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Abstract. The paper addresses the solution of robust moment-based optimiza-
tion problems after a multipoint reformulation. The first four moments are con-
sidered (i.e. mean, variance, skewness and kurtosis) going beyond classical engi-
neering optimization based on the control of the mean and variance. In particular,
the impact on the design of a control of the third and fourth moments are dis-
cussed. The multipoint formulation leads to discrete expressions for the moments.
linking moment-based and multipoint optimizations. The linearity of the sums in
the discrete moments permits an easy evaluation of their gradients with respect
to the design variables. Optimal sampling issues are analyzed and a procedure
is proposed to quantify the confidence level on the robustness of the design. The
proposed formulation is fully parallel and the time-to-solution is comparable to
single-point situations. It is applied to three problems: an analytical least-square
minimization problem, a shape optimization problem with a reduced-order model,
and a full aircraft shape optimization robust over a range of transverse winds.

1. Introduction

The performance of a system designed for given functioning conditions often seri-
ously degrades when these conditions are modified. Today’s industrial robust design
mainly relies on reduced order modeling and intelligent sampling [1, 3, 4, 35] which
either does not use high-fidelity simulations during design or uses lower accuracy
than what would be affordable in a single-point optimization.

By robust design we mean a proposition which ensures similar performances over
a given operation range. We will discuss the implication of this requirement on
the moments of the performance functional. Our aim is to propose a methodology
which permits to design a system having similar performances over a given range
of its operating condition or functioning parameters. From a practical point of
view, we would like this to be achieved modifying as less as possible an existing
single-point optimization platform. In particular, we would like to avoid replacing
the high-fidelity ingredients of the platform by low-complexity solvers. Finally, we
would like the time-to-solution to remain comparable to the single-point situation.
We will illustrate our approach on problems with increasing level of complexity and,
in particular, on the optimization of the shape of an aircraft.

The literature on multipoint optimization is vast and exhaustive referencing is
out of our scope. This formulation has been used, in particular, to extend single-
point optimization to account for additional operating conditions. In this context,
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aerodynamic shape optimization has been previously tackled by multipoint formula-
tions together with high fidelity Reynolds Averaged Navier-Stokes (RANS) or Euler
simulations [22, 37, 14].

Forward and backward uncertainty propagation [2, 5, 19] are obviously of great
importance with a huge literature dedicated to uncertainty quantification (UQ).
Forward propagation aims at defining, for instance, a probability density function
(PDF) for a functional j(x) knowing those of optimization variables x [13, 15, 20].
This can be done, for instance, through Monte Carlo simulations or a separation
between deterministic and stochastic features using Karhunen-Loeve theory (poly-
nomial chaos theory belongs to this class) [10, 11, 35, 36]. Backward propagation
aims at reducing models bias or calibrating models parameters knowing the PDF of j
[6, 17, 34]. This can be seen as a minimization problem and Kalman filters [18] give,
for instance, an elegant framework for this inversion assimilating the uncertainties
on the observations.

In previous works, we showed how to quantify epistemic and aleatory uncertainties
through geometric characterizations of global sensitivity spaces built using adjoint-
based gradients of the functional available in existing optimization platforms [24].
In the presence of different modeling or solution methods, principal angles between
these sensitivity subspaces permit to measure the deviation due to a change in the
modeling [25]. We also showed how these ingredients can be used in the context of
multipoint robust analysis of a system to define worst-case scenarios for its function-
ing. To this end we combined a multipoint search direction with the probabilistic
features of the optimization variables through their quantiles [16, 27]. These in-
gredients permit to define the concept of directional uncertainty quantification and
directional extreme scenarios (DES)[26]. Global sensitivity spaces can then be built
for these extreme scenarios and the above geometric characteristics permit again to
measure the impact of the variability of the variables of the problem. One major
interest of this construction is to account for the variability of the variables in large
dimension without a sampling of the space. One surprising consequence of this anal-
ysis is that beyond individual gradient accuracy (i.e. at each of the sampling point),
what is important in multipoint problems is the global search space defined by the
ensemble of the gradient vectors. This means that one might tolerate higher error
levels in each of the gradient defined at the different sampling point than for a single-
point optimization situation as what is important is for the global search space to
remain unchanged. To go beyond directional extreme scenarios, we combined the
previous ingredients with Ensemble Kalman Filters (EnKF) [18] which are efficient
to account for the variability in the observations in inversion. The outcome is what
we called Ensemble Directional Extreme Scenarios (EDES) which provides a more
accurate and exhaustive sampling of the boundary of the uncertainty domain. We
showed how to link the necessary ensemble size to the geometry of global sensitivity
spaces in inversion [28].

Despite these approaches avoid the sampling of a large dimensional space and
despite EnKF is, indeed an elegant solution for the inversion of uncertain data,
the computation cost remains high and the procedures difficult to simply explain
in engineering environments. To address this issue, we proposed a simplified low-
complexity evaluation of the covariance matrix of the design variables using the
mentioned extreme scenarios and an adjoint-based gradient of the functional [30].
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This work follows what we started in [24] linking multipoint and moment-based
optimizations. These are mostly used to address robustness issues in engineering
because of their conceptual simplicity. The former can be efficiently formulated
through the latter when only a few operating condition parameters describing the
functioning of the system are present. This splitting between operating condition
parameters and design variables is central to our discussion. The fact that only
a few operating condition parameters are involved while the size of the vector of
optimization variables can be very large is quite realistic. In this work we would like
to go beyond monitoring the mean and the variance and see how much controlling
the skewness and the kurtosis of a system performance would affect its design. This
work therefore also addresses some aspects of optimization under uncertainty where
the moments of the functional are computed after a multipoint formulation of the
problem.

The paper starts with the formulation of robust parametric optimization problems
and their solutions through moment-based and multi-point formulations. Section 3
presents the evaluation of the gradients of the moments and the construction of
admissible search directions for a gradient-based optimizer. Section 4 shows how to
use these ingredients in such algorithms. Then the paper presents the application
of the approach to two model problems in sections 5 and 6 and to the optimization
of a full aircraft shape in section 7.

2. Robust parametric optimization

We are interested in a class of optimization problems where the cost function
involves a few operating condition parameters α not considered as design variables:

(1) min
x∈Oad

j(x, α), α ∈ I ⊂ IRn,Oad ⊂ IRN , n� N.

The operating condition parameters therefore refer to the points in the multipoint
formulation. x is the vector of design variable belonging to Oad the optimization
admissible domain. Typical situations of interest are with small n: a few operating
conditions while the system can require several design variables.

This is a very general context and we visited it to address robustness issues in
optimization with respect to x and α [27, 25, 26, 30].

2.1. Moment-based optimization. We showed how to use multipoint optimiza-
tion to address such optimization problem [24]. The aim is to remove the dependency
in α during optimization. This can be done, for instance, minimizing a functional
J(x) encapsulating this dependency under a constraint on the second moment of j:

(2) J = µ = IE[j(x, α)], such that σ = IE[(j(x, α)− µ)2] ≤ σ0,

where IE[.] is the expected value of j for the uncertain variable α.
In this work we would like to go beyond the first two moments and see how a

control of the first four moments, for instance, of j would affect the design.
Going beyond first two moments is important when the PDF of j deviates from

a pure Gaussian distribution. Indeed, even with interval-based (with uniform PDF)
or Gaussian entries there is no reason the PDF of the solution of a simulation to
remain uniform or Gaussian. In this work, we solely consider uniform PDF, but
there is no limitation in applying the presented concepts to other PDFs.
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The third and fourth moments, the skewness γ and the kurtosis κ, are defined as:

(3) γ = IE[(
j(x, α)− µ

σ
)3], κ = IE[(

j(x, α)− µ
σ

)4].

To ease their derivation with respect to x we avoid their normalization by σ in the
sequel. The skewness is an indication of the deviation from symmetry of the PDF
and the kurtosis permits to quantify if it is tall and skinny or short and squat.

One can consider that a robust design should favor symmetry in the distribution
which means lower absolute value of skewness. This is an assumption and other
values than zero can be targeted for the absolute value of the skewness. However,
the assumption of symmetry appears reasonable. Indeed, when driving a car on a
straight line, one expects the car to have the same behavior for small and symmetrical
disruptions in holding the steering wheel by the driver. In a Gaussian distribution
we have γ = 0. Also, in a normal distribution the mean and median coincide
and if a PDF is not too far from a normal distribution, the median will be near
µ− γσ/6. Therefore, if |γ| → 0 the PDF tends toward a normal distribution. This
provides an inequality constraint on |γ| as γ can be either positive or negative. For
an unimodal PDF a reduction of the skewness comes when the mean and the mode
of the distribution converge toward each other at given standard deviation.

Robust design means higher density near the mean which means higher kurtosis,
but this is more subtle. Indeed, despite higher kurtosis means concentration of the
probability mass around the mean, it could also imply thicker tails in the PDF. This
means that more of the variance is the result of infrequent extreme deviations. We
need therefore to define what we mean by robust design: acceptance of frequent
modest deviations or acceptance of infrequent extreme ones. If operational security
is a major concern the latter should be definitely avoided. We therefore consider
that a reasonable requirement would be to have a design reducing the initial kurtosis
value: κ ≤ κ0 together with a constraint on the variance σ.

In summary, we would like to consider these two constraints in addition to the
necessity to control the deviation from the mean expressed by a constraint on the
variance during optimization:
(4)

min
x∈Oad

J(x) = µ(x) such that

C1(x) = σ(x)− σ0 ≤ 0, C2(x) = |γ(x)| − |γ0| ≤ 0, C3(x) = κ(x)− κ0 ≤ 0.

Equality constraints on the moments are particular cases of these. In cases, higher
kurtosis are targeted (see discussion above), the last constraint becomes C3(x) =
−κ(x) + κ0 ≤ 0.

2.2. Discrete expressions. Monte Carlo simulations permit to recover these mo-
ments with an error decreasing as σ/

√
M with M the number of functional evalua-

tions and this with a convergence rate independent of n. But, for small n, classical
numerical integration over-performs Monte Carlo simulations in term of complexity
based on the number of functional evaluations to recover the moments at a given
accuracy. As we are interested by small values of n, this latter may therefore be
preferred.

Both Monte Carlo trials and numerical integration lead to the introduction of
weighted sums [24] over a M -point sampling IM of I as estimators of the previous
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moments (denoted with the same notation):

(5) µ =
∑
αk∈IM

ωkj(x, αk), σ
2 =

∑
αk∈IM

ωk(j(x, αk)− µ)2,

(6) γ =
∑
αk∈IM

ωk(j(x, αk)− µ)3, κ =
∑
αk∈IM

ωk(j(x, αk)− µ)4.

A major difference between Monte Carlo and numerical integration is that in the
former the sampling IM and the weights are chosen according to the PDF of α. In
this paper we consider uniform PDF. We have therefore uniform sampling in each
of the dimension of α and ωk ∼ 1/M . Unbiased estimates use slightly different
coefficients and also introduce corrections. For instance, ωk = 1/(M − 1) for σ,
ωk = M/((M−1)(M−2)) for γ and so forth. However, because we are interested by
the gradients of these quantities with respect to x and gradient-based minimization
algorithms, these changes will only have slight impacts on the amplitude of the
gradient with no real incidence on the optimization history, especially if optimal
descent step sizes are used. This discussion also shows that moment-based and
multipoint optimization can be seen as a whole. If different PDFs are targeted than
uniform, we need to redefine the sampling IM and the weights ωk accordingly.

3. Gradients and admissible search directions

The linearity in the sums permits to access to the gradients of the moments
with respect to the optimization variables x from the gradient of the functional at
the sampling point αk (we recall that we took σ = 1 in Equation (3) to ease this
linearization):

(7)

∇xµ =
∑
αk∈IM

ωk∇xj(x, αk),

∇xσ
2 =

∑
αk∈IM

2ωk(j(x, αk)− µ)∇xj(x, αk),

∇xγ =
∑
αk∈IM

3ωk(j(x, αk)− µ)2∇xj(x, αk),

∇xκ =
∑
αk∈IM

4ωk(j(x, αk)− µ)3∇xj(x, αk).

To account for the non-differentiability of the constraint on γ we consider the fol-
lowing definition for ∇x|γ|:

(8)

∇x|γ| = ∇xγ if ε < γ

= −∇xγ if γ < −ε
= 0 if |γ| ≤ ε,

where ε = γ0/10.
Knowing the individual gradients ∇xj(x, αk) at sampling points αk brings inter-

esting information on the geometry of the problem. Indeed, they can be used to
build a vector space and the analysis of this space provides important information
on the complexity of the problem [24, 25, 26]. In the sequel we will use this in-
formation to quantify our confidence on the quality and sufficiency of the sampling
IM . In the same way, analyzing the vector subspace generated by the gradients
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of the moments permits to build admissible descent directions for a gradient based
optimizer generating admissible minimizing sequences.

3.1. Sensitivity spaces. Let us introduce two vector spaces SM and sM .
∇xµ,∇xσ

2,∇xγ and ∇xκ are four vectors in SM = Span{∇xj(x, αk), αk ∈ IM} ⊂
IRN . In applications of interest N is large. However, we showed that often q =
dim(SM) << N [25, 24, 26]. The evaluation of the dimension of SM provides an a
posteriori indicator and gives confidence bounds on the choice of the sampling size
M which should be clearly larger than q but still much smaller than N . We show
an example of such analysis in section 7.2.1.

We also consider the subspace sM = Span{∇xCi=1,...,3} ⊂ IR3 ⊂ IRN . Obvi-
ously p = dim(sM) ≤ 3. Let us denote by {qi=1,...,p} an orthonormal basis for sM
obtained, for instance, orthonormalizing the three gradient vectors by the Gram-
Schmidt procedure. The gradients G of the constraints can therefore be expressed
as linear combination of qi: G = (∇xCi=1,...,3) = P−1(qi=1,...,p) with P being the
matrix expressing the coordinates of q in G.

3.2. Admissible search direction with equality constraints. Let us start build-
ing a descent direction d for problem (4) in the presence of equality constraints:

(9) min
x∈Oad

J(x), such that C(x) = (C1(x), C2(x), C3(x)) = 0.

At first order d needs to be orthogonal to sM .
Hence, using the local orthonormal basis {qi=1,...,p}, we consider d given by:

(10) d = ∇xµ−
p∑
i=1

< ∇xµ,qi > qi.

Denoting by Π the matrix of the projection operator < ∇xµ, q > we have:

(11) d = ∇xµ− (ΠPG)t PG = ∇xµ− (GtP tΠP )t G = ∇xµ+ ΛtG,

with Λt = (λ1, λ2, λ3) ∈ IR3.
We have d→ 0 with the descent iterations converging. Stationarity in d therefore

realizes the first order optimality condition for the Lagrangian L = J + ΛtC.

3.3. Admissible search direction with inequality constraints. The solution
of our minimization problem needs to verify the first order KKT conditions [33].
But, the optimality condition for the Lagrangian will involve only positive Lagrange
multipliers: Λ ∈ IR3

+ and ∇xL = ∇xJ + Λt∇xC = 0 with the complementarity
condition ΛtC = 0 meaning that λi = 0 if Ci ≤ 0 and λi > 0 if Ci = 0 (i.e. Ci
is an active constraint). To define d we follow what put in place for the equality
constraints, but only considering active constraints gradients in the definition of sM
which is not anymore a subspace but a convex cone:

(12) sM = {x | x =
3∑
i=1

βi∇xCi, βi > 0 | Ci = 0} ⊂ IR3 ⊂ IRN .

At the solution, ∇xJ is orthogonal to this cone. Before working on the cone, let us
start defining a local orthonormal basis {q̃i=1,...,p} for s̃M from Equation (12) but with
βi ∈ IR. This is therefore a subspace and the basis can be defined as previously with
p = dim(sM). Now, qi = ±q̃i and the sign chosen such that < qi=1,...,p,∇xCj >≥ 0,
if Cj = 0 for j = 1, ..., 3 (i.e. pointing inside the cone). Here, {qi=1,...,p} are therefore
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the generators of the cone sM deduced from a basis of s̃M . If the generators cannot
be defined, the problem is found having no solution as at least two of the constraints
are incompatible with their gradients parallel and pointing in opposite directions.
These generators permit to define the admissible search direction d from Equation
(10) but taking into account that we only remove the non admissible contribution:

(13) d = ∇xµ−
p∑
i=1

χi < qi,∇xµ > qi,

with χi = 0 if < qi,∇xµ >≥ 0 and χi = 1 if < qi,∇xµ >< 0.

4. A multipoint descent algorithm

We consider the following iterative descent algorithm for our constrained mini-
mization problem involving a direct simulation chain linking the independent vari-
ables and parameters (x, α) to the state U solution of a state equation F (U(q(x), α)) =
0 and to a functional j is:

Given x0, 0 < ρ, IM , pmax and a stopping criteria,

optimization iterations p = 1, ..., pmax

1-M parallel state equation solutions F (U(q(xp), αl)) = 0, αl ∈ IM ,

2-M parallel evaluations of j(xp, αl), αl ∈ IM ,

3-M parallel solutions of the adjoint state V equation:

V tFU(U(q(xp), αl)) = jtU , αl ∈ IM ,

4-M parallel evaluations of ∇xj(xp, αl) = jx + (V tFx)t, αl ∈ IM ,

5-define d the descent direction using Equation (13),

6-minimization using d: (e.g. xp+1 = xp − ρd),

Stop if a given stopping criteria is achieved.

In multi-criteria problems steps 2, 3 and 4 also include the treatment of the
different criteria. This introduces a different definition of the descent direction d as
shown in section 7.

Despite the natural presence of parallelism due to the M independent evaluations
of the state, functional and its gradient, computational complexity remains an issue.
We have shown previously how to reduce this effort optimizing the sampling size
[24] together with the use of incomplete sensitivity concept in the evaluation of the
gradients which permits to avoid the solution of the M adjoint equations [31].

5. A first example

Let us illustrate our ingredients on a simple example. The functional involves a
least-square minimization:

(14) j(x, α) =
1

2

N∑
i=1

(xi − α)2, −0.5 ≤ α ≤ 0.5, −5 ≤ xi=1,...,N ≤ 5, N = 40.

Let us solve problem (4) with a gradient method. Here, α is a scalar and for a given
α the optimality condition for j(x, α) gives obviously x∗ = (α, ..., α) ∈ IRN . This
would be the solution of a single-point optimization. Here α has a uniform PDF
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1 moment 
Single point 

2-4 moments 

Figure 1. Functional (14): Upper-left: j(x∗, α) given by Equation
(14) vs. α for single-point optimization, mean-based and with moment
constraints. Upper-right: normalized moments histories with moment
constraints. Lower: histograms of j(x∗, αk=1,...,M) for a single-point
minimization and when controlling either one or more moments.

and we use a uniform sampling IM with M = 40. Minimizing the mean µ without
any constraint on the other moments still produces a non robust optimum as the
performance has large variability over the range of the operating condition α. On
the other hand, asking for all four moments to decrease produces a much flatter
functional over the range of α. Figure 1 shows the histories during optimization
iterations of (µ/µ0), (σ/σ0)1/2, (γ/γ0)1/3 and (κ/κ0)1/4. The figure also shows the
histograms of j(x∗, αk=1,...,M) for these minimizations. In particular, one sees how
controlling more moments affects the left peak. In this example controlling the first
two moments gives nearly the same answer than with the first four moments. But,
we will see that this is not always the case.
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Figure 2. Robust shape optimization for functional (16). Optimal
shapes obtained when controlling one or more moments and conver-
gence histories for the first four moments.

6. Shape optimization with a reduced-order model

Let us consider a situation where α has two components. One considers a flow
problem in two dimension in space where the pressure distribution along the shape
Γ(x) follows the so-called Newton law:

(15) p(Γ(x), α) =
1

2
ρ∞‖u∞(α)‖2

(
u∞(α)

‖u∞(α)‖
.n(Γ(x))

)2

=
1

2
ρ∞(u∞(α).n(Γ(x)))2,
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2 moments 4 moments

1 momentSingle point

Figure 3. Histograms of j(x∗, αk=1,...,M) for the shapes given in figure
2.

where subscript ∞ denotes inflow quantity for the density and velocity and n the
local outward normal to the shape. This relation gives satisfactory prediction of the
pressure distribution over blunt shapes (such as nose cone shapes) in a low-speed
flow.

The optimization variable space (shape parameterization) is of dimension 3 and
the functional involves pressure target over the shape Γ(x) described by the variable
x = (x1, x2, x3). More precisely, the shape Γ(x) is given by:

Γ(x) = {(y1, y2), such that y1 ∈ [−π, π], y2 = Πi=1,3 cos(xiy1)}.

One would like to realize best a target pressure distribution pdes, taken constant
here, over a given range of the inflow velocity intensity (Uin) and incidence (θ)
defined by α = (Uin, θ). Using the notations above, we have:

(16) j(x, α) =
1

2

∫
Γ(x)

(p(Γ(x), α)− pdes)2 dγ.

As in the previous example, we use a gradient method to solve problem (4). In a
single-point optimization (i.e. at a given α) the shape will be flat and oriented in
order for the normal n to the shape to realize:

u∞.n =

√
2
pdes
ρ∞

.
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However, while optimal for a single-point situation, a particular flat shape is not
anymore optimal for a multipoint formulation based on a sampling of the range of
α = (Uin, θ) ∈ [1cm/s, 1.6cm/s] × [−1.5◦, 1.5◦]. We consider a 30 × 30 sampling of
this two dimensional operating parameters range (i.e. the sampling size is M = 900).
This means that at each iteration of optimization we need to compute 900 states
and gradients of the functional at these sampling points.

Minimizing the first moment alone produces an arc shape as shown in figure 2.
Now, let us consider this minimization together with equality constraints on higher
moments. We see that, unlike in the previous example, going from 2 to 4 moments
has a significant impact on the optimal shape. Figure 3 shows the histograms of
j(x∗, αk=1,...,M) for these minimizations. One sees how controlling more moments
reduces the dispersion of j. A fully robust design will only have one bar in its
histogram. In that regard, compared to the single-point design, the situation clearly
improves with two moments and more. With solely the first moment the robustness
is slightly better as the weight of the tail in the histogram decreases. But, the
improvement is not enough visible. This is expected as the 1-moment shape shown
in figure 2 is close to the single-point flat shape. The evolution of the moments
during optimization also shows the impact of adding two extra constraints requiring
a conservation of the third and fourth moments. We will recover this behavior in
the next example for a complex shape optimization problem.

7. Full aircraft shape optimization

Let us now apply the concepts presented in the previous sections to the optimiza-
tion of the shape of an aircraft in transonic cruise condition. We have previously
studied how to approach robust shape design for this configuration to account for
the different sources of of variability (e.g. due to a change in the weight of the
aircraft during the flight because of fuel consumption or due to variability in the
flight conditions) [24, 25, 26]. In all these works, the aim has been to upgrade ex-
isting deterministic single-point shape optimization platforms in order to minimize
the necessary extra coding effort.

One important source of variability is with the flight conditions. For instance,
when the aircraft cruises against transverse winds which are very common. In this
case, the operating condition parameter α is the sideslip angle (i.e. n = 1) inducing
fully 3D effects on the flow around the plane making necessary the consideration of
a full aircraft during the design. Usually aircraft are designed for a range of angle of
incidence and this permits to easily recover the lift coefficient thanks to the linear
relationship between incidence and lift away from stall conditions. These designs are
usually realized with the sideslip angle set to zero. It is therefore necessary to reduce
the sensitivity of the design with respect to this operating condition parameter.

Because the airplane geometry is symmetric spanwise, it is not necessary to con-
sider a symmetric range for the transverse wind but, as already mentioned, we need
to consider the whole aircraft as there is no spanwise symmetry in the flow for non
zero sideslip angles. In the sequel we consider an aircraft flying at a Mach number
of 0.8 and zero inflow incidence but with the sideslip angle α in I = [0, 10o]. These
parameters fully describe a 3D inviscid flow around the aircraft.

7.1. Single-point shape optimization platform. We work in the framework
of an existing shape optimization platform. We use, in particular, several of its
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simulation codes for the shape parameterization and deformation, for the mesh de-
formation, for the flow calculations around the aircraft and for the shape adjoint
sensitivity analysis of aerodynamic coefficients. This is a very standard and generic
situation and one shall consider these as black-boxes. Also, the discussion remains
valid if more sophisticated multi-physics scenarios need to be considered [23].

Let us briefly recall our direct dependency chain linking independent variables
(α,x) to the dependent variables (q(x), U(α,x)) describing geometrical entities and
state variables and to the cost function (here the drag coefficient Cd) and to the
constraints ci=1,...,3:

(17) (α,x)→


q(x),

U(α, q(x)),

(Cd, ci=1,...,3)(α,x, q(x), U(α, q(x))).

It is important to identify all dependencies in order for the sensitivity analysis to be
complete, especially when the operating conditions are not anymore single valued.
The functional and constraints will be described in section 7.1.3.

7.1.1. Shape parameterization and geometrical entities. In relation (17) x denotes a
CAD-free parameterization [31, 32] which does not require a priori local regularity
assumptions on the shape as it is implicitly the case in Computer Aided Design
(CAD) based shape definitions. More precisely, x represents shape deformations
along the normal to the triangular faces of the surface mesh as shown in figure 4.
For the problem discussed here this search space has a dimension N ∼ 5000. This
parameterization receives different denominations and belongs to the same class
than node-based or free-form shape definitions. In all these approaches the regu-
larity of the deformation needs to be monitored [21, 31]. This parameterization is
intermediate in term of generality between CAD definitions of a shape and fully free
topological optimization choices where both the regularity and topology of the shape
are free. Examples of shape deformation produced by our optimization procedure
for different regularity requirements are shown in figure 5.

Need for regularity control comes from the fact that, unlike with a CAD definition,
the shape ∂Ω of an object Ω and a gradient-based deformation of ∂Ω do not belong
to the same function space in terms of regularity and, actually, the second is always
less regular [30, 31, 32].

This can be illustrated on a simple example with J(x) = ‖Ax − b‖2 taking x ∈
H1(∂Ω), Ax and b in L2(∂Ω). The gradient J ′x = 2AT (Ax− b) belongs to H−1(∂Ω).
Therefore, any variation along J ′x will have less regularity than x: δx = −ρJ ′x =
−ρ(2(Ax − b)A) ∈ H−1(∂Ω). We therefore need to project (or filter or smooth)
into H1(∂Ω). Now, suppose the shape is described in a finite dimensional parameter
space, as for instance with a polynomial definition of a surface (this is like a CAD
parameterization). When we consider as control parameters the coefficients of the
polynomial, changes in those do not change the regularity as the new shape will
always belong to the same polynomial space. Sobolev inclusions give the key for the
choice of the regularity operator with the CAD-free parameterization [31]. In our
case, because we are using a piecewise linear discretization, a second-order elliptic
system is sufficient. More precisely, we use a local Laplace-Beltrami operator over
the shape [31].
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This capacity to monitor the regularity of the shape is also interesting as often
the optimal solution is not reachable by the current CAD parameterization of the
shape. Hence, after an optimization with the CAD-free parameterization and using
different level admissible regularity for the shape, one can decide which realization
is more suitable and also whether it is interesting or not to enrich the current CAD
definition of the shape.

To keep the discussion focused on moments control, in the sequel we only consider
one level of regularity during optimization corresponding to the lower-right picture
in figure 5.

Figure 4. CAD-free shape parameterization (lower-left) and by-
section definitions (upper) of the shape for geometric constraints en-
forcement. Lower-right shows a typical distribution of ∇xCd− <
∇xCd, π > π described in section 7.1.4 for this CAD-free parameteri-
zation.

q(x) denotes the auxiliary unstructured mesh related geometrical quantities (sur-
faces, volumes, normals, etc). When the shape is modified, this change must be
propagated through the mesh keeping it admissible and we need to recalculate all
related geometrical quantities. Admissible and positive mesh deformation is achieved
by a 3D torsional spring analogy method [9].

7.1.2. Flow solver. In relation (17) U(α, q(x)) = (ρ, ρ~u, ρE)t denotes the flow vari-
ables in conservation form solution of the Euler equations where, T being the tem-
perature, the total energy is given by E = CvT + ‖~u‖2/2 and the pressure by the
state law p = ρRT with R the perfect gas constant.

The details of the implementation of the flow solver are available in [31]. It is based
on a finite volume Galerkin method on unstructured tetrahedral meshes [8]. Other
choices are possible for the flow solver and the literature on numerical methods
for compressible flows is huge. This is not central to our discussion. We target
steady solutions and use time marching with local time steps to reach these. The
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Figure 5. Regularity control in CAD-free shape parameterization:
examples of shape deformation produced by our optimization proce-
dure for different regularity requirements. These are isovalues of the
norm of the vector of shape deformation along the normal to the sur-
face.

time integration procedure is explicit and is based on a low-storage Runge-Kutta
(RK) scheme. To improve computational efficiency we only use partial convergence
for the state equations. In particular, the sufficient level of convergence retained
is when the flow solver iterations only modify the third digits in the aerodynamic
coefficients. This is achieved with about 100 RK iterations starting from a uniform
solution distribution. During optimization a new calculation for a new shape is
always started from the previously available solution making us to proceed with
typically only 20 RK new iterations [25, 26, 30].

The mesh used here has around one million elements which is obviously insufficient
to reach full mesh resolution for the flow around an aircraft, even in a context of
inviscid modeling. It is however important that the approach uses the ingredients of
a generic high fidelity platform and does not remove or simplify any of its ingredients
as often it is the case in uncertainty quantification procedures using reduced order
models.

Also, as mentioned in the introduction, we should consider that in practice our
modeling capability and our computational resources will always be limited. Sup-
pose we have access to different models, numerical methods or levels of refinement.
Each will provide a couple of vector spaces SM and sm introduced in section 3.1.
Analysis of their respective dimensions and principal angles between corresponding
spaces [26, 25] permits to estimate if an increase in the modeling complexity or nu-
merical accuracy has an impact on the search space: if unchanged, an increase in
the complexity is useless. And we can go further assuming the computed state (here
the pressure over the shape) as uncertain with different levels of uncertainty over
different regions of the shape. The assumption can be based on what is expected
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from the modeling or observed (experimental or in flight). It is, indeed, well known
that for a civil transport the flow distribution is quite stable in the cockpit and over
the first and business class siting area where the flow is nearly potential. On the
other hand, flow variability increases spanwise (easy to see from wings tips oscillat-
ing) and also toward the tail of the aircraft (flying coach once makes this easy to
understand). These are due, among others, to separated turbulent flows instabilities
and fluid-structure interactions. These remarks permit to define a rough geometric
distribution of expected state variability distribution. In [30] we showed how to use
this information together with the gradients of the functional to build the covariance
matrix of x after optimization. The diagonal of this matrix gives, in particular, the
uncertainty we have on the design due to the uncertainty or lack of modeling and
state resolution.

7.1.3. Optimization problem. Aircraft performance analysis concerns its payload and
range. These are directly linked to the aerodynamic coefficients of the aircraft called
the lift (conditioning the payload) and drag (conditioning the fuel consumption)
coefficients. The drag Cd coefficient is given by:
(18)

Cd(α,x, q(x), U(α, q(x))) =
2

Sρ∞(α)‖u∞(α)‖2

∫
shape(x)

p(α, q(x))(u∞.n(q(x))dγ,

where subscript∞ indicates inflow conditions and S a constant reference area (taken
here as one square meter). The lift coefficient Cl is evaluated with formula (18)
where u∞ is replaced by u⊥∞ in the boundary integral.

The lift coefficient often appears through an inequality:

c1(α,x, q(x), U(α, q(x))) = Ctarget
l − Cl(α,x, q(x), U(α, q(x))) ≤ 0,

or equality constraint

c1(α,x, q(x), U(α, q(x))) = |Ctarget
l − Cl(α,x, q(x), U(α, q(x)))| = 0,

with Ctarget
l a target performance. Let us consider this second situation.

Structural efficiency and necessity of useful free volume also implies the consider-
ation of geometric criteria such as a constraint on the volume V of the aircraft or its
by-section definition. As for the lift coefficient, this gives a constraint of the form:

c2(q(x)) = |V target − V (q(x))| = 0.

The volume of an object Ω (here the aircraft) is expressed through the boundary
integral formula: V =

∫
Ω

1 =
∫

Ω
1
3
∇.(X) =

∫
∂Ω

X.n, where X = (x1, x2, x3)t is the
local coordinate over the shape.

The last geometric constraint concerns the local wing by-section thickness which
is prescribed. We define by-section definitions of the shape as shown in figure 4. In
this construction the number of sections ns is free (here ns = 50) and can be adapted
to account for the complexity of the geometry. Each node in the parameterization
is associated to a section Σi, and for each section, we define the maximum thickness
∆i. This last operation requires the projection of the upper-surface nodes over the
lower surface for each section. This constraint is expressed as:

c3(q(x)) =
ns∑
i=1

|∆i(q(x))−∆target
i | = 0.
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An alternative solution which is much simpler to implement is to only enforce a
local volume constraint in each section Σi using the volume formula above: V (Σ) =∫

Σi
1 =

∫
Ω

1 χ
Σi

=
∫

Ω
1
3
∇.(X) χ

Σi
=
∫
∂Ω

X.n χ
∂Σi
, where χ is an indicator function

(χ = 1 if the point is in section Σi and χ = 0 otherwise). Testing if a point is
in Σi is easy and only requires an interval-based coordinate check, spanwise in this
situation.

In summary, we consider the following optimization problem involving aerody-
namic coefficients and geometric constraints:

(19)

minimize
x

Cd(α,x, q(x), U(α, q(x)))

subject to c1(α,x, q(x), U(α, q(x))) = 0,

c2(q(x)) = 0,

c3(q(x)) = 0,

F (U(q(x), α)) = 0.

7.1.4. Gradient of the functional and constraints. The minimization algorithm we
consider uses the gradients of functional and constraints with respect to the shape.
In our approach, all the sensitivities are computed by automatic differentiation (AD)
in reverse mode using tapenade [12]. Details on how AD in direct and reverse modes
works and, in particular, how tapenade generates a computer program for ∇xj from
the program computing j(x) in similar situations are given in [31, 32, 30].

The constraints can be accounted for by introducing penalty or weighting terms
in the cost function: j = Cd +

∑
i=1,3 aici, ai ∈ IR+.

The weighting approach can however be avoided using the formulation presented
in section 3 to account for the constraints Ci on the second, third and fourth mo-
ments of the functional. More precisely, we consider a locally admissible gradient
orthogonal to A = Span(∇xci, i = 1, ..., 3) with dim(A) ≤ 3. Let us denote by
π an orthonormal basis of this subspace obtained by the Gram-Schmidt procedure
applied to the gradients of the constraints. The admissible search direction is given
by:

(20) δk = δ(x, αk) = ∇xCd− < ∇xCd, π > π,

where <,> indicates the scalar product over subspace A. This is therefore similar
to the construction given in Equation (10) where π = {qi=1,...,3} and with the con-
straints Ci replaced by ci. In the presence of inequality constraints ci ≤ 0 instead
of equality we proceed as in section 3.3 and build the admissible direction based on
the KKT optimality conditions.

The constructions above require ∇xCd, ∇xCl, ∇xV and ∇x∆i. The two former
require the adjoint of the state equation and we take advantage of the capability for
multi-right-hand-side adjoint calculation of tapenade in reverse mode to access these
gradients without necessitating the solution of two separate adjoint problems. Our
direct Euler code uses time marching to the steady solution with local time steps. An
optimization of the reverse mode of AD comes from the fact that, our situations of
interest being stationary in time, there is no need to store the forward intermediate
states before backward integration: only the final steady state is enough [7, 29, 31].

In the sequel the developments of section 3 will be followed with the gradient ∇xj
replaced by the search direction δk.
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7.2. Multipoint optimizations. Let us now use the ingredients above in our mo-
ment control problem described in section 2. We require all moments to decrease.
However, as described in section 2.1, other strategies can be adopted, especially for
the skewness and the kurtosis. In the sequel we consider a M = 100 points sampling
of I. From a complexity point of view, this means that at each iteration of opti-
mization, we need to solve 100 direct and adjoint state equations to access the state
U(x, αk) and the gradients ∇xJ(x, αk) for the different αk ∈ I100. This represents
the major cost of the optimization (see table 1).

7.2.1. The search space SM . Let us analyze the global search space SM introduced in
section 3.1 and generated by the individual search directions δk=1,...,M at the sampling
IM of the operating condition parameter range: SM = Span{δ(x, αk), αk ∈ IM} ⊂
IRN . In particular, we are interested by the dimension of this space. As shown in
[24], this analysis will give an a posteriori confidence bound on M . Figure 6 shows
the outcome of the Gram-Schmidt orthonormalization of the vectors in {δk=1,...,100}
at each iteration of optimization. The subspace S100 is not free and can always be
generated by a subset of vectors with a maximum of 35 independent directions over
the 100 involved. This maximum represents a worse case in term of sensitivity as in
most situations the space can be generated with less than 15 independent vectors.
This provides some confidence on the chosen sampling size.

  

Always bounded by 35 during optimization for M=100 

Figure 6. Histories of Gram-Schmidt orthonormalization of
{∇xj(x, αk), αk ∈ I100} during optimization. The dimension of the
global search space always remains below 35 to be compared to M =
100.

7.2.2. Comparing the four strategies. Figure 7 shows final shape deformations for
our four strategies minimizing zero (i.e. single-point optimization), one, two and
four moments. The single-point situation is for α = 0. One sees that the final
shapes are very different.
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Table 1. Relative computation time in one optimization iteration
Task Single-point Multipoint (parallel M points)
Direct state (CFD) 1 M
Gradient (Adjoint) 7 7×M
Descent direction by (13) 10−4 10−4

Gradient based minimization 10−5 10−5

The factor of 7 is the observed extra calculation complexity for the automatically
differentiated adjoint code generated by Tapenade. Building the descent direction
involves Gram-Schmidt orthonormalizations. The optimization step uses constant
step size and no linesearch is applied. The computational time for the Euler CFD
code on a 2.5GHz core per mesh node and per RK time iteration is about 10−5 sec

including the I/O steps.

Considering the normalized histories of the first four moments during optimization
shown in figure 8, one sees that controlling these moments is something achievable.
We voluntarily consider only a few iterations as in practice the amount of calculation
effort is bounded and in particular there is no a priori knowledge of the necessary
effort. We want to see the impact of the different optimization problem formulations
on the outcome of the design.

One should however insist on the fact that these are very computer intensive simu-
lations as each optimization iteration requires M = 100 direct state equations and M
adjoint solutions with multiple right-hand-side (to access ∇xCd and ∇xCl). These
evaluations permit to build the multipoint-based descent direction δk = δ(x, αk)
using Equation (20). These directions are then used to access the gradients of the
different moments as described in section 3. Table 1 shows the relative computation
time for each of these tasks during one optimization iteration.

Let us finish this discussion looking at the different histograms for the expression
j(x, α) = Cd+

∑
i=1,3 ci where we have used unit weighting coefficients in the penalty

term. This expression is only used in this post-processing step and not to define
the search directions. Figure 9 shows the frequencies of belonging to each of the

categories versus a normalized expression for j(xopt, α)← j(xopt,α)−j0min

j0max−j0min
where j0

max =

sup{j(x0, αk), αk ∈ IM} and j0
min = inf{j(x0, αk), αk ∈ IM} for the initial shape x0.

Going from single-point to moment-based optimization, with more and more mo-
ments involved, changes the geometry of the optimization problem and this has an
obvious impact on the convergence histories. This has been also observed in the opti-
mization with the model problem as shown in figure 2. We start with the 4-moment
formulation and the optimization algorithm stops when the changes observed in the
moments are found negligible. Then we reduce the number of moments considered
and proceed with the same number of iterations. Again, the optimization algorithm
can stop before if the changes observed in the moments are found negligible We
should keep in mind that in real applications it is unlikely we can proceed up to a
full convergence. One usually asks for an a priori number of iterations and this is
somehow the philosophy adopted here: we would like to see the differences we have
in the solution by the different approaches at a given calculation complexity (i.e. af-
ter a given number of optimization iterations). We recall that the extra cost of going
from one to four moments is negligible as indeed, once the gradients at the sampling
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points have been calculated, the extra cost only concerns linear combinations of
these gradients and an orthonormalization of up to four vectors.

The modeling used here is based on the inviscid Euler equations. If one moves
to more sophisticated physics (e.g. including viscous effects, turbulence, etc.) it is
clear that the distributions will be different as the aerodynamic coefficients vary.
Also we expect viscous effects to increase the impacts of transverse winds on the
performance of the aircraft making even more important the necessity for robust
design.

Finally, it is interesting to notice that despite the final histograms are quite close
(see figure 9), the shapes vastly differ (see figure 7). This puts in evidence non
uniqueness issues and the fact that going from 2 to 4 moments control require-
ment might lead to more than small variations of the design. We recover here the
conclusions with the model problem of section 6.

Figure 7. Total shape deformations from the initial shape with dif-
ferent moment control strategies. These are isovalues of the norm of
the vector of shape deformation along the normal to the surface. The
maximum deformation reaches 10 cm.

8. Concluding remarks

Robust parametric optimization has been addressed as a problem of functional
moments control expressed through a multipoint formulations. This permits to
address situations where operating parameters are not anymore single valued but
defined through their PDF. In this work only uniform PDFs have been considered
with the operating parameters known through their ranges of variation. However,
the approach can be extended without limitation to other PDFs. This would only
require the definition of the sampling IM and the weights ωk in Equations (5) and
(6) according to these PDFs.

The first four moments of the functional have been considered in order to go
beyond the classical mean-variance based optimization. Subtleties of what should
be the target for the skewness and the kurtosis of the probability density function
of the performance of the system for a robust design have been discussed.
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Single-point 

2 moments 

4 moments 

1 moment 

Figure 8. Histories of (µ/µ0), (σ/σ0)1/2, (γ/γ0)1/3 and (κ/κ0)1/4 for
four optimization strategies.

It has been shown that controlling third and fourth moments can have major and
non intuitive impacts on the design while the time to solution remains compara-
ble to the single-point situation as all the extra calculations can be carried out in a
fully parallel and independent manner. The approach requires quite small additional
coding and computational effort compared to when solely considering one moment.
Indeed, the cost of the calculation is in getting the multipoint states U(x, αk) and
also ∇xJ(x, αk) for the different αk. Once we have these vectors, gradients of the
second, third and fourth moments just involve linear combinations following Equa-
tions (7). And we need a Gram-Schmidt orthonormalization of up to four vectors to
define the search direction d using relation (11) or (13), which again costs nothing.
Therefore, once the multipoint design platform is in place, the extra cost of an op-
timization iteration remains negligible when going from one to four moments as the
consideration of extra moments does not require any new state or adjoint evalua-
tions. Also, depending on the application and the expert choices other requirements
could have been chosen for each of the moments than those applied here. And more
moments can be considered as well at nearly no extra cost. But, then one needs to
be able to analyze the impact of their control on a design. In all cases, if one knows
the kind of behavior one wants for any given moment, it can be included as well in
the problem.

Finally, a discussion is proposed on how to provide some quantitative confidence
level on the pertinence of the multipoint sampling and consequently on the qual-
ity of the search directions built from multiple gradients evaluation in constrained
environments.
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Single-point 2 moments

4 moments

1 moment

2 moments 4 moments 

Figure 9. Histograms of the functional j(x, αk ∈ IM) = Cd +∑
i=1,3 ci at the optimal solution for the single-point optimization and

the different moment control strategies.
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