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GLOBAL EXISTENCE OF WEAK SOLUTIONS TO DISSIPATIVE
TRANSPORT EQUATIONS WITH NONLOCAL VELOCITY

HANTAEK BAE, RAFAEL GRANERO-BELINCHON, AND OMAR LAZAR

ABSTRACT. We consider 1D dissipative transport equations with nonlocal velocity field:
Oy + uby + dug0 + A0 =0, u=N(0),

where A is a nonlocal operator given by a Fourier multiplier. Especially we consider two types of
nonlocal operators:

(1) N =H, the Hilbert transform,

(2) N=(1—0z2)" .
In this paper, we show several global existence of weak solutions depending on the range of v and
6. When 0 < v < 1, we take initial data having finite energy, while we take initial data in weighted
function spaces (in the real variables or in the Fourier variables), which have infinite energy, when

v=1.

1. INTRODUCTION

In this paper, we consider transport equations with nonlocal velocity. Here, the non-locality
means that the velocity field is defined through a nonlocal operator that is represented in terms of
a Fourier multiplier. For example, in the two dimensional Euler equation in vorticity form,

wt +u-Vw =0,
the velocity is recovered from the vorticity w through
1 —1 . . iet
u=V-(—A) "w orequivalently u(§)= @w(f).

Other nonlocal and quadratically nonlinear equations appear in many applications. Prototypical
examples are the surface quasi-geostrophic equation, the incompressible porous medium equation,
Stokes equations, magneto-geostrophic equation in multi-dimensions. For more details on nonlocal
operators in these equations, see [1].

We here study 1D models of physically important equations. The 1D reduction idea were initiated
by Constatin-Lax-Majda [3]: they proposed the following 1D model

0y = OHO

for the 3D Euler equation in the vorticity form and proved that 76 blows up in finite time under
certain conditions. Motivated by this work, other similar models were proposed and analyzed in
the literature [1, 2, 3, 4, 5, 6, 12, 13, 16, 19, 20, 23]. In this paper, we consider the following 1D
equation:

O + uby + duz0 + vA70 =0, u=N(0). (1.1)

Depending on a nonlocal operator A/, (1.1) has structural similarity of several important fluid
equations as described below. The goal of this paper is to show the existence of weak solutions
with rough initial data. To this end, we will choose functionals carefully to extract more information
from the structure of the nonlinearity to construct weak solutions.
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2 HANTAEK BAE, RAFAEL GRANERO-BELINCHON, AND OMAR LAZAR

1.1. The case N = H. We first take the case N' = H, the Hilbert transform. Then, (1.1) becomes
0 + (HO) 6, + 00A0 + v A0 = 0, (1.2)

where the range of v and ¢ will be specified below. We note that (1.2) is considered as an 1D model of
the dissipative surface quasi-geostrophic equation. The surface quasi-geostrophic equation describes
the dynamics of the mixture of cold and hot air and the fronts between them in 2 dimensions [10, 206].
The equation is of the form

O +u-VO+vA0 =0, u=(—Rq0,R10), (1.3)
where the scalar function 6 is the potential temperature and R; is the Riesz transform

R;f(x) = %p.v. /]R2 %dy, j=1,2.

As Constatin-Lax-Majda did for the Euler equation, the equation (1.2) is derived by replacing the
Riesz transforms with the Hilbert transform. The case § = 0 and § = 1 correspond to (1.3) in
non-divergence and divergence form, respectively. We take a parameter § € [0,1] to cover more
general nonlinear terms in (1.2). We note that there are several singularity formation results when
v=0:0<d<zandd=1[23,0<8<1[6],and s =0 [12, 19, 28]. By contrast, we look for

weak solutions of (1.2) globally in time (see e.g. [14]). From now on, we set v = 1 for notational
simplicity.
We assume that 6y satisfies the conditions
90(:17) >0, 60y¢€ L'n H% (1.4)

Since (1.2) satisfies the minimum principle (see Section 2) when 6 > 0, 0(¢,z) > 0 for all time.
Moreover, the structure of the nonlinearity enables us to use the following function space

Ap = L (O,T; PN H%) nrL? (o,T;H%“) for all p € (1, 00).
Definition 1.1. We say 6 is a weak solution of (1.2) if § € Az and (1.2) holds in the following
sense: for any test function ¢ € C° ([0,T") x R),
/ ! / 001 + (HO) 0, + (1 — 5)AOOY — ON] dadt — / B0 (2)0(0, z)da
holds for any (;]< ;{i < 00. -

Theorem 1.1. Let v € (0,1) and 6 > % Then, for any 0y satisfying (1.4), there exists a weak
solution of (1.2) in Ap for all T > 0. Moreover, a weak solution is unique when v = 1.

When v = 1, we consider infinite energy solutions of (1.2). More precisely, we take a family of
_B
weights wg = (1 + |:17|2) 2 0 < B <1, and take initial data satisfying
Oo(x) >0, 6o € Hz (wgdx) N L™ (1.5)

where weighted Sobolev spaces are defined in Section 2. We note that 6y can decay (slowly) at
infinity. For example, as long as B+ 2n > 1, |0y(x)| ~ |27, n > 1/2 is allowed to stay in L*(wgdx)

2n
/ Lﬁdx < 0.
21 (1 + |of?)

But, we can still use the energy method to obtain a weak solution of (1.2). Let
Br = L™ (O,T; H%(’wﬁdx)> N L2 (0,T; H (wydz)) .

Theorem 1.2. Lety =1 andd > % Then, for any 6y satisfying (1.5) with ||6p|| L being sufficiently
small, there exists a unique weak solution of (1.2) in By for all T > 0.
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In Theorem 1.1 and Theorem 1.2, we have restrictions on the sign of initial data and the range
of 6. We can remove these conditions by looking for a solution of (1.2) in function spaces defined
by the Fourier transform. Let

A% = {f e Lh, : Ifllae = /R (1+ [ F©)lde < oo} |

We also define
Wr = L (0, T; Wh) n Wh>(0,T; L>) N L'(0,T; W>°).
Theorem 1.3. Let v =1 and 6 € R. Then, for any 0y € A' with
VT
V2(1+18))°

there exists a unique weak solution of (1.2) verifying the following inequality for all T > 0

V2(1 4+ |8])]|6 T
6eWr, sup 0] + (1— (1t 10D 1bollac | 10 < ool
t€[0,7) VT 0

[0]] 40 < (1.6)

We note that 6y € A' can have infinite energy. For example, we take 9:)(5) = i;% for £ # 0.
Then, 6y € A but 6y ¢ L2

1.2. The case N = (1 — 9;,)"® and § = 0. In this case, (1.1) is changed to the equation
O +uby, + A0 =0, u=(1—0y) 0. (1.7)
This equation is closely related to a generalized Proudman-Johnson equation [25, 27, 31]:

fth + ffmmm +5f:vfmm = fowxw

which is derived from the 2D incompressible Navier-Stokes equations via the separation of space
variables when § = 1. By taking w = f,.,

wy + fwe + 0 fow = vwg,, [= (am)_lw.

The inviscid case with § = 2 is equivalent to the Hunter-Saxton equation arising in the study
of nematic liquid crystals [15]. The equation (1.7) is also considered as a model equation of the
Lagrangian averaged Navier-Stokes equations [21] which are given by

O (1-0’A)u+tu-V(1-c?A)ut+ (Vu)' - (1 -o?A)u=-Vp+vA(l-0?A)u, V-u=0
We first deal with (1.7) with initial data in L2 N L. Let
Cr = L®(0,T; LP) N L <O,T; H%> for all p € [2, 00].

Definition 1.2. We say 0 is a weak solution of (1.7) if # € Cr and (1.7) holds in the following
sense: for any test function ¢ € C° ([0,7") x R),

T
/ / 00y + unlt) + ubipy — O] dadt / 0o (2)0(0, )
o JRr R
holds for any 0 < T < cc.

Theorem 1.4. Let v € (0,2) and a = % — 3. Then, for any 0y € L? N L™, there exists a weak
solution of (1.7) in Cp for all T > 0.
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We note that g € L? N L™ is enough to construct a weak solution in Theorem 1.4, but we do
not know whether it is unique or not.

8
2

When v = 1, we consider weights wg = (1 + [#[?) 2 with 0 < 8 < 1, and take initial data in

H'(wgdx) N L>®. Let a = ; and
Dy = L (0, T; H' (wpda)) N L2 (0, T H%(wgdzn)) .
1

Theorem 1.5. Let v =1 and a = 3. Then, for any 6y € Hl(wgda:) N L™, there exists a unique
global weak solution of (1.7) in Dr for all T > 0.

Compared to Theorem 1.2, we do not assume that [|fg| e is small to prove Theorem 1.5.

In Theorem 1.4 and Theorem 1.5, we have restrictions on the range of . Again, we can remove
these conditions by looking for a solution of (1.7) in function spaces defined by the Fourier variables.

Theorem 1.6. Let v =1 and o > 0. Then, for any 0y € A" satisfying

1ol < YX (18)

\/57

there exists a unique weak solution of (1.7) verifying the following inequality for all T > 0

V2|16 T
0cWr, sup ue<t>uAl+<1—M / 100 (8) Lt < [160]1.
te[0,T ﬁ 0

Remark 1. We note that Theorem 1.6 remains valid with straightforward changes in the spirit of
Theorem 1.3 when ¢ # 0.

2. PRELIMINARIES

All constants will be denoted by C that is a generic constant. In a series of inequalities, the
value of C can vary with each inequality. For s € R, H? is a Hilbert space with

I = [Py [fo e

2.1. Hilbert transform and fractional Laplacian. The Hilbert transform is defined as

f)
RT—Y
The differential operator A7 = (v/—A)7 is defined by the action of the following kernels [11]:

N f(z) = c¢yp.v. . %dy, (2.1)

Hf(z) =p.v. dy.

where ¢y > 0 is a normalized constant. When v =1,
Af(z) =Hfa(a).
Moreover, we have the following identity:
M (0 (H62)) = 5 [(40)° — (02)7]. (2:2)
We also recall the following pointwise property of A®.
Lemma 2.1. [I1] Let 0 < a <2 and f € S. Then,

F)Af (@) > SA" (£(x)

@A) 2 A (F@) when f >0
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2.2. Minimum and Maximum Principles. In Theorem 1.1 and 1.2, we assume 6y > 0. To
obtain global-in-time solutions, we need 6(¢t,z) > 0 for all time. We first assume that 0(¢,x) €
C([0,7] x R) and 2; be a point such that m(t) = 0(t,z;). If m(t) > 0 for all time, nothing is
left to prove. So, we check a point (¢,z;) where m(t) = 0. Since m(t) is a continuous Lipschitz
function, it is differentiable at almost every ¢t by Rademacher’s theorem. From the definition of A7,

d B O(t,z,) — 0(¢,y) 0(t, z) — 0(t,y)
@m(t) = —59(tv$t)p'v'/R lzy —y[I+7 dy = /R |z — y[I T W
H(t,xt) - 6(t7y)
> [—5p.v./]R o — g dy} m(t).

Since the quantity in the bracket is nonnegative when § > 0, we have that m(¢) is non-decreasing
in time if 6y > 0 and thus 6(¢,z) > 0 for all time. Similarly, maximum values of (¢, z) are non-
increasing in time when 6y > 0 with 6y € L. For general initial data satisfying (1.4) and (1.5), we
can use regularization method. For such a regularized problem with smooth solution ¢, the same
argument works. Then, we construct 6 as the limit of 8¢. As 6 will be also the pointwise limit of
0¢ almost everywhere, we conclude that 6(¢,z) > 0.

Since (1.7) is purely a dissipative transport equation, we immediately have that

16|z < [[6o[ Lo~
2.3. The Wiener spaces A%. The Wiener space is defined as
A ={fe Ll fO e L'},

where f denotes the Fourier transform of f

) = —— z)e Ty
fe) = o= [ s a.

AY is a Banach space endowed with the norm

10 = I1f -

Furthermore, using Fubini’s Theorem, A is a Banach algebra, i.e.

1£9lla0 < 1 f1la0llgllao-

Once we have defined A°, we can define the full scale of homogeneous, A%, and inhomogeneous,
A%, Wiener spaces as

_ {f e Lb Il = /R eI (e)lde < oo} |

(2.3)
ae={i ety = [a+ieriieie).
For these spaces, the following inequalities hold
Iflle@ < [fllaomey ¥F €A R) (2.4)
1 Ljezy < 1 oy 1 £y gy YO <O <1, @20, f e AYR) M AT (R). (2.5)

As a consequence of (2.4), we obtain that if u € A° has infinite energy then

lim sup |u(x)| + llinln inf |u(z)| < oo.
T|—00

|z|—o00
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2.4. Commutator estimate. In the proof of Theorem 1.1, we need to estimate a commutator
1
term involving A2. To do this, we first recall Hardy-Littlewood-Sobolev inequality in 1D. Let
K,(x) = ﬁ and Ty f = Ky * f. Then,
1 1
1T fllpe < Clfllze, 4 +1= » + A

Lemma 2.2. For f € L%, g€ L3 and e Whee,

[[a%.6] 7 = [a%0] 4], < Clelwrs 17 =gl -

Proof. By the definition of A%, we have
([A%,w} i [A%7w] g) (2) = Clp.v'/ (¥(y) —w(fc))(f(gy) —9W) 4,

|z —y|?

and thus

1 1 -

[at.] £ - [ahv] o] @ < U0l [ Md@" (2.6)
z—y|2
Using Hardy-Littlewood-Sobolev inequality, we obtain that
1 1

|[a%.0) s = [a50]g| , < CUIVUIL~ I =l 4 (2.7)

which completes the proof. ]

2.5. Muckenhoupt weights. We briefly introduce weighted spaces. A weight w is a positive and
locally integrable function. A measurable function 6 on R belongs to the weighted Lebesgue spaces
LP(wdz) with 1 < p < oo if and only if

101 = [, BP0} < o

An important class of weights is the Muckenhoupt class A, for 1 < p < oo [7, 24]. Let 1 < p < o0,
we say that w € A, if and only if there exists a constant C),,, > 0 such that

p—1
1 1 1
sup — wdzx — wl-rdx < Cpw-
r>0,z0€R 2r [xo—r,z0+7] 2r [xo—r,x0+7]

This class satisfies the following properties.

(1) Calderén-Zygmund type operators are bound on LP(wdz) when w € A, and 1 < p < oo [29].
(2) Let w € A,. We define weighted Sobolev spaces as follows

f e HY(wdzx) < f € L*(wdz) and f, € L*(wdx),
feH' (wdr) <= (1 —04)3f € L2(wdr) <= f € L*(wde) and Af € LP(wdz),  (2.8)
feHi(wdr) < (1—0,,)1f € L*(wdz) < f € L*(wdz) and Azf e L*(wdz).

(3) Gagliardo-Nirenberg type inequalities (see e.g [22])

244

1 1
2 2
L (wdz) = CNAN Z2 () 1NN 22 ety »

1
2

L2 (wdz)

‘A%G

1
||9HL4(wdx) < CHeHz?(wdm)
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This latter inequality can be proved for instance by using the weighted Sobolev embedding H i (wdx) —
L*(wdz), and then by weighted interpolation one recover the second inequality in (2.9).

In this paper, we take weights wg = (1 + ]w\2)_§, 0 < B < 1, which belongs to the A, class
of Muckenhoupt for all 1 < p < oco. These weights also satisfy the following properties. For the
proofs, see [13].

Lemma 2.3. Let wg = (1 + |:E|2)_§, 0<p <l

(1) For 2 < p < oo such that B(1 —p~') < 1/2, the commutator w%; [A%,wg] 1s bounded from
LP(wgdz) to LP(wgdx).
(2) |0,wp(z)| < Cwg(x) and |[Awg(x)| < Cwg(z), where C > 0 depends only on B.
Note that one can also derive commutator estimates for generalized Muckenhoupt weights of the

] . . - . .
type wg = (1 + |2[¥)"% € A where k is an even integer (see [17] for instance). However, our aim
here is just to show the existence of global infinite energy solutions not to be optimal in the family
of weights.

2.6. Compactness. Since we look for weak solutions, we use compactness arguments when we
pass to the limit in weak formulations.

Lemma 2.4. [30] Let Xy, X, X be reflexive Banach spaces such that
XgCC X C Xy,

where Xg is compactly embedded in X. Let T > 0 be a finite number and let oy and aq be two
finite numbers such that a; > 1. Then, Y = {u € L (0,T; Xy), dwu € L™ (0,T;X1)} is compactly
embedded in L (0,7; X).

Lemma 2.5 ([9]). Consider a sequence (6°) € C([0,T] x Bgr(0)) that is uniformly bounded in
L>=([0,T), Wh*(Bg(0))). Assume further that the weak derivative %= is in L>([0,T], L°(Bgr(0)))
(not necessarily uniform) and is uniformly bounded in L>([0,T], Wy >°°(Bg(0))). Finally suppose
that 05 € C([0,T] x Br(0)). Then there exists a subsequence of () that converges strongly in
L%([0.7) x Brl(0)).

3. PROOF OF THEOREM 1.1
3.1. A priori estimates. We first obtain a priori bounds of the equation

0, + (H0) 0, + 60A0 + A0 = 0, (3.1)

We note that by the minimum principle applied to (3.1), we have 6(t,z) > 0 for all ¢ > 0.
To obtain H> bound of 6, we begin with the L? bound. We multiply (3.1) by 6 and integrate

over R. Then,

2

‘LQ — / [(H0) 0,60 da: — § / [02A6] da = <% - 5> / [62A0] da.
Since > 0, we have

1d
2.dt
2 _ (6(x) —0(»)* O(z)+0(y) .
/[HAG]dx—// g2 5 dxdy >0

18132 + | A%6

and thus

ooz +2 [ [adocs)[}, ds < ooz 32)
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We next estimate 0 in /2. We multiply (3.1) by Af and integrate over R:

| S / (H0) 0,A0] dz: — & / 10 (A0)] da.

14y

A29] HA e’

ord
By (2.2), we have

- / ((H0) 0,A0] dz — / 0H (0, (H0,))] dz = % / 0 (A0)?  (0.)*)] e
and hence
L2 o] ol - (2-9)f ] roflac

where we use the sign conditions # > 0 and § > % This leads to the inequality
2 t 2 2
ool +2 [ oo o< i
L2 0 L2 L2
By (3.2) and (3.3), we obtain that
10(t) 1+2/HAw s < 6ol
We finally estimate 6 in L'. Since 6 > 0,

d d 1
—_— = — f— — < 2
Z0llz = = /de § 6)/9A6daz < CHAzo

2
P

and thus we conclude that

t
10 < ll6oll L1 + C/O 16()I%, 3 ds < [16oll2 + Ct 160l% 4

(3.3)

(3.5)

3.2. Approximation and passing to limit. We first regularize initial data as 6f = pe * 6y where
pe is a standard mollifier. We then regularize the equation by putting the Laplacian with the

coefficient e:

05 + (HO°) 05 + 56°A6° + AV6° = €b”,,.

(3.6)

For the proof of the existence of a global-in-time smooth solution, see [18] (Section 6). Moreover,

(6¢) satisfies that

16 (0)l s + 116°(2) 1+2/HAwe s+ el VEI y < ol + O+ 1) 6]

Therefore, () is bounded in A7 uniformly in € > 0. From this, we have uniform bounds
Ho e L' (0,75 LY), 6°€ L?(0,T;L")
and hence
(H6%)6), € L5 (0, T; HY).
Moreover,

N9+ €0, € L* (0, T; H).
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To estimate °A6°, we use the duality argument. For any y € L* (0,T; H?),
ool < [ [FAg@R©]as < [ [

< [ 15~ ] (¥ (16 - nlt +161%))
=//\§—n\§

+ [ [l ]

2
< HA%QEHLZ IR 2+ HA%QE

05(¢ = )| Inl ()| (&) dng

6°(n)| 1R(6) | dnd

56(6—?7)‘ Uk

0%(n)| 1%(©)! dndg

0¢(n)| 1% R(6) | dnde

s 17

Since (1 + A)%JF%HG cLt (0, T, L2) uniformly in € > 0, we have

2

1
12 x| 2

nix| , < fasmitier

Ll

1 2

[ a0 gl < ¢ a+ ayio

1412 |’X”L2TH2'

This implies that §<Ag¢ € L? (0, T:H _2). So, we conclude that from the equation of 0
6 € Ls (0,T; H™2).

We now extract a subsequence of (), using the same index e for simplicity, and a function
0 € Ap such that

9c 59 in L <0,T;LP0H%> for all p € (1, 00),

0c 0 in L2 (o,T;H”T“) ,

(3.7)
1
0c 50 in L2 <O,T;H§) ,
0°— 6 in L (O,T; Lfoc) for all p € (1,00)
where we use Lemma 2.4 for the strong convergence.
We now multiply (3.6) by a test function ¢ € C° ([0,7') x R) and integrate over R. Then,
T
/ / (041 + (HO%) 02 + (1 — 8)AOOY — 0N + Oty dudt — / 06 ()0, 2)dx
0
which can be rewritten as
T
/ / [ewt - (HO) 654, —0AYp + eewm} dadt — / 05 ()9 (0, 2)d
0 I
T ) ) T L (3.8)
Sl —5)/ /Azee [Aﬁ,w] 6 dadt — (1 —5)/ /‘Azee W dadt.
’ 11 ’ 111

By Lemma 2.4 with
Xo = L2 (O,T; H%) L X =L%(0,T;L2,), Xy=L2(0,T;H?),
we can pass to the limit to I. Moreover, since

[A%,w] 0 — [A%,ﬂe
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strongly in L? (0, T, L6) by Lemma 2.2 and Az 6¢ converges weakly in L2 (O, T L2) by (3.7), we can
pass to the limit to II. Lastly, Lemma 2.4 with

Xo = L2 (o T H””), X =12 <o T HIOC> Xy =L2(0,T; H?),
allows to pass to the limit to III. Combining all the limits together, we obtain that
T
/ / 000 + (H0) 06y + (1 — 6)AOO ] dadt — / B0 (2)(0, 2)dz. (3.9)
0

3.3. Uniqueness when ~ = 1. To show the uniqueness of a weak solution, let § = 6, — 6. Then,
0 satisfies the following equation:

O+ A0 = — (HO) 01, — (HO2) 0, — S0AO, — 002A0,  6(0,x) = 0. (3.10)
We multiply 0 to (3.10) and integrate over R. Then,

ol + [[ate

2 dt
The first three terms in the right-hand side are easily bounded by

C 1612/l 2 101174 + C 18221l 12 1617

Moreover, the last term is bounded by using Lemma 2.1

| - / [— (H0) 010 — (H2) 0, — 50AG; — 502A0] Od.

—5/929A9d:c < —g /92/\9% = —g /92A92dx < C 0| 12 116174
Hence we derive that

d 112
SN0 + |6, < Clballe 1013 + C 18221 1613

< C (101l + 102013 1013 + & 230,

Since
01 € L* (0,T : L?), 6o, € L* (0,7 : L?)
when v = 1, we conclude that § = 0 in L? and thus a weak solution is unique. This completes the
proof of Theorem 1.1.
4. PROOF OF THEOREM 1.2

4.1. A priori estimate. We consider the equation

0 + (HO) 0, + 00A0 + A = 0. (4.1)
Since (4.1) satisfies the minimum and maximum principles, we have

0(t,z) 20, [|0(t)]z~ <[00l Lo~

We begin with the L? (wgdx) bound. For notational simplicity, we suppress the dependence of .
We multiply (4.1) by fw and integrate in x. Then,

2dt/H9”L2(wd:c + HAze —/(%e)exewdx—a/e(Ae)ewdx—/Aée [A%,w] b

~ ! (H0) (6%), wde — 6 | 6% (A0)wdz — [ A0 [AZ,w]| fdx
:/ / [kt

_ (% - 5) / 62 (A9) wdz + % / (H0) 02w, dz — / 29 [A%,w) 0de.

L2 (wdz)
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Since % — 90 <0 and 8 >0, we use Lemma 2.1 to have
1 ) 1/1 5 1/1 X
- < __(Z_ - __ |z
<2 5) /0 (A6) wdz < 3 <2 5> /A(G ) wdx 3 <2 5> /9 Awdx
<6l [ Puda < Cl60] = 161

where we use Lemma 2.3 to bound Aw by w. Moreover, by the L?(wdx) boundedness of the Hilbert
transform, we also have

1
5 [ () usde < Cllu [ 1611161 wde < Cl6o = 16130
We finally estimate the commutator term. By Lemma 2.3,
1
'/Aée (A%, w) bde| < / ‘ (A20) w= [A% w] 0| de < ¢ |A%0 ‘ [A%,w) 6
1 1 1 2
<[00 19052y < 5|20 [, ey T 1002y
Collecting all terms together we obtain that
G100 ey + A0, < €+ 1ol 161 - (42)
We next multiply (4.1) by A2 (wA§9> and integrate in . Then,
2dt H L2 (wdz) + HAHHL2 wdzx)
= —/(7—[9) 0,A% (wAEH da;—a/e(Ae)A% (w\%e) dw — /Ae [A%,w] A39dx
= [4+IT+II1.
We note that since § >0 and 8 >0
1= —5/0\A9\2wdx - 5/9A6 [A%,w} A20dzr < —6/9A9 [A%,w] A20dz (4.3)

and thus we only need to estimate I and III and the right-hand side of (4.3). (There is an extra
term 6 in the right-hand side of (4.3) but we can take the L® norm to 6 and it does not affect the
proof.) These bounds are obtained in [18]:

I+III—5/A6 (A%, w] A26dz < C (60l + [160ll}) Heuwwdm +CHA29

L2(wdz)
+ C|l6ol Lo 1012 () + HA9HL2 wdz) -
Hence we have that
dt HAZG ‘LQ(wdx) + ”AHHLQ(wdm) (4 4)
1012 ’
< C (Wollz + 160l 1612y + € [A%6]], -+ Cllollze 1Ay

By (4. 2) and (4.4),

oy, +|aef

‘ L2 (wdx)

2 2
Hg( ix) + ||A9HL2(wd:c <C (HHOHL‘X’ + ||90||%°°) He”H%(wdz)

+ C|6o| o [|AB]|72(

wdzx) *
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If |60l Lo is suﬂiciently small,

1 2
G123 o+ (A% s o < € ollaoe + I000E<) 1012,
and hence we derive the following inequality
2
HH / HAQQ % (wdz) ds = HHOHH%(wdx) xp (O (||90HL00 i HHOH%M) t) ' (4.5)

4.2. Approximation and passing to limit. To show the existence of a weak solution in D, we
first approximate the initial data 6y. Let x be a smooth positive function such that y(z) = 1 for
|z] <1 and x(x) =0 for |z] > 2. Let xr(z) = x(z/N), N € N, and consider truncated initial data
0 (z) = Oo(x)xn(z). Then, a direct computation shows that

Nlimooueo eoHH?(wdx =

Moreover, this truncation does not alter the non-negativity and does not increase the L norm.
So, if [|fp|| e is sufficiently small, there is a global-in-time solution of

ON + HONOLON + 0N AN + AON =0, 0V(0,2) = 0) (2). (4.6)
;From the a priori estimates, the sequence (/) is bounded in
L([0, 7], H> (wda)) N L*([0, T, H' (wdz))

uniformly with respect to N. We now take a test function ¢ € C>° ([0,7) x R). Then, 96" is
bounded in L?([0, 7], H'). Moreover, since %V € L>([0,T] x R)

O (HON0,0™ + 50N AON + AO™)
= (YHONON), — p HOVON + (6 — D)V AON + AN € L2([0,T), H ).

By Lemma 2.4, we can pass to the limit to the weak formulation,
/ / (0N + (HON) 0Ny + (1 — 5)AONON Y — 0N Ay dwvdt = / 0 (2)v (0, z)dz,
to obtain a weak solution 6 which is also in
L([0,T), H? (wdz)) N L2([0, T], H' (wda)).

4.3. Uniqueness. To show the uniqueness of a weak solution, we consider the equation of =
0, — 05 given by
0y + A0 = — (HO) 61, — (HO2) 0, — 50N, — 002A0,  6(0,2) = 0. (4.7)

We multiply wé to (4.7) and integrate over R. Then,

= [ 049) 6 — (3482) 8 — 5008, — 30,0]

_ /Aée [A%,w] fdz.

As before, the last term is bounded by
/A29 (A%, w] gdz < - HA29

1d
5 1012y + 250 e

+C He”%Q(wdm) :

The first three terms in the right-hand side are easily bounded by

L2 (wdz)

¢ <H91m||L2(wdx) + 1022 ]] £2 () + ||02||L2(wd:c)> 10114 o)
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Moreover, since 6 > 0, 6o > 0 and w > 0, the fourth term is bounded by using Lemma 2.1

—6 / 020 AOwdr < —= / OowAO*dx = / 62 A(Gw)d / H(60?)(How) pda

<C <H92m||L2(wdx) + ||02||L2(wd:c)> 101174 ey

Hence we obtain that

Oy + || 526

L2(wdz)

<C <||01I||L2(wdm) + ||02$||L2(wdm) + ||02||L2(wdm)) HHH%‘l(wdm) +C H0||i2(wdm

< C (14 101y + 1023ty + 10203 ) 1003y + 5 | 426
where we use (2.9) to obtain the last inequality. Since
010 € L? (0,7 : L*(wdz)), 0oy € L? (0,7 : H (wdx)) ,

we conclude that § = 0 in L?(wdz) and thus a weak solution is unique. This completes the proof
of Theorem 1.2.

L2 (wdm)

5. PROOF OF THEOREM 1.3

5.1. A priori estimates. Taking the Fourier transform of (1.2), we have that

L 0©2d(©) +i©ad(e) _ Re (0©20(6)
e 206(¢)] 1G]
ey e e O] L
Re | | —20(0)ile = )A€ = ¢) = d0(C)le — clote O%WMIWE €116
Consequently,

—Mw<ﬂﬂﬂ//W!KdW§OM%I—H%u

<) [ [ 100e - <lote - ldeac—= - ol < (DL 1) o,

Thus, if 6y satisfies the condition (1.6), we have

ool + (1= R ) ™ ) s < oL 6.)

Similarly,

@K@:—R{ i%ﬂou@—c»%@—cwwam0ﬂs—OWK—cwc
270}
€116(e)|] Var

—q/me Ol€ — CBE — €) + B(C)i(e — Ol — CAE — ) — leP1a).

Thus, using (2.5), we have that

d 1416 214 [6))10]] a0
1010 < (101wl e+ 101 ! — ol < (2L ) oy,

As a consequence, we obtain that, if 6, satisfies the condition (1.6), we also have

ool + (1= 2T 7 o) s < ol 52)
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By (5.1) and (5.2), we conclude that

ool + (1~ 2L [y s < 1601 53)

for all t > 0.
5.2. Approximation and passing to the limit. Define e€ % the heat semigroup, i.e.
—_— 2
<02 f(x) = e f(6),
and g.(z) = e~**". Note that

R 1 _& .
9e(§) = \/—2—66 i<, | gell 2 = V2.

Given 0y(x) € A!, we consider 65(z) = 9e(2)e20y(z). As by(z) is a bounded function, we have
that 60f is infinitely smooth and has finite total mass:

7T
)|, </ Tlbolo
L €

Furthermore, using Young’s inequality and the definition of g,

. 1 ~ g2 4 2 h
1661 40 = Vord <€ ¢ 90>HL1 = He ¢ HOHLl < 16o]| a0-

16611 20 < llgellr

Similarly,
165142 = 102651110 < 0l 41 + |
Now we define the approximated problems
05 + (HO°) 65 + 66°AO° + AO° = €D?6°, (5.4)

with finite energy approximated initial data 6f. These problems have unique smooth solutions
denoted by #¢. Moreover, (0¢) satisfies a uniform bound

€ + 5 0 E E
ue<t>uA1+(1 21 WO”AO) / 165(5)]|ards + ¢ / 165(5) | azdds < [

uniformly in e. Thus, the a priori estimates lead to the following uniform-in-e bounds

c . V2T
sup [0°(t)com) < sup [10°(t) a0 < [1foll.a0 < =57
t€[0,00) t€[0,00) 14 14|
sup [|0°(t)[len gy < sup [[0(E)] 41 < [|6oll 42 + cellboll a0, (5.5)
te[0,00) t€[0,00)
Sup [AG“(E)llcow) < [100ll 41 + cel|Bol] a0-
S oo

2
Orgee® 00| = 16oll4s + el o-

Moreover, from the equation (5.4) we also obtain uniform bounds

sup [[0,6°(t)lcowy + sup [[0:HO()][comy <2 sup [[0:6(t) ]| a0y < F1([|00] 41, 0),
t€[0,00) t€[0,00) t€[0,00) (5.6)

[HO| o1 (0,00 xR) T 10l 1 (10,00) x®) < F2([l60]| A1, )
where F} and F» only depend on the quantities in the right-hand side of (5.5). Due to Banach-

Alaoglu Theorem, there exists a subsequence (denoted by ¢) and a limit function § € WH°°([0, 00) x
R) such that

0c 0 in L™ (0,T;Wh®), A9° A0 in L>(0,T;L%)
for all T > 0. Using Lemma 2.5, we have the following strong convergence

lim (16— 01l o< s0) + | HO — HOJ| o 1) = 0
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for K = [0,T] x [-R, R] for any R > 0. Since L>(K) C L?(K), we can pass to the limit to the
weak formulation

T
/ / (041 + (HO%) 02 + (1 — 8)AOOY — 0N + Oty dudt — / 06 ()0, 2)dx
0

to obtain a weak solution 6 satisfying

V2|6 T
0cWr, sup [000)]a + (1—M / 100(8) L andt < 6oL
te[0,7 ﬁ 0

for all T" > 0.

5.3. Uniqueness. To show the uniqueness of a weak solution, we consider the equation of § =
01 — 05 given by
Oy + A0 = — (HO) 61, — (HO2) 0, — S0AE, — 002A0,  6(0,2) = 0. (5.7)

Taking the Fourier transform of (5.7) and multiply by E we have

14+ (6 1416
Lol + 6140 < r” 16111 16100 + r” 182140 1614 (5.8)
Since
(1 + 18]) 162llo

et <1 0] € (0, %0)),

we have 0(t,z) = 0 in A° for all time. This implies that a weak solution is unique.

6. PROOF OF THEOREM 1.4

6.1. A priori estimate. We consider the equation
O +uby, + N0 =0, u=(1—0y) 0 (6.1)
Since (6.1) satisfies the maximum principle, we have

[0()]| oo < [|00]| oo
We also obtain that

© Iol2. +||a3o

2dt ‘ — —/u@xedaz < 10| |Jua | 2 16]] 2

1 v 12
< O (I6oll= + 60]3<) 10132 + 5 | A%6]

— I to bound u, as

where we use the condition oo = %

el < € (16112 + |[A%0

)

Therefore, we obtain that

t 2
1oz + / [A20(s)|[ , ds < 160|301l )
0
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6.2. Approximation and passing to limit. We consider the following equation with regularized
initial data:

0 +uls + AT0° =0, 605 = pe + 0. (6.2)

Then, there exists a global-in-time smooth solution €. Moreover, ¢ satisfies that
t 2 5
16Ol + 10O + [ [|A30°)], ds-+ €T3 < ol + 0] IR (6.3
0

Therefore, (0.) is bounded in Cz uniformly in € > 0. This implies the uniform bounds

u e L*(0,7;LY), 6°€ L' (0,T;L"), wuleL*(0,T;L%).
Moreover, these bounds with the equation

0 = —uly, — N0 + efy, = — (u0°), + ul0° — N0° + €05,
we also have that ,

0; € L3 (0,T; H?).
We now extract a subsequence of (), using the same index e for simplicity, and a function

0 € Cr and u = (1 — Oz,) 0 such that

¢ 29 in L™ (0,75 LP) for all p € (1,00),
0° =0 in L (o,T;H%) ,

0°— 6 in L*(0,T;L% )
ul, ~u, in L*(0,T;L%),

where we use Lemma 2.4 to obtain the strong convergence.
We now multiply (6.2) by a test function ¢ € C° ([0,7") x R) and integrate over R. Then,

(6.4)
for all p € (1,0),

T
/ / [0 + u O, + uS0U — 0N + €0, ] dadt = /OS(x)w(O, x)dx.
0
By Lemma 2.4 with

X0:L2(0,T;H%>, X =12(0,T;12.), Xiy=L*(0,T;H?)

loc

and using (6.4), we can pass to the limit to obtain that

T
/ / 00y + ubtby + uabi — O] dadt / B0(2)0(0, ) dax (6.5)
0
This completes the proof.

7. PROOF OF THEOREM 1.5

7.1. A priori estimate. We consider the equation

O+ uby + A0 =0, u=(1—0y) 10 (7.1)
We multiply (7.1) by 6w and integrate in x. Then,
1d 2 1012 1 1
52 10032 o) + || 220 Prde) = —/u@ﬁwdw—//\ﬁ (A%, w) bz
1 1
=5 /ux92wda: + 3 /u92wxdx — /A%9 [A%,w} Odzx.
As in the proof of Theorem 1.2, we bound the commutator term as

/Aée [A%,w} fda < i HA%H ’

0|3 :
L2(wdz) +CH ”LQ(wdm)
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To estimate terms involving u, we use 6 = (1 — (%x)%u and (2.8) to obtain that
[ ubtudo+ [ utPwado < ol (Null e + el 161 2

1
< Cllfo]l L= <”9HL2(wdr) * HA26

) 19l
) ) Ty, 2,02
< C ([l6ollze + 160ll7¢ ) 1101172 upazy + 1 HAZG

Collecting all terms together, we obtain that

d 12
0072 ey + | AF0

< . 2oo 2
oy < C (180l + 180l ) 161

and hence that

106 iy + | [lato)

We next multiply (7.1) by —(6,w), and integrate in z. Then,

2 3 1
:/uHx(wa)xdx+/A29[A2,w} AOdz

2

2
L2 (wdz) <100l Z2(uawy €0 [C (160l o= + [160][70) 2] -

1 d 2 3
5 10 e + 230,

= —%/ux(ex)2wdx+%/U(Hx)zwxda:— /A%H [A%,w] de—i-/AHwaxdm.

Following the computation in [18],

2 2

Ty, 2
< CHUHHl(wdx) ||9$||%4(wd:c) +C Hemuiﬁ(wdx) * Z HAZH

d 3
= 10l F2uan + 430

L2 (wdz)
, ) 1y, 3,12
< C161l,13 gy 10 o) + € 182y + 5 A3

where we use the relation in (2.8) to bound u in terms of . Since

‘A%G

16018 19y < U8 18l | A6,

1,3 .12
< OO,y 0ol By + 7 [|A30

L2 (wdz)
by (2.9), we obtain that

d 3
= 022y + 430

a1 18P ) 10l P
L2(wdz) — H? (wdx) L2(wdx)

Integrating in time (7.4) and using (7.2), we obtain that

100 O + [ 27065

L2 (wdz)

t
2 2
< 00172 uar) X0 [ e (1 * H9<8>HH%W>]

< 16021172 sy €XP [Ct + (160112 () €xP [C (60l o + [160]1F <) 75]] :
By (7.2) and (7.5), we finally obtain that

100 By + [ 3065

< C 100/ (wa) €XP [Ct+ 1601172 (watay P [C (160l 2 + (16017 ) tH :

2
H!(wdz)

L2 (wdz) ’

17

L2 (wdz)

L2 (wdz) ’

(7.3)

(7.4)
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7.2. Approximation and passing to limit. Since 6 is more regular than a solution in Theorem
1.2, we can follow the procedure in the proof of Theorem 1.2.

7.3. Uniqueness. To show the uniqueness of a weak solution, we consider the equation of § =
0, — 05 given by

0y + A0 = —u10, + uby,, 6(0,2) =0. (7.7)
We multiply wé to (7.7) and integrate over R. Then,

" HAze ) /[—u19x+u92x] ewdx—/Aée [A%,w] Odz

2
2 dt ”H”Lz(wdx L2(wdae

= %/u1x92wd:ﬂ + % /u19 wxda:—k/uegxewdx — /A%H [A%,w} Odx.

As before, the last term is bounded by

/Aée (A% w] ode < HAzH

2
L2 (wdz) + OOz war) -

The first three terms in the right-hand side are easily bounded by
C (1620 2ty + 1011113 ) (1618 + 100 20 Nl 3 )
By (2.9), we obtain that

oy < C (14 1020y 160115 ) 191 + 5 226

Oy + || 526

L2 (wd:c)

Since
0y € L2 (0,7 : H'(wd)), 0y € L (o,T : H%(wdx)) ,

we conclude that # = 0 in L?(wdz) and thus a weak solution is unique. This completes the proof
of Theorem 1.5.

8. PROOF OF THEOREM 1.6

Taking the Fourier transform of (1.7), we have that

at‘é(f)‘ = —Re

L ot it - 0ac O] 1
[ a0 - vt - e )J = Il

Consequently, ignoring the factor @, we follow the proof of Theorem 1.3 with § = 0 and the

(1+\C\2
smallness condition (1.8) to obtain that
\/5 0 0 t
ool + (1= 2201} [0, (s < ool (81)
VT 0

for all t > 0. We also follow the proof of Theorem 1.3 to obtain a unique weak solution via the
approximation procedure. This completes the proof.
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