1 + ǫ 0 , b j+1,τ 4 j = b j+1 -ǫ 0 . Then for j = 1, . . . , N we have the following identity

λ j,τ 1 j I j,τ 1 j (t) -λ j I j (t) = ǫ 0 R q j (u)ψ j dx + R (a j,τ 1 j q j (u) + p(u))(ψ j,τj -ψ j )dx.
The function (ψ j -ψ j,τj ) is zero for x < xj-1 + (cj-1+min(τj ,σj )) 2

t and for x > xj -(max(τj,σj )+cj ) 2

t. Hence, due to the exponential localization of the solitons around each xk and using the lower bound L/2 on the distance between xj -xk given by [START_REF] Hayashi | On the derivative nonlinear Schrödinger equation[END_REF] we have

R a j,τ 1 j q j N k=1 Rk + p N k=1 Rk (ψ j,τj -ψ j )dx e -1 32 ω⋆L .
Similar estimates can be obtained replacing τ 1 j by τ l j , l = 2, 3, 4 and j by j + 1. As a consequence, for j = 1, . . . , N we have the following identities,

λ j,τ 1 j I j,τ 1 j (t) -λ j I j (t) = ǫ 0 R q j (u)ψ j dx + O(e -1 32 ω⋆L ), (54) 
λ j,τ 2 j I j,τ 2 j (t) -λ j I j (t) = -ǫ 0 R q j (u)ψ j dx + O(e -1 32 ω⋆L ), (55) 
and for j = 1, . . . , N -1 we have

γ j+1,τ 3 j I j+1,τ 3 j (t) -γ j+1 I j+1 (t) = ǫ 0 R q j (u)ψ j+1 dx + O(e -1 32 ω⋆L ), (56) 
γ j+1,τ 4 j I j+1,τ 4 j (t) -γ j+1 I j+1 (t) = -ǫ 0 R q j (u)ψ j+1 dx + O(e -1 32 ω⋆L ). (57) 
We assume that λ j , γ j+1 are both positive, the other cases being treated similarly. Choosing ǫ 0 small enough, we can assume λ j,τ 1 j , λ j,τ 2 j , γ j+1,τ 3 j , γ j+1,τ 4 j are also positive. Then from ( 54)-(57) for j = 1, . . . , N -1, we have

ǫ 0 R q j (u)χ j (t, x) dx = λ j,τ 1 j I j,τ 1 j (t) -λ j I j (t) + γ j+1,τ 4 j I j+1,τ 4 j (t) -γ j+1 I j+1 (t) + O(e -1 32 ω⋆L ), -ǫ 0 R q j (u)χ j (t, x) dx = λ j,τ 2 j I j,τ 2 
j (t) -λ j I j (t) + γ j+1,τ 3 j I j+1,τ 3 j (t) -γ j+1 I j+1 (t) + O(e -1 32 ω⋆L ).

Moreover, since u = N k=1 Rk (t) + ε, and the support of χ j is far away from the center of the soliton Rk (t) when k = j, we have R q j (u)χ j dx = Q j ( Rj (t)) + O( ε 2 H 1 ) + O(e -1 32 ω⋆L ),

where we have used the orthogonality conditions [START_REF] Guo | Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation[END_REF] to cancel the first order term. Therefore, ǫ 0 Q j Rj (t) -Q j Rj (0) = ǫ 0 R q j (u(t))χ j (t) dx -ǫ 0 R q j (u(0))χ j (0) dx

+ O( ε(t) 2 H 1 + ε(0) 2 H 1 + e -1 32 ω⋆L )
= λ j,τ 1 j I j,τ 1 j (t) -λ j,τ 1 j I j,τ 1 j (0) + γ j+1,τ 4 j I j+1,τ 4 j (t) -γ j+1,τ 4 j I j+1,τ 4 j (0) -(λ j I j (t) -λ j I j (0)) -(γ j+1 I j+1 (t) -γ j+1 I j+1 (0)) 

+ O sup s∈[0,t] ε(s) 2 H 1 + e -
Similarly, -ǫ 0 Q j Rj (t) -Q j Rj (0) = -ǫ 0 R q j (u(t))χ j (t) dx+ǫ 0 R q j (u(0))χ j (0) dx

+ O( ε(t) 2 H 1 + ε(0) 2 H 1 + e -1 32 ω⋆L )
= λ j,τ 2 j I j,τ 2 j (t) -λ j,τ 2 j I j,τ 2 j (0) + γ j+1,τ 3 j I j+1,τ 3 j (t) -γ j+1,τ 3 j I j+1,τ 3 j (0) -(λ j I j (t) -λ j I j (0)) -(γ j+1 I j+1 (t) -γ j+1 I j+1 (0))

+ O( sup s∈[0,t] ε(s) 2 H 1 + e -1 32 ω⋆L ).
Hence, arguing as before, for j = 2, . . . , N -1, we obtain

-Q j Rj (t) -Q j Rj (0) sup s∈[0,t]
ε(s) Therefore, we get (60) when j = N .

At last, we consider the case j = 1. We use ( 56) and (57) to get -ǫ 0 R q 1 (u)ψ 1 dx = -ǫ 0 Q 1 (u) + γ 2,τ 3 1 I 2,τ 3 1 (t) -γ 2 I 2 (t) , ǫ 0 R q 1 (u)ψ 1 dx =ǫ 0 Q 1 (u) + γ 2,τ 4 1 I 2,τ 4 1 (t) -γ 2 I 2 (t) . Then by mass and momentum conservation laws, and similar arguments as before, we also obtain (60) when j = 1.

With these preliminaries out of the way, let us prove Lemma 7.1.

Proof of Lemma 7.1. From ( 51) and ( 24), we know that for all ω and c with the relationship [START_REF] Guo | Global well-posedness for the derivative nonlinear Schrödinger equation in H 1 2 (R)[END_REF] From the modulation result Proposition 4.1 and the bootstrap assumption we also have at time t = 0 the following estimate, Note that this last constant C 0 is independent of A 0 . Hence we may chose A 0 = 2C 0 and this concludes the proof.

Appendix A. Some Explicit Formulas

In this section, we give explicit formulas for quantities evaluated on φ ω,c . Since they are obtained by elementary calculations using the explicit formula ( 5)-( 6) for φ ω,c , we omit the details. We start with remarkable L p -norms.

φ ω,c 2 
L 2 =8 arctan 2 √ ω + c 2 √ ω -c , (63) 
φ ω,c 4 
L 4 =16c arctan 2 √ ω + c 2 √ ω -c + 8 4ω -c 2 , (64) 
φ ω,c 6 
L 6 =32(c 2 + 2ω) arctan 2 √ ω + c 2 √ ω -c + 24c 4ω -c 2 . ( 65 
)
We also have

∂ x φ ω,c 2 
L 2 = 8ω arctan 2 √ ω + c 2 √ ω -c . ( 66 
)
The mass, momentum and energy are given by

M (φ ω,c ) =4 arctan 2 √ ω + c 2 √ ω -c , (67) 
P (φ ω,c ) = 4ω -c 2 , (68) 
E(φ ω,c ) = - c 2 4ω -c 2 . ( 69 
)
Moreover, we have

∂ ω M (φ ω,c ) = - c ω √ 4ω -c 2 , ( 70 
)
∂ c M (φ ω,c ) = ∂ ω P (φ ω,c ) = 2 √ 4ω -c 2 , (71) 
∂ c P (φ ω,c ) = - c √ 4ω -c 2 . ( 72 
)
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  H 1 + e -1 32 ω⋆L .Again, we use Proposition 5.8 to control the first term, and use Claim 7.2 to control the second term, we obtainQ N RN (t) -Q N RN (t) sup

					N
		s∈[0,t]	ε(s)	2 H 1 +	j=1	|ω j (t) -ωj (t)| 2 + e -1 32 ω⋆L .
	Using (55) instead, we obtain from similar arguments that
	-Q N RN (0) -Q N RN (t)	sup s∈[0,t]	ε(s)	2 H 1 +

N j=1 |ω j (t) -ωj (0)| 2 + e -1 32 ω⋆L .

  , we have d dω j Q j (φ ωj ,cj ) = 0.Consequently, for any j = 1, . . . , N we have|ω j (t) -ωj (0)| Q j Rj (t) -Q j Rj (0)Hence, from Claim 7.3, for j = 1, . . . , N , we obtain|ω j (t) -ωj (0)| sup Proof of the Bootstrap ResultProof of Proposition 3.1. With Lemmas 6.3 and 7.1 in hands, we can now conclude the proof of Proposition 3.1. For δ and 1/L small enough, we have

				s∈[0,t]	ε(s)	2 H 1 +
	ε(t)	2 H 1	1 2	sup s∈[0,t]	ε(s)	2 H 1 + C ε(0)	2 H 1 + Ce -1 32 ω⋆L .
	Therefore, for all t ∈ [0, t ⋆ ], we have
		1 2	sup s∈[0,t]	ε(s)		2 H 1	C ε(0)	2 H 1 + Ce -1 32 ω⋆L .	(61)
	Plugging that back in the control on the modulation parameters Lemma 7.1 we
	obtain	N					
		j=1	|ω j (t) -ωj (0)| C ε(0)	2 H 1 + Ce -1 32 ω⋆L .

N k=1 |ω k (t) -ωk (0)| 2 + e -1 32 ω⋆L .

This allows us to infer that for j = 1, . . . , N we have

|ω j (t) -ωj (0)| sup s∈[0,t] ε(s) 2 H 1 + e -1 32 ω⋆L ,

and this concludes the proof of Lemma 7.1.
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