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We consider 1D dissipative transport equations with nonlocal velocity field:

where N is a nonlocal operator given by a Fourier multiplier. Especially we consider two types of nonlocal operators:

(1) N = H, the Hilbert transform, (2) N = (1 -∂xx) -α . In this paper, we show several global existence of weak solutions depending on the range of γ and δ. When 0 < γ < 1, we take initial data having finite energy, while we take initial data in weighted function spaces (in the real variables or in the Fourier variables), which have infinite energy, when γ = 1.

Introduction

In this paper, we consider transport equations with nonlocal velocity. Here, the non-locality means that the velocity field is defined through a nonlocal operator that is represented in terms of a Fourier multiplier. For example, in the two dimensional Euler equation in vorticity form, ω t + u • ∇ω = 0, the velocity is recovered from the vorticity ω through u = ∇ ⊥ (-∆) -1 ω or equivalently u(ξ) = iξ ⊥ |ξ| 2 ω(ξ). Other nonlocal and quadratically nonlinear equations appear in many applications. Prototypical examples are the surface quasi-geostrophic equation, the incompressible porous medium equation, Stokes equations, magneto-geostrophic equation in multi-dimensions. For more details on nonlocal operators in these equations, see [START_REF] Bae | Global existence for some transport equations with nonlocal velocity[END_REF].

We here study 1D models of physically important equations. The 1D reduction idea were initiated by Constatin-Lax-Majda [START_REF] Constantin | A simple one-dimensional model for the three dimensional vorticity[END_REF]: they proposed the following 1D model θ t = θHθ for the 3D Euler equation in the vorticity form and proved that Hθ blows up in finite time under certain conditions. Motivated by this work, other similar models were proposed and analyzed in the literature [START_REF] Bae | Global existence for some transport equations with nonlocal velocity[END_REF][START_REF] Baker | Analytic structure of 1D transport equations with nonlocal fluxes[END_REF][START_REF] Carrillo | A mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocity[END_REF][START_REF] Castro | Global existence, singularities and ill-posedness for a nonlocal flux[END_REF][START_REF] Castro | Self-similar solutions for a transport equation with non-local flux[END_REF][START_REF] Chae | Finite time singularities in a 1D model of the quasi-geostrophic equation[END_REF][START_REF] Córdoba | Formation of singularities for a transport equation with nonlocal velocity[END_REF][START_REF] Gregorio | On a one-dimensional model for the 3D vorticity equation[END_REF][START_REF] Kiselev | Regularity and blow up for active scalars[END_REF][START_REF] Li | Blow-up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation[END_REF][START_REF] Li | On a one-dimensional nonlocal flux with fractional dissipation[END_REF][START_REF] Morlet | Further properties of a continuum of model equations with globally defined flux[END_REF]. In this paper, we consider the following 1D equation: θ t + uθ x + δu x θ + νΛ γ θ = 0, u = N (θ).

(1.1)

Depending on a nonlocal operator N , (1.1) has structural similarity of several important fluid equations as described below. The goal of this paper is to show the existence of weak solutions with rough initial data. To this end, we will choose functionals carefully to extract more information from the structure of the nonlinearity to construct weak solutions.

1.1. The case N = H. We first take the case N = H, the Hilbert transform. Then, (1.1) becomes θ t + (Hθ) θ x + δθΛθ + νΛ γ θ = 0, (1.2) where the range of γ and δ will be specified below. We note that (1.2) is considered as an 1D model of the dissipative surface quasi-geostrophic equation. The surface quasi-geostrophic equation describes the dynamics of the mixture of cold and hot air and the fronts between them in 2 dimensions [START_REF] Constantin | Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar[END_REF][START_REF] Pedlosky | Geophysical Fluid Dynamics[END_REF].

The equation is of the form

θ t + u • ∇θ + νΛ γ θ = 0, u = (-R 2 θ, R 1 θ) , (1.3) 
where the scalar function θ is the potential temperature and R j is the Riesz transform

R j f (x) = 1 2π p.v. R 2
(x jy j )f (y) |x -y| 3 dy, j = 1, 2.

As Constatin-Lax-Majda did for the Euler equation, the equation (1.2) is derived by replacing the Riesz transforms with the Hilbert transform. The case δ = 0 and δ = 1 correspond to (1.3) in non-divergence and divergence form, respectively. We take a parameter δ ∈ [0, 1] to cover more general nonlinear terms in (1.2). We note that there are several singularity formation results when ν = 0: 0 < δ < 1 3 and δ = 1 [START_REF] Morlet | Further properties of a continuum of model equations with globally defined flux[END_REF], 0 < δ ≤ 1 [START_REF] Chae | Finite time singularities in a 1D model of the quasi-geostrophic equation[END_REF], and δ = 0 [START_REF] Córdoba | Formation of singularities for a transport equation with nonlocal velocity[END_REF][START_REF] Li | Blow-up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation[END_REF][START_REF] Silvestre | On a transport equation with nonlocal drift[END_REF]. By contrast, we look for weak solutions of (1.2) globally in time (see e.g. [START_REF] Dong | Well-posedness for a transport equation with nonlocal velocity[END_REF]). From now on, we set ν = 1 for notational simplicity.

We assume that θ 0 satisfies the conditions

θ 0 (x) > 0, θ 0 ∈ L 1 ∩ H 1 2 . (1.4) 
Since (1.2) satisfies the minimum principle (see Section 2) when δ ≥ 0, θ(t, x) ≥ 0 for all time. Moreover, the structure of the nonlinearity enables us to use the following function space

A T = L ∞ 0, T ; L p ∩ H 1 2 ∩ L 2 0, T ; H γ+1 2
for all p ∈ (1, ∞).

Definition 1.1. We say θ is a weak solution of (1.2) if θ ∈ A T and (1.2) holds in the following sense: for any test function

ψ ∈ C ∞ c ([0, T ) × R), T 0 R [θψ t + (Hθ) θψ x + (1 -δ)Λθθψ -θΛ γ ψ] dxdt = R θ 0 (x)ψ(0, x)dx
holds for any 0 < T < ∞.

Theorem 1.1. Let γ ∈ (0, 1) and δ ≥ 1 2 . Then, for any θ 0 satisfying (1.4), there exists a weak solution of (1.2) in A T for all T > 0. Moreover, a weak solution is unique when γ = 1.

When γ = 1, we consider infinite energy solutions of (1.2). More precisely, we take a family of

weights w β = 1 + |x| 2 -β 2 , 0 < β < 1
, and take initial data satisfying

θ 0 (x) ≥ 0, θ 0 ∈ H 1 2 (w β dx) ∩ L ∞ (1.5)
where weighted Sobolev spaces are defined in Section 2. We note that θ 0 can decay (slowly) at infinity. For example, as long as

β + 2η > 1, |θ 0 (x)| ≃ |x| -η , η ≥ 1/2 is allowed to stay in L 2 (w β dx) |x|≥1 |x| 2η (1 + |x| 2 ) β 2 dx < ∞.
But, we can still use the energy method to obtain a weak solution of (1.2). Let

B T = L ∞ 0, T ; H 1 2 (w β dx) ∩ L 2 0, T ; H 1 (w β dx) .
Theorem 1.2. Let γ = 1 and δ ≥ 1 2 . Then, for any θ 0 satisfying (1.5) with θ 0 L ∞ being sufficiently small, there exists a unique weak solution of (1.2) in B T for all T > 0.

In Theorem 1.1 and Theorem 1.2, we have restrictions on the sign of initial data and the range of δ. We can remove these conditions by looking for a solution of (1.2) in function spaces defined by the Fourier transform. Let

A α = f ∈ L 1 loc : f A α = R (1 + |ξ| α )| f (ξ)|dξ < ∞ .
We also define

W T = L ∞ 0, T ; W 1,∞ ∩ W 1,∞ (0, T ; L ∞ ) ∩ L 1 (0, T ; W 2,∞ ).
Theorem 1.3. Let γ = 1 and δ ∈ R. Then, for any θ 0 ∈ A 1 with

θ 0 A 0 < √ π √ 2(1 + |δ|) , (1.6) 
there exists a unique weak solution of (1.2) verifying the following inequality for all T > 0

θ ∈ W T , sup t∈[0,T ] θ(t) A 1 + 1 - √ 2(1 + |δ|) θ 0 A 0 √ π T 0 θ x (t) A 1 dt ≤ θ 0 A 1 .
We note that θ 0 ∈ A 1 can have infinite energy. For example, we take

θ 0 (ξ) = e -|ξ| √ |ξ| for ξ = 0. Then, θ 0 ∈ A 1 but θ 0 / ∈ L 2 .
1.2. The case N = (1 -∂ xx ) -α and δ = 0. In this case, (1.1) is changed to the equation

θ t + uθ x + Λ γ θ = 0, u = (1 -∂ xx ) -α θ. (1.7) 
This equation is closely related to a generalized Proudman-Johnson equation [START_REF] Okamoto | Some similarity solutions of the Navier-Stokes equations and related topics[END_REF][START_REF] Proudman | Boundary-layer growth near a rear stagnation point[END_REF][START_REF] Wunsch | The Generalized Proudman-Johnson Equation Revisited[END_REF]:

f txx + f f xxx + δf x f xx = νf xxxx
which is derived from the 2D incompressible Navier-Stokes equations via the separation of space variables when δ = 1. By taking w = f xx ,

w t + f w x + δf x w = νw xx , f = (∂ xx ) -1 w.
The inviscid case with δ = 2 is equivalent to the Hunter-Saxton equation arising in the study of nematic liquid crystals [START_REF] Hunter | Dynamics of director fields[END_REF]. The equation (1.7) is also considered as a model equation of the Lagrangian averaged Navier-Stokes equations [START_REF] Marsden | The anisotropic Lagrangian averaged Euler and Navier-Stokes equations[END_REF] which are given by

∂ t 1 -σ 2 ∆ u + u • ∇ 1 -σ 2 ∆ u + (∇u) T • 1 -σ 2 ∆ u = -∇p + ν∆ 1 -σ 2 ∆ u, ∇ • u = 0
We first deal with (1.7) with initial data in

L 2 ∩ L ∞ . Let C T = L ∞ (0, T ; L p ) ∩ L 2 0, T ; H γ 2 for all p ∈ [2, ∞].
Definition 1.2. We say θ is a weak solution of (1.7) if θ ∈ C T and (1.7) holds in the following sense: for any test function

ψ ∈ C ∞ c ([0, T ) × R), T 0 R [θψ t + u x θψ + uθψ x -θΛ γ ψ] dxdt = R θ 0 (x)ψ(0, x)dx
holds for any 0 < T < ∞.

Theorem 1.4. Let γ ∈ (0, 2) and α = 1 2 -γ 4 . Then, for any θ 0 ∈ L 2 ∩ L ∞ , there exists a weak solution of (1.7) in C T for all T > 0.

We note that θ 0 ∈ L 2 ∩ L ∞ is enough to construct a weak solution in Theorem 1.4, but we do not know whether it is unique or not.

When γ = 1, we consider weights w β = 1 + |x| 2 -β 2 with 0 < β < 1, and take initial data in

H 1 (w β dx) ∩ L ∞ . Let α = 1 4 and D T = L ∞ 0, T ; H 1 (w β dx) ∩ L 2 0, T ; H 3 2 (w β dx) .
Theorem 1.5. Let γ = 1 and α = 1 4 . Then, for any θ 0 ∈ H 1 (w β dx) ∩ L ∞ , there exists a unique global weak solution of (1.7) in D T for all T > 0.

Compared to Theorem 1.2, we do not assume that θ 0 L ∞ is small to prove Theorem 1.5.

In Theorem 1.4 and Theorem 1.5, we have restrictions on the range of α. Again, we can remove these conditions by looking for a solution of (1.7) in function spaces defined by the Fourier variables.

Theorem 1.6. Let γ = 1 and α ≥ 0. Then, for any θ 0 ∈ A 1 satisfying

θ 0 A 0 < √ π √ 2 , (1.8) 
there exists a unique weak solution of (1.7) verifying the following inequality for all T > 0

θ ∈ W T , sup t∈[0,T ] θ(t) A 1 + 1 - √ 2 θ 0 A 0 √ π T 0 θ x (t) A 1 dt ≤ θ 0 A 1 .
Remark 1. We note that Theorem 1.6 remains valid with straightforward changes in the spirit of Theorem 1.3 when δ = 0.

Preliminaries

All constants will be denoted by C that is a generic constant. In a series of inequalities, the value of C can vary with each inequality. For s ∈ R, H s is a Hilbert space with

f 2 H s = R (1 + |ξ| 2 ) s f (ξ) 2 dξ.
2.1. Hilbert transform and fractional Laplacian. The Hilbert transform is defined as

Hf (x) = p.v. R f (y)
xy dy.

The differential operator Λ γ = ( √ -∆) γ is defined by the action of the following kernels [START_REF] Córdoba | A maximum principle applied to quasi-geostrophic equations[END_REF]:

Λ γ f (x) = c γ p.v. R f (x) -f (y) |x -y| 1+γ dy, (2.1) 
where

c γ > 0 is a normalized constant. When γ = 1, Λf (x) = Hf x (x).
Moreover, we have the following identity:

H (θ x (Hθ x )) = 1 2 (Λθ) 2 -(θ x ) 2 . (2.2)
We also recall the following pointwise property of Λ α .

Lemma 2.1. [START_REF] Córdoba | A maximum principle applied to quasi-geostrophic equations[END_REF] Let 0 ≤ α ≤ 2 and f ∈ S. Then,

f (x)Λ α f (x) ≥ 1 2 Λ α f 2 (x) , f 2 (x)Λf (x) ≥ 1 3 Λ f 3 (x) when f ≥ 0 2.2.
Minimum and Maximum Principles. In Theorem 1.1 and 1.2, we assume θ 0 > 0. To obtain global-in-time solutions, we need θ(t, x) ≥ 0 for all time. We first assume that θ(t, x) ∈ C 1 ([0, T ] × R) and x t be a point such that m(t) = θ(t, x t ). If m(t) > 0 for all time, nothing is left to prove. So, we check a point (t, x t ) where m(t) = 0. Since m(t) is a continuous Lipschitz function, it is differentiable at almost every t by Rademacher's theorem. From the definition of Λ γ ,

d dt m(t) = -δθ(t, x t )p.v. R θ(t, x t ) -θ(t, y) |x t -y| 1+γ dy -p.v. R θ(t, x t ) -θ(t, y) |x t -y| 1+γ dy ≥ -δp.v. R θ(t, x t ) -θ(t, y) |x t -y| 1+γ dy m(t).
Since the quantity in the bracket is nonnegative when δ ≥ 0, we have that m(t) is non-decreasing in time if θ 0 > 0 and thus θ(t, x) ≥ 0 for all time. Similarly, maximum values of θ(t, x) are nonincreasing in time when θ 0 > 0 with θ 0 ∈ L ∞ . For general initial data satisfying (1.4) and (1.5), we can use regularization method. For such a regularized problem with smooth solution θ ǫ , the same argument works. Then, we construct θ as the limit of θ ǫ . As θ will be also the pointwise limit of θ ǫ almost everywhere, we conclude that θ(t, x) ≥ 0. Since (1.7) is purely a dissipative transport equation, we immediately have that

θ(t) L ∞ ≤ θ 0 L ∞ .
2.3. The Wiener spaces A α . The Wiener space is defined as

A 0 = f ∈ L 1 loc : f (ξ) ∈ L 1 ,
where f denotes the Fourier transform of f

f (ξ) = 1 √ 2π R f (x)e -ix•ξ dx.
A 0 is a Banach space endowed with the norm

f A 0 = f L 1 .
Furthermore, using Fubini's Theorem, A 0 is a Banach algebra, i.e.

f g A 0 ≤ f A 0 g A 0 .
Once we have defined A 0 , we can define the full scale of homogeneous, Ȧα , and inhomogeneous, A α , Wiener spaces as

Ȧα = f ∈ L 1 loc : f Ȧα = R |ξ| α | f (ξ)|dξ < ∞ , A α = f ∈ L 1 loc : f A α = R (1 + |ξ| α )| f (ξ)|dξ . (2.3)
For these spaces, the following inequalities hold

f C(R) ≤ f A 0 (R d ) ∀ f ∈ A 0 (R) (2.4) f Ȧα (R) ≤ f 1-θ A 0 (R d ) f θ Ȧ α θ (R d ) ∀ 0 < θ < 1, α ≥ 0, f ∈ A 0 (R) ∩ A α θ (R). (2.5)
As a consequence of (2.4), we obtain that if u ∈ A 0 has infinite energy then lim sup

|x|→∞ |u(x)| + lim inf |x|→∞ |u(x)| < ∞.
2.4. Commutator estimate. In the proof of Theorem 1.1, we need to estimate a commutator term involving Λ 1 2 . To do this, we first recall Hardy-Littlewood-Sobolev inequality in 1D. Let

K α (x) = 1 |x| λ and T λ f = K λ * f . Then, T λ f L q ≤ C f L p , 1 q + 1 = 1 p + λ. Lemma 2.2. For f ∈ L 3 2 , g ∈ L 3 2 and ψ ∈ W 1,∞ , Λ 1 2 , ψ f -Λ 1 2 , ψ g L 6 ≤ C ψ W 1,∞ f -g L 3 2 .
Proof. By the definition of Λ

1 2 , we have Λ 1 2 , ψ f -Λ 1 2 , ψ g (x) = c 1 p.v. (ψ(y) -ψ(x))(f (y) -g(y)) |x -y| 3 2
dy and thus

Λ 1 2 , ψ f -Λ 1 2 , ψ g (x) ≤ C ∇ψ L ∞ |f (y) -g(y)| |x -y| 1 2
dy.

(2.6)

Using Hardy-Littlewood-Sobolev inequality, we obtain that

Λ 1 2 , ψ f -Λ 1 2 , ψ g L 6 ≤ C ∇ψ L ∞ f -g L 3 2
(2.7) which completes the proof.

2.5. Muckenhoupt weights. We briefly introduce weighted spaces. A weight w is a positive and locally integrable function. A measurable function θ on R belongs to the weighted Lebesgue spaces L p (wdx) with 1 ≤ p < ∞ if and only if

θ p L p (wdx) = R |θ(x)| p w(x)dx < ∞.
An important class of weights is the Muckenhoupt class A p for 1 < p < ∞ [START_REF] Coifman | Wavelets: Calderón-Zygmund and Multilinear Operators[END_REF][START_REF] Muckenhoupt | Weighted norm inequalities for the Hardy maximal function[END_REF]. Let 1 < p < ∞, we say that w ∈ A p if and only if there exists a constant C p,w > 0 such that

sup r>0,x 0 ∈R 1 2r [x 0 -r,x 0 +r] wdx 1 2r [x 0 -r,x 0 +r] w 1 1-p dx p-1 ≤ C p,w .
This class satisfies the following properties. (1) Calderón-Zygmund type operators are bound on L p (wdx) when w ∈ A p and 1 < p < ∞ [START_REF] Stein | Harmonic Analysis: Real variable methods, Orthogonality and Oscillatory Integrals[END_REF].

(2) Let w ∈ A p . We define weighted Sobolev spaces as follows

f ∈ H 1 (wdx) ⇐⇒ f ∈ L 2 (wdx) and f x ∈ L 2 (wdx), f ∈ H 1 (wdx) ⇐⇒ (1 -∂ xx ) 1 2 f ∈ L 2 (wdx) ⇐⇒ f ∈ L 2 (wdx) and Λf ∈ L 2 (wdx), f ∈ H 1 2 (wdx) ⇐⇒ (1 -∂ xx ) 1 4 f ∈ L 2 (wdx) ⇐⇒ f ∈ L 2 (wdx) and Λ 1 2 f ∈ L 2 (wdx).
(2.8)

(3) Gagliardo-Nirenberg type inequalities (see e.g [START_REF] Maz | Sobolev spaces with applications to elliptic partial differential equations[END_REF])

Λ 1 2 f L 2 (wdx) ≤ C f 1 2 L 2 (wdx) Λf 1 2 L 2 (wdx) , θ L 4 (wdx) ≤ C θ 1 2 L 2 (wdx) Λ 1 2 θ 1 2 L 2 (wdx)
.

(2.9) This latter inequality can be proved for instance by using the weighted Sobolev embedding H 1 4 (wdx) ֒→ L 4 (wdx), and then by weighted interpolation one recover the second inequality in (2.9).

In this paper, we take weights w β = (1 + |x| 2 ) -β 2 , 0 < β < 1, which belongs to the A p class of Muckenhoupt for all 1 < p < ∞. These weights also satisfy the following properties. For the proofs, see [START_REF] Lazar | Infinite energy solutions for a 1D transport equation with nonlocal velocity[END_REF].

Lemma 2.3. Let w β = (1 + |x| 2 ) -β 2 , 0 < β < 1. (1) For 2 ≤ p < ∞ such that β(1 -p -1 ) < 1/2, the commutator 1 w β Λ 1 2 , w β is bounded from L p (w β dx) to L p (w β dx). (2) |∂ x w β (x)| ≤ Cw β (x) and |Λw β (x)| ≤ Cw β (x)
, where C > 0 depends only on β.

Note that one can also derive commutator estimates for generalized Muckenhoupt weights of the type

w β = (1 + |x| k ) -β k ∈ A ∞
where k is an even integer (see [START_REF] Lazar | On a 1D nonlocal transport equation with nonlocal velocity and subcritical or supercritical diffusion[END_REF] for instance). However, our aim here is just to show the existence of global infinite energy solutions not to be optimal in the family of weights.

2.6. Compactness. Since we look for weak solutions, we use compactness arguments when we pass to the limit in weak formulations.

Lemma 2.4. [START_REF] Temam | Navier-Stokes Equations: theory and numerical analysis[END_REF] Let X 0 , X, X 1 be reflexive Banach spaces such that

X 0 ⊂⊂ X ⊂ X 1 ,
where X 0 is compactly embedded in X. Let T > 0 be a finite number and let α 0 and α 1 be two finite numbers such that α

i > 1. Then, Y = {u ∈ L α 0 (0, T ; X 0 ) , ∂ t u ∈ L α 1 (0, T ; X 1 )} is compactly embedded in L α 0 (0, T ; X). Lemma 2.5 ([9]). Consider a sequence (θ ǫ ) ∈ C([0, T ] × B R (0)) that is uniformly bounded in L ∞ ([0, T ], W 1,∞ (B R (0))). Assume further that the weak derivative dθ ǫ dt is in L ∞ ([0, T ], L ∞ (B R (0))) (not necessarily uniform) and is uniformly bounded in L ∞ ([0, T ], W -2,∞ * (B R (0))). Finally suppose that θ ǫ x ∈ C([0, T ] × B R (0)).
Then there exists a subsequence of (θ ǫ ) that converges strongly in

L ∞ ([0, T ] × B R (0)).
3. Proof of Theorem 1.1 3.1. A priori estimates. We first obtain a priori bounds of the equation

θ t + (Hθ) θ x + δθΛθ + Λ γ θ = 0, (3.1) 
We note that by the minimum principle applied to (3.1), we have θ(t, x) ≥ 0 for all t ≥ 0.

To obtain H 1 2 bound of θ, we begin with the L 2 bound. We multiply (3.1) by θ and integrate over R. Then,

1 2 d dt θ 2 L 2 + Λ γ 2 θ 2 L 2 = -[(Hθ) θ x θ] dx -δ θ 2 Λθ dx = 1 2 -δ θ 2 Λθ dx.
Since θ ≥ 0, we have

θ 2 Λθ dx = (θ(x) -θ(y)) 2 |x -y| 2 • θ(x) + θ(y) 2 dxdy ≥ 0
and thus

θ(t) 2 L 2 + 2 t 0 Λ γ 2 θ(s) 2 L 2 ds ≤ θ 0 2 L 2 . (3.2)
We next estimate θ in Ḣ 1 2 . We multiply (3.1) by Λθ and integrate over R:

1 2 d dt Λ 1 2 θ 2 L 2 + Λ 1+γ 2 θ 2 L 2 = -[(Hθ) θ x Λθ] dx -δ θ (Λθ) 2 dx.
By (2.2), we have

-[(Hθ) θ x Λθ] dx = [θH (θ x (Hθ x ))] dx = 1 2 θ (Λθ) 2 -(θ x ) 2 dx,
and hence 1 2

d dt Λ 1 2 θ 2 L 2 + Λ 1+γ 2 θ 2 L 2 = 1 2 -δ θ (Λθ) 2 dx - 1 2 θ (θ x ) 2 dx ≤ 0,
where we use the sign conditions θ ≥ 0 and δ ≥ 1 2 . This leads to the inequality

Λ 1 2 θ(t) 2 L 2 + 2 t 0 Λ 1+γ 2 θ(s) 2 L 2 ds ≤ Λ 1 2 θ 0 2 L 2 . (3.3)
By (3.2) and (3.3), we obtain that

θ(t) 2 H 1 2 + 2 t 0 Λ γ 2 θ(s) 2 H 1 2 ds ≤ θ 0 2 H 1 2 . ( 3.4) 
We finally estimate θ in L 1 . Since θ ≥ 0,

d dt θ L 1 = d dt θdx = (1 -δ) θΛθdx ≤ C Λ 1 2 θ 2 L 2
and thus we conclude that

θ(t) L 1 ≤ θ 0 L 1 + C t 0 θ(s) 2 Ḣ 1 2 ds ≤ θ 0 L 1 + Ct θ 0 2 H 1 2
.

(3.5)

3.2. Approximation and passing to limit. We first regularize initial data as θ ǫ 0 = ρ ǫ * θ 0 where ρ ǫ is a standard mollifier. We then regularize the equation by putting the Laplacian with the coefficient ǫ:

θ ǫ t + (Hθ ǫ ) θ ǫ x + δθ ǫ Λθ ǫ + Λ γ θ ǫ = ǫθ ǫ xx . (3.6) 
For the proof of the existence of a global-in-time smooth solution, see [START_REF] Lazar | Infinite energy solutions for a 1D transport equation with nonlocal velocity[END_REF] (Section 6). Moreover, (θ ǫ ) satisfies that

θ ǫ (t) L 1 + θ ǫ (t) 2 H 1 2 + 2 t 0 Λ γ 2 θ ǫ (s) 2 H 1 2 ds + ǫ ∇θ ǫ 2 H 1 2 ≤ θ 0 L 1 + C(1 + t) θ 0 2 H 1 2
.

Therefore, (θ ǫ ) is bounded in A T uniformly in ǫ > 0. From this, we have uniform bounds

Hθ ǫ ∈ L 4 0, T ; L 4 , θ ǫ ∈ L 2 0, T ; L 4
and hence

((Hθ ǫ ) θ ǫ ) x ∈ L 4 3 0, T ; H -1 .
Moreover,

Λ γ θ ǫ + ǫθ ǫ xx ∈ L 2 0, T ; H -1 .
To estimate θ ǫ Λθ ǫ , we use the duality argument. For any χ ∈ L 2 0, T ;

H 2 , | θ ǫ Λθ ǫ , χ | ≤ θ ǫ Λθ ǫ (ξ) χ(ξ) dξ ≤ θ ǫ (ξ -η) |η| θ ǫ (η) | χ(ξ)| dηdξ ≤ θ ǫ (ξ -η) |η| 1 2 |ξ -η| 1 2 + |ξ| 1 2 θ ǫ (η) | χ(ξ)| dηdξ = |ξ -η| 1 2 θ ǫ (ξ -η) |η| 1 2 θ ǫ (η) | χ(ξ)| dηdξ + θ ǫ (ξ -η) |η| 1 2 θ ǫ (η) |ξ| 1 2 | χ(ξ)| dηdξ ≤ Λ 1 2 θ ǫ 2 L 2 χ L 1 + Λ 1 2 θ ǫ L 2 θ L 1 Λ 1 2 χ L 2 ≤ C (1 + Λ) 1 2 + γ 4 θ ǫ 2 L 2 χ H 2 .
Since (1 + Λ)

1 2 + γ 4 θ ǫ ∈ L 4 0, T ; L 2 uniformly in ǫ > 0, we have | θ ǫ Λθ ǫ , χ | dt ≤ C (1 + Λ) 1 2 + γ 4 θ ǫ 2 L 4 T L 2 χ L 2 T H 2 .
This implies that θ ǫ Λθ ǫ ∈ L 2 0, T ; H -2 . So, we conclude that from the equation of

θ ǫ t θ ǫ t ∈ L 4 3 0, T ; H -2 .
We now extract a subsequence of (θ ǫ ), using the same index ǫ for simplicity, and a function θ ∈ A T such that

θ ǫ ⋆ ⇀ θ in L ∞ 0, T ; L p ∩ H 1 2
for all p ∈ (1, ∞),

θ ǫ ⇀ θ in L 2 0, T ; H γ+1 2 , θ ǫ → θ in L 2 0, T ; H 1 2 , θ ǫ → θ in L 2 0, T ; L p loc for all p ∈ (1, ∞) (3.7) 
where we use Lemma 2.4 for the strong convergence. We now multiply (3.6) by a test function ψ ∈ C ∞ c ([0, T ) × R) and integrate over R. Then,

T 0 [θ ǫ ψ t + (Hθ ǫ ) θ ǫ ψ x + (1 -δ)Λθ ǫ θ ǫ ψ -θ ǫ Λψ + ǫθ ǫ ψ xx ] dxdt = θ ǫ 0 (x)ψ(0, x)dx
which can be rewritten as

T 0 θ ǫ ψ t + (Hθ ǫ ) θ ǫ ψ x I -θ ǫ Λψ + ǫθ ǫ ψ xx dxdt -θ ǫ 0 (x)ψ(0, x)dx = -(1 -δ) T 0 Λ 1 2 θ ǫ Λ 1 2 , ψ θ ǫ II dxdt -(1 -δ) T 0 Λ 1 2 θ ǫ 2 ψ III dxdt. (3.8) 
By Lemma 2.4 with

X 0 = L 2 0, T ; H 1 2 , X = L 2 0, T ; L 2 loc , X 1 = L 2 0, T ; H -2 ,
we can pass to the limit to I. Moreover, since

Λ 1 2 , ψ θ ǫ → Λ 1 2 , ψ θ
strongly in L 2 0, T ; L 6 by Lemma 2.2 and Λ 1 2 θ ǫ converges weakly in L 2 0, T ; L 2 by (3.7), we can pass to the limit to II. Lastly, Lemma 2.4 with

X 0 = L 2 0, T ; H 1+γ 2 , X = L 2 0, T ; H 1 2 loc , X 1 = L 2 0, T ; H -2 ,
allows to pass to the limit to III. Combining all the limits together, we obtain that

T 0 [θψ t + (Hθ) θψ x + (1 -δ)Λθθ ǫ ψ] dxdt = θ 0 (x)ψ(0, x)dx.
(3.9)

3.3. Uniqueness when γ = 1. To show the uniqueness of a weak solution, let θ = θ 1θ 2 . Then, θ satisfies the following equation:

θ t + Λθ = -(Hθ) θ 1x -(Hθ 2 ) θ x -δθΛθ 1 -δθ 2 Λθ, θ(0, x) = 0. (3.10)
We multiply θ to (3.10) and integrate over R. Then,

1 2 d dt θ 2 L 2 + Λ 1 2 θ 2 L 2 = [-(Hθ) θ 1x -(Hθ 2 ) θ x -δθΛθ 1 -δθ 2 Λθ] θdx.
The first three terms in the right-hand side are easily bounded by

C θ 1x L 2 θ 2 L 4 + C θ 2x L 2 θ 2 L 4 .
Moreover, the last term is bounded by using Lemma 2.1

-δ θ 2 θΛθdx ≤ - δ 2 θ 2 Λθ 2 dx = - δ 2 θ 2 Λθ 2 dx ≤ C θ 2x L 2 θ 2 L 4 .
Hence we derive that

d dt θ 2 L 2 + Λ 1 2 θ 2 L 2 ≤ C θ 1x L 2 θ 2 L 4 + C θ 2x L 2 θ 2 L 4 ≤ C θ 1x 2 L 2 + θ 2x 2 L 2 θ 2 L 2 + 1 2 Λ 1 2 θ 2 L 2 . Since θ 1x ∈ L 2 0, T : L 2 , θ 2x ∈ L 2 0, T : L 2
when γ = 1, we conclude that θ = 0 in L 2 and thus a weak solution is unique. This completes the proof of Theorem 1.1.

4.

Proof of Theorem 1.2

4.1.

A priori estimate. We consider the equation

θ t + (Hθ) θ x + δθΛθ + Λθ = 0. (4.1)
Since (4.1) satisfies the minimum and maximum principles, we have

θ(t, x) ≥ 0, θ(t) L ∞ ≤ θ 0 L ∞ .
We begin with the L 2 (w β dx) bound. For notational simplicity, we suppress the dependence of β.

We multiply (4.1) by θw and integrate in x. Then, Since 1 2δ ≤ 0 and θ ≥ 0, we use Lemma 2.1 to have

1 2 -δ θ 2 (Λθ) wdx ≤ - 1 3 1 2 -δ Λ θ 3 wdx = - 1 3 1 2 -δ θ 3 Λwdx ≤ C θ L ∞ θ 2 wdx ≤ C θ 0 L ∞ θ 2 L 2 (wdx) ,
where we use Lemma 2.3 to bound Λw by w. Moreover, by the L 2 (wdx) boundedness of the Hilbert transform, we also have 1 2 (Hθ)

θ 2 w x dx ≤ C θ L ∞ |θ| |Hθ| wdx ≤ C θ 0 L ∞ θ 2 L 2 (wdx) .
We finally estimate the commutator term. By Lemma 2.3,

Λ 1 2 θ Λ 1 2 , w θdx ≤ Λ 1 2 θ w 1 w Λ 1 2 , w θ dx ≤ C Λ 1 2 θ L 2 (wdx) 1 w Λ 1 2 , w θ L 2 (wdx) ≤ C Λ 1 2 θ L 2 (wdx) θ L 2 (wdx) ≤ 1 2 Λ 1 2 θ 2 L 2 (wdx) + C θ 2 L 2 (wdx) .
Collecting all terms together, we obtain that

d dt θ 2 L 2 (wdx) + Λ 1 2 θ 2 L 2 (wdx) ≤ C(1 + θ 0 L ∞ ) θ 2 L 2 (wdx) . (4.2)
We next multiply (4.1) by Λ 

d dt Λ 1 2 θ L 2 (wdx) + Λθ L 2 (wdx) = -(Hθ) θ x Λ 1 2 wΛ 1 2 θ dx -δ θ (Λθ) Λ 1 2 wΛ 1 2 θ dx -Λθ Λ 1 2 , w Λ 1 2 θdx = I+II+III. 2 
We note that since δ > 0 and θ ≥ 0

II = -δ θ |Λθ| 2 wdx -δ θΛθ Λ 1 2 , w Λ 1 2 θdx ≤ -δ θΛθ Λ 1 2 , w Λ 1 2 θdx (4.3)
and thus we only need to estimate I and III and the right-hand side of (4.3). (There is an extra term θ in the right-hand side of (4.3) but we can take the L ∞ norm to θ and it does not affect the proof.) These bounds are obtained in [START_REF] Lazar | Infinite energy solutions for a 1D transport equation with nonlocal velocity[END_REF]:

I+III -δ Λθ Λ 1 2 , w Λ 1 2 θdx ≤ C θ 0 L ∞ + θ 0 4 L ∞ θ 2 L 2 (wdx) + C Λ 1 2 θ 2 L 2 (wdx) + C θ 0 L ∞ Λθ 2 L 2 (wdx) + 1 2 Λθ 2 L 2 (wdx) . Hence we have that d dt Λ 1 2 θ 2 L 2 (wdx) + Λθ 2 L 2 (wdx) ≤ C θ 0 L ∞ + θ 0 4 L ∞ θ 2 L 2 (wdx) + C Λ 1 2 θ 2 L 2 (wdx) + C θ 0 L ∞ Λθ 2 L 2 (wdx) (4.4) 
By (4.2) and (4.4),

d dt θ 2 H 1 2 (wdx) + Λ 1 2 θ 2 L 2 (wdx) + Λθ 2 L 2 (wdx) ≤ C θ 0 L ∞ + θ 0 4 L ∞ θ 2 H 1 2 (wdx) + C θ 0 L ∞ Λθ 2 L 2 (wdx) . If θ 0 L ∞ is sufficiently small, d dt θ 2 H 1 2 (wdx) + Λ 1 2 θ 2 H 1 2 (wdx) ≤ C θ 0 L ∞ + θ 0 4 L ∞ θ 2 H 1 2 (wdx)
and hence we derive the following inequality

θ(t) 2 H 1 2 (wdx) + t 0 Λ 1 2 θ(s) 2 H 1 2 (wdx) ds ≤ θ 0 2 H 1 2 (wdx) exp C θ 0 L ∞ + θ 0 4 L ∞ t . (4.5) 
4.2. Approximation and passing to limit. To show the existence of a weak solution in D T , we first approximate the initial data θ 0 . Let χ be a smooth positive function such that χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2. Let χ R (x) = χ(x/N ), N ∈ N, and consider truncated initial data θ N 0 (x) = θ 0 (x)χ N (x). Then, a direct computation shows that lim

N →∞ θ N 0 -θ 0 H 1 2 (wdx) = 0.
Moreover, this truncation does not alter the non-negativity and does not increase the L ∞ norm. So, if θ 0 L ∞ is sufficiently small, there is a global-in-time solution of

∂ t θ N + Hθ N ∂ x θ N + δθ N Λθ N + Λθ N = 0, θ N (0, x) = θ N 0 (x). (4.6) 
¿From the a priori estimates, the sequence (θ N ) is bounded in

L ∞ ([0, T ], H 1 2 (wdx)) ∩ L 2 ([0, T ], H 1 (wdx)) uniformly with respect to N . We now take a test function ψ ∈ C ∞ c ([0, T ) × R). Then, ψθ N is bounded in L 2 ([0, T ], H 1 ). Moreover, since θ N ∈ L ∞ ([0, T ] × R) ψ Hθ N ∂ x θ N + δθ N Λθ N + Λθ N = (ψHθ N θ N ) x -ψ x Hθ N θ N + (δ -1)ψθ N Λθ N + ψΛθ N ∈ L 2 ([0, T ], H -1 ).
By Lemma 2.4, we can pass to the limit to the weak formulation,

T 0 θ N ψ t + Hθ N θ N ψ x + (1 -δ)Λθ N θ N ψ -θ N Λψ dxdt = θ N 0 (x)ψ(0, x)dx,
to obtain a weak solution θ which is also in

L ∞ ([0, T ], H 1 2 (wdx)) ∩ L 2 ([0, T ], H 1 (wdx)).
4.3. Uniqueness. To show the uniqueness of a weak solution, we consider the equation of θ = θ 1θ 2 given by

θ t + Λθ = -(Hθ) θ 1x -(Hθ 2 ) θ x -δθΛθ 1 -δθ 2 Λθ, θ(0, x) = 0. ( 4.7) 
We multiply wθ to (4.7) and integrate over R. Then,

1 2 d dt θ 2 L 2 (wdx) + Λ 1 2 θ 2 L 2 (wdx) = [-(Hθ) θ 1x -(Hθ 2 ) θ x -δθΛθ 1 -δθ 2 Λθ] θwdx -Λ 1 2 θ Λ 1 2 , w θdx.
As before, the last term is bounded by

Λ 1 2 θ Λ 1 2 , w θdx ≤ 1 2 Λ 1 2 θ 2 L 2 (wdx) + C θ 2 L 2 (wdx) .
The first three terms in the right-hand side are easily bounded by

C θ 1x L 2 (wdx) + θ 2x L 2 (wdx) + θ 2 L 2 (wdx) θ 2 L 4 (wdx) .
Moreover, since δ > 0, θ 2 ≥ 0 and w ≥ 0, the fourth term is bounded by using Lemma 2.1

-δ θ 2 θΛθwdx ≤ - δ 2 θ 2 wΛθ 2 dx = - δ 2 θ 2 Λ(θ 2 w)dx = δ 2 H(θ 2 )(θ 2 w) x dx ≤ C θ 2x L 2 (wdx) + θ 2 L 2 (wdx) θ 2 L 4 (wdx) . Hence we obtain that d dt θ 2 L 2 (wdx) + Λ 1 2 θ 2 L 2 (wdx) ≤ C θ 1x L 2 (wdx) + θ 2x L 2 (wdx) + θ 2 L 2 (wdx) θ 2 L 4 (wdx) + C θ 2 L 2 (wdx) ≤ C 1 + θ 1x 2 L 2 (wdx) + θ 2x 2 L 2 (wdx) + θ 2 2 L 2 (wdx) θ 2 L 2 (wdx) + 1 2 Λ 1 2 θ 2 L 2 (wdx)
, where we use (2.9) to obtain the last inequality. Since

θ 1x ∈ L 2 0, T : L 2 (wdx) , θ 2x ∈ L 2 0, T : H 1 (wdx) ,
we conclude that θ = 0 in L 2 (wdx) and thus a weak solution is unique. This completes the proof of Theorem 1.2.

5.

Proof of Theorem 1.3

5.1.

A priori estimates. Taking the Fourier transform of (1.2), we have that

∂ t | θ(ξ)| = θ(ξ)∂ t θ(ξ) + θ(ξ)∂ t θ(ξ) 2| θ(ξ)| = Re θ(ξ)∂ t θ(ξ) | θ(ξ)| = -Re R -iζ |ζ| θ(ζ)i(ξ -ζ)) θ(ξ -ζ) -δ θ(ζ)|ξ -ζ| θ(ξ -ζ)dζ θ(ξ) | θ(ξ)| 1 √ 2π -|ξ|| θ|. Consequently, d dt θ A 0 ≤ (1 + |δ|) R R | θ(ζ)||ξ -ζ|| θ(ξ -ζ)|dζdξ 1 √ 2π -θ Ȧ1 ≤ (1 + |δ|) R R | θ(ζ)||ξ -ζ|| θ(ξ -ζ)|dξdζ 1 √ 2π -θ Ȧ1 ≤ (1 + |δ|) θ A 0 √ 2π -1 θ Ȧ1 .
Thus, if θ 0 satisfies the condition (1.6), we have

θ(t) A 0 + 1 - (1 + |δ|) θ 0 A 0 √ 2π ∞ 0 θ(s) Ȧ1 ds ≤ θ 0 A 0 . (5.1) 
Similarly,

∂ t |ξ θ| = -Re R -iζ |ζ| θ(ζ)(i(ξ -ζ)) 2 θ(ξ -ζ) + |ζ| θ(ζ)i(ξ -ζ)) θ(ξ -ζ)dζ -δ R iζ θ(ζ)|ξ -ζ| θ(ξ -ζ) + θ(ζ)i(ξ -ζ)|ξ -ζ| θ(ξ -ζ)dζ iξ θ(ξ) |ξ|| θ(ξ)| 1 √ 2π -|ξ| 2 | θ|.
Thus, using (2.5), we have that

d dt θ Ȧ1 ≤ θ A 0 θ Ȧ2 + θ 2 A 1 1 + |δ| √ 2π -θ Ȧ2 ≤ 2(1 + |δ|) θ A 0 √ 2π -1 θ Ȧ2 .
As a consequence, we obtain that, if θ 0 satisfies the condition (1.6), we also have

θ(t) Ȧ1 + 1 - 2(1 + |δ|) θ 0 A 0 √ 2π ∞ 0 θ(s) Ȧ2 ds ≤ θ 0 Ȧ1 . (5.2) 
By (5.1) and (5.2), we conclude that

θ(t) A 1 + 1 - 2(1 + |δ|) θ 0 A 0 √ 2π t 0 θ x (s) A 1 ds ≤ θ 0 A 1 (5.3)
for all t ≥ 0.

5.2. Approximation and passing to the limit. Define e ǫ∂ 2 x the heat semigroup, i.e.

e ǫ∂ 2 x f (x) = e -ǫξ 2 f (ξ), and g ǫ (x) = e -ǫx 2 . Note that

ĝǫ (ξ) = 1 √ 2ǫ e -ξ 2 4ǫ , ĝǫ L 1 = √ 2π.
Given θ 0 (x) ∈ A 1 , we consider θ ǫ 0 (x) = g ǫ (x)e ǫ∂ 2 x θ 0 (x). As θ 0 (x) is a bounded function, we have that θ ǫ 0 is infinitely smooth and has finite total mass:

θ ǫ 0 L 1 ≤ g ǫ L 1 e ǫ∂ 2 x θ 0 L ∞ ≤ π ǫ θ 0 L ∞ .
Furthermore, using Young's inequality and the definition of g ǫ ,

θ ǫ 0 A 0 = 1 √ 2π ĝǫ * e -ǫξ 2 θ0 L 1 ≤ e -ǫξ 2 θ0 L 1 ≤ θ 0 A 0 . Similarly, θ ǫ 0 Ȧ1 = ∂ x θ ǫ 0 A 0 ≤ θ 0 Ȧ1 + ∂ x g ǫ e ǫ∂ 2 x θ 0 A 0 = θ 0 Ȧ1 + cǫ θ 0 A 0 . Now we define the approximated problems θ ǫ t + (Hθ ǫ ) θ ǫ x + δθ ǫ Λθ ǫ + Λθ ǫ = ǫ∂ 2 x θ ǫ , (5.4) 
with finite energy approximated initial data θ ǫ 0 . These problems have unique smooth solutions denoted by θ ǫ . Moreover, (θ ǫ ) satisfies a uniform bound

θ ǫ (t) A 1 + 1 - 2(1 + |δ|) θ 0 A 0 √ 2π t 0 θ ǫ x (s) A 1 ds + ǫ t 0 θ ǫ x (s) A 2 ds ≤ θ 0 A 1 .
uniformly in ǫ. Thus, the a priori estimates lead to the following uniform-in-ǫ bounds

sup t∈[0,∞) θ ǫ (t) C 0 (R) ≤ sup t∈[0,∞) θ ǫ (t) A 0 ≤ θ 0 A 0 < √ 2π 1 + |δ| , sup t∈[0,∞) θ ǫ (t) Ċ1 (R) ≤ sup t∈[0,∞) θ ǫ (t) Ȧ1 < θ 0 Ȧ1 + cǫ θ 0 A 0 , sup t∈[0,∞) Λθ ǫ (t) C 0 (R) < θ 0 Ȧ1 + cǫ θ 0 A 0 . (5.5) 
Moreover, from the equation (5.4) we also obtain uniform bounds

sup t∈[0,∞) ∂ t θ ǫ (t) C 0 (R) + sup t∈[0,∞) ∂ t Hθ ǫ (t) C 0 (R) ≤ 2 sup t∈[0,∞) ∂ t θ ǫ (t) A 0 (R) ≤ F 1 ( θ 0 A 1 , δ), Hθ ǫ C 1 ([0,∞)×R) + θ ǫ C 1 ([0,∞)×R) ≤ F 2 ( θ 0 A 1 , δ) (5.6) 
where F 1 and F 2 only depend on the quantities in the right-hand side of (5.5). Due to Banach-Alaoglu Theorem, there exists a subsequence (denoted by ǫ) and a limit function

θ ∈ W 1,∞ ([0, ∞)× R) such that θ ǫ ⋆ ⇀ θ in L ∞ 0, T ; W 1,∞ , Λθ ǫ ⋆ ⇀ Λθ in L ∞ (0, T ; L ∞
) for all T > 0. Using Lemma 2.5, we have the following strong convergence

lim ǫ→0 θ ǫ -θ L ∞ (K) + Hθ ǫ -Hθ L ∞ (K) = 0 for K = [0, T ] × [-R, R] for any R > 0. Since L ∞ (K) ⊂ L 2 (K)
, we can pass to the limit to the weak formulation

T 0 [θ ǫ ψ t + (Hθ ǫ ) θ ǫ ψ x + (1 -δ)Λθ ǫ θ ǫ ψ -θ ǫ Λψ + ǫθ ǫ ψ xx ] dxdt = θ ǫ 0 (x)ψ(0, x)dx
to obtain a weak solution θ satisfying

θ ∈ W T , sup t∈[0,T ] θ(t) A 1 + 1 - √ 2 θ 0 A 0 √ π T 0 θ x (t) A 1 dt ≤ θ 0 A 1
for all T > 0.

5.3. Uniqueness. To show the uniqueness of a weak solution, we consider the equation of θ = θ 1θ 2 given by

θ t + Λθ = -(Hθ) θ 1x -(Hθ 2 ) θ x -δθΛθ 1 -δθ 2 Λθ, θ(0, x) = 0. (5.7)
Taking the Fourier transform of (5.7) and multiply by

θ | θ| , we have d dt θ A 0 + θ Ȧ1 ≤ 1 + |δ| √ 2π θ 1 Ȧ1 θ A 0 + 1 + |δ| √ 2π θ 2 A 0 θ Ȧ1 . (5.8) Since (1 + |δ|) θ 2 A 0 √ 2π < 1, θ 1 (t) Ȧ1 ∈ L 1 ([0, ∞)),
we have θ(t, x) = 0 in A 0 for all time. This implies that a weak solution is unique.

6. Proof of Theorem 1.4

6.1. A priori estimate. We consider the equation

θ t + uθ x + Λ γ θ = 0, u = (1 -∂ xx ) -α θ (6.1)
Since (6.1) satisfies the maximum principle, we have

θ(t) L ∞ ≤ θ 0 L ∞ .
We also obtain that 1 2

d dt θ 2 L 2 + Λ γ 2 θ 2 L 2 = -uθ x θdx ≤ θ L ∞ u x L 2 θ L 2 ≤ C θ 0 L ∞ + θ 0 2 L ∞ θ 2 L 2 + 1 2 Λ γ 2 θ 2 L 2
where we use the condition α = L 2 e C(1+ θ 0 2 L ∞ )t .

6.2. Approximation and passing to limit. We consider the following equation with regularized initial data:

θ ǫ t + u ǫ θ ǫ x + Λ γ θ ǫ = 0, θ ǫ 0 = ρ ǫ * θ 0 . (6.2)
Then, there exists a global-in-time smooth solution θ ǫ . Moreover, θ ǫ satisfies that

θ ǫ (t) L ∞ + θ ǫ (t) 2 L 2 + t 0 Λ γ 2 θ ǫ (s) 2 L 2 ds + ǫ ∇θ ǫ 2 L 2 ≤ θ 0 L ∞ + θ 0 2
L 2 e C(1+ θ 0 2 L ∞ )t . (6.3) Therefore, (θ ǫ ) is bounded in C T uniformly in ǫ > 0. This implies the uniform bounds u ǫ ∈ L 4 0, T ; L 4 , θ ǫ ∈ L 4 0, T ; L 4 , u ǫ x ∈ L 2 0, T ; L 2 . Moreover, these bounds with the equation

θ ǫ t = -u ǫ θ ǫ x -Λ γ θ ǫ + ǫθ ǫ xx = -(u ǫ θ ǫ ) x + u ǫ x θ ǫ -Λ γ θ ǫ + ǫθ ǫ xx
we also have that θ ǫ t ∈ L 4 3 0, T ; H -2 . We now extract a subsequence of (θ ǫ ), using the same index ǫ for simplicity, and a function θ ∈ C T and u = (1 -∂ xx ) -α θ such that θ ǫ ⋆ ⇀ θ in L ∞ (0, T ; L p ) for all p ∈ (1, ∞),

θ ǫ ⇀ θ in L 2 0, T ; H γ 2 , θ ǫ → θ in L 2 0, T ; L p loc for all p ∈ (1, ∞), u ǫ x ⇀ u x in L 2 0, T ; L 2 , (6.4) 
where we use Lemma 2.4 to obtain the strong convergence. We now multiply (6.2) by a test function ψ ∈ C ∞ c ([0, T ) × R) and integrate over R. Then, T 0 [θ ǫ ψ t + u ǫ θ ǫ ψ x + u ǫ x θ ǫ ψθ ǫ Λ γ ψ + ǫθ ǫ ψ xx ] dxdt = θ ǫ 0 (x)ψ(0, x)dx.

By Lemma 2.4 with

X 0 = L 2 0, T ; H γ 2
, X = L 2 0, T ; L 2 loc , X 1 = L 2 0, T ; H -2 and using (6.4), we can pass to the limit to obtain that T 0 [θψ t + uθψ x + u x θψ -θΛ γ ψ] dxdt = θ 0 (x)ψ(0, x)dx (6.5) This completes the proof. we conclude that θ = 0 in L 2 (wdx) and thus a weak solution is unique. This completes the proof of Theorem 1.5.

Proof of Theorem 1.6

Taking the Fourier transform of (1.7), we have that

∂ t | θ(ξ)| = -Re R 1 (1 + |ζ| 2 ) α θ(ζ)i(ξ -ζ)) θ(ξ -ζ)dζ θ(ξ) | θ(ξ)| 1 √ 2π -|ξ|| θ|.
Consequently, ignoring the factor 1 (1+|ζ| 2 ) α , we follow the proof of Theorem 1.3 with δ = 0 and the smallness condition (1.8) to obtain that

θ(t) A 1 + 1 - √ 2 θ 0 A 0 √ π t 0 θ x (s) A 1 ds ≤ θ 0 A 1 (8.1)
for all t ≥ 0. We also follow the proof of Theorem 1.3 to obtain a unique weak solution via the approximation procedure. This completes the proof.
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