
HAL Id: hal-01366624
https://hal.science/hal-01366624v1

Preprint submitted on 15 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GLOBAL EXISTENCE OF WEAK SOLUTIONS TO
DISSIPATIVE TRANSPORT EQUATIONS WITH

NONLOCAL VELOCITY
Hantaek Bae, Rafael Granero-Belinchón, Omar Lazar

To cite this version:
Hantaek Bae, Rafael Granero-Belinchón, Omar Lazar. GLOBAL EXISTENCE OF WEAK SOLU-
TIONS TO DISSIPATIVE TRANSPORT EQUATIONS WITH NONLOCAL VELOCITY. 2016.
�hal-01366624�

https://hal.science/hal-01366624v1
https://hal.archives-ouvertes.fr


GLOBAL EXISTENCE OF WEAK SOLUTIONS TO DISSIPATIVE

TRANSPORT EQUATIONS WITH NONLOCAL VELOCITY

HANTAEK BAE, RAFAEL GRANERO-BELINCHÓN, AND OMAR LAZAR

Abstract. We consider 1D dissipative transport equations with nonlocal velocity field:

θt + uθx + δuxθ + Λγ
θ = 0, u = N (θ),

where N is a nonlocal operator given by a Fourier multiplier. Especially we consider two types of
nonlocal operators:
(1) N = H, the Hilbert transform,
(2) N = (1− ∂xx)

−α.
In this paper, we show several global existence of weak solutions depending on the range of γ and
δ. When 0 < γ < 1, we take initial data having finite energy, while we take initial data in weighted
function spaces (in the real variables or in the Fourier variables), which have infinite energy, when
γ = 1.

1. Introduction

In this paper, we consider transport equations with nonlocal velocity. Here, the non-locality
means that the velocity field is defined through a nonlocal operator that is represented in terms of
a Fourier multiplier. For example, in the two dimensional Euler equation in vorticity form,

ωt + u · ∇ω = 0,

the velocity is recovered from the vorticity ω through

u = ∇⊥(−∆)−1ω or equivalently û(ξ) =
iξ⊥

|ξ|2 ω̂(ξ).

Other nonlocal and quadratically nonlinear equations appear in many applications. Prototypical
examples are the surface quasi-geostrophic equation, the incompressible porous medium equation,
Stokes equations, magneto-geostrophic equation in multi-dimensions. For more details on nonlocal
operators in these equations, see [1].

We here study 1D models of physically important equations. The 1D reduction idea were initiated
by Constatin-Lax-Majda [8]: they proposed the following 1D model

θt = θHθ
for the 3D Euler equation in the vorticity form and proved that Hθ blows up in finite time under
certain conditions. Motivated by this work, other similar models were proposed and analyzed in
the literature [1, 2, 3, 4, 5, 6, 12, 13, 16, 19, 20, 23]. In this paper, we consider the following 1D
equation:

θt + uθx + δuxθ + νΛγθ = 0, u = N (θ). (1.1)

Depending on a nonlocal operator N , (1.1) has structural similarity of several important fluid
equations as described below. The goal of this paper is to show the existence of weak solutions
with rough initial data. To this end, we will choose functionals carefully to extract more information
from the structure of the nonlinearity to construct weak solutions.
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1.1. The case N = H. We first take the case N = H, the Hilbert transform. Then, (1.1) becomes

θt + (Hθ) θx + δθΛθ + νΛγθ = 0, (1.2)

where the range of γ and δ will be specified below. We note that (1.2) is considered as an 1D model of
the dissipative surface quasi-geostrophic equation. The surface quasi-geostrophic equation describes
the dynamics of the mixture of cold and hot air and the fronts between them in 2 dimensions [10, 26].
The equation is of the form

θt + u · ∇θ + νΛγθ = 0, u = (−R2θ,R1θ) , (1.3)

where the scalar function θ is the potential temperature and Rj is the Riesz transform

Rjf(x) =
1

2π
p.v.

∫

R2

(xj − yj)f(y)

|x− y|3 dy, j = 1, 2.

As Constatin-Lax-Majda did for the Euler equation, the equation (1.2) is derived by replacing the
Riesz transforms with the Hilbert transform. The case δ = 0 and δ = 1 correspond to (1.3) in
non-divergence and divergence form, respectively. We take a parameter δ ∈ [0, 1] to cover more
general nonlinear terms in (1.2). We note that there are several singularity formation results when
ν = 0: 0 < δ < 1

3 and δ = 1 [23], 0 < δ ≤ 1 [6], and δ = 0 [12, 19, 28]. By contrast, we look for
weak solutions of (1.2) globally in time (see e.g. [14]). From now on, we set ν = 1 for notational
simplicity.

We assume that θ0 satisfies the conditions

θ0(x) > 0, θ0 ∈ L1 ∩H 1

2 . (1.4)

Since (1.2) satisfies the minimum principle (see Section 2) when δ ≥ 0, θ(t, x) ≥ 0 for all time.
Moreover, the structure of the nonlinearity enables us to use the following function space

AT = L∞
(
0, T ;Lp ∩H 1

2

)
∩ L2

(
0, T ;H

γ+1

2

)
for all p ∈ (1,∞).

Definition 1.1. We say θ is a weak solution of (1.2) if θ ∈ AT and (1.2) holds in the following
sense: for any test function ψ ∈ C∞

c ([0, T )× R),
∫ T

0

∫

R

[θψt + (Hθ) θψx + (1− δ)Λθθψ − θΛγψ] dxdt =

∫

R

θ0(x)ψ(0, x)dx

holds for any 0 < T <∞.

Theorem 1.1. Let γ ∈ (0, 1) and δ ≥ 1
2 . Then, for any θ0 satisfying (1.4), there exists a weak

solution of (1.2) in AT for all T > 0. Moreover, a weak solution is unique when γ = 1.

When γ = 1, we consider infinite energy solutions of (1.2). More precisely, we take a family of

weights wβ =
(
1 + |x|2

)−β
2 , 0 < β < 1, and take initial data satisfying

θ0(x) ≥ 0, θ0 ∈ H
1

2 (wβdx) ∩ L∞ (1.5)

where weighted Sobolev spaces are defined in Section 2. We note that θ0 can decay (slowly) at
infinity. For example, as long as β+2η > 1, |θ0(x)| ≃ |x|−η , η ≥ 1/2 is allowed to stay in L2(wβdx)

∫

|x|≥1

|x|2η

(1 + |x|2)β
2

dx <∞.

But, we can still use the energy method to obtain a weak solution of (1.2). Let

BT = L∞
(
0, T ;H

1

2 (wβdx)
)
∩ L2

(
0, T ;H1(wβdx)

)
.

Theorem 1.2. Let γ = 1 and δ ≥ 1
2 . Then, for any θ0 satisfying (1.5) with ‖θ0‖L∞ being sufficiently

small, there exists a unique weak solution of (1.2) in BT for all T > 0.
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In Theorem 1.1 and Theorem 1.2, we have restrictions on the sign of initial data and the range
of δ. We can remove these conditions by looking for a solution of (1.2) in function spaces defined
by the Fourier transform. Let

Aα =

{
f ∈ L1

loc : ‖f‖Aα =

∫

R

(1 + |ξ|α)|f̂(ξ)|dξ <∞
}
.

We also define

WT = L∞
(
0, T ;W 1,∞

)
∩W 1,∞(0, T ;L∞) ∩ L1(0, T ;W 2,∞).

Theorem 1.3. Let γ = 1 and δ ∈ R. Then, for any θ0 ∈ A1 with

‖θ0‖A0 <

√
π√

2(1 + |δ|)
, (1.6)

there exists a unique weak solution of (1.2) verifying the following inequality for all T > 0

θ ∈ WT , sup
t∈[0,T ]

‖θ(t)‖A1 +

(
1−

√
2(1 + |δ|)‖θ0‖A0√

π

)∫ T

0
‖θx(t)‖A1dt ≤ ‖θ0‖A1 .

We note that θ0 ∈ A1 can have infinite energy. For example, we take θ̂0(ξ) = e−|ξ|√
|ξ|

for ξ 6= 0.

Then, θ0 ∈ A1 but θ0 /∈ L2.

1.2. The case N = (1− ∂xx)
−α and δ = 0. In this case, (1.1) is changed to the equation

θt + uθx + Λγθ = 0, u = (1− ∂xx)
−αθ. (1.7)

This equation is closely related to a generalized Proudman-Johnson equation [25, 27, 31]:

ftxx + ffxxx + δfxfxx = νfxxxx

which is derived from the 2D incompressible Navier-Stokes equations via the separation of space
variables when δ = 1. By taking w = fxx,

wt + fwx + δfxw = νwxx, f = (∂xx)
−1w.

The inviscid case with δ = 2 is equivalent to the Hunter-Saxton equation arising in the study
of nematic liquid crystals [15]. The equation (1.7) is also considered as a model equation of the
Lagrangian averaged Navier-Stokes equations [21] which are given by

∂t
(
1− σ2∆

)
u+ u · ∇

(
1− σ2∆

)
u+ (∇u)T ·

(
1− σ2∆

)
u = −∇p+ ν∆

(
1− σ2∆

)
u, ∇ · u = 0

We first deal with (1.7) with initial data in L2 ∩ L∞. Let

CT = L∞ (0, T ;Lp) ∩ L2
(
0, T ;H

γ
2

)
for all p ∈ [2,∞].

Definition 1.2. We say θ is a weak solution of (1.7) if θ ∈ CT and (1.7) holds in the following
sense: for any test function ψ ∈ C∞

c ([0, T )× R),

∫ T

0

∫

R

[θψt + uxθψ + uθψx − θΛγψ] dxdt =

∫

R

θ0(x)ψ(0, x)dx

holds for any 0 < T <∞.

Theorem 1.4. Let γ ∈ (0, 2) and α = 1
2 − γ

4 . Then, for any θ0 ∈ L2 ∩ L∞, there exists a weak
solution of (1.7) in CT for all T > 0.
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We note that θ0 ∈ L2 ∩ L∞ is enough to construct a weak solution in Theorem 1.4, but we do
not know whether it is unique or not.

When γ = 1, we consider weights wβ =
(
1 + |x|2

)−β
2 with 0 < β < 1, and take initial data in

H1(wβdx) ∩ L∞. Let α = 1
4 and

DT = L∞
(
0, T ;H1(wβdx)

)
∩ L2

(
0, T ;H

3

2 (wβdx)
)
.

Theorem 1.5. Let γ = 1 and α = 1
4 . Then, for any θ0 ∈ H1(wβdx) ∩ L∞, there exists a unique

global weak solution of (1.7) in DT for all T > 0.

Compared to Theorem 1.2, we do not assume that ‖θ0‖L∞ is small to prove Theorem 1.5.

In Theorem 1.4 and Theorem 1.5, we have restrictions on the range of α. Again, we can remove
these conditions by looking for a solution of (1.7) in function spaces defined by the Fourier variables.

Theorem 1.6. Let γ = 1 and α ≥ 0. Then, for any θ0 ∈ A1 satisfying

‖θ0‖A0 <

√
π√
2
, (1.8)

there exists a unique weak solution of (1.7) verifying the following inequality for all T > 0

θ ∈ WT , sup
t∈[0,T ]

‖θ(t)‖A1 +

(
1−

√
2‖θ0‖A0√

π

)∫ T

0
‖θx(t)‖A1dt ≤ ‖θ0‖A1 .

Remark 1. We note that Theorem 1.6 remains valid with straightforward changes in the spirit of
Theorem 1.3 when δ 6= 0.

2. Preliminaries

All constants will be denoted by C that is a generic constant. In a series of inequalities, the
value of C can vary with each inequality. For s ∈ R, Hs is a Hilbert space with

‖f‖2Hs =

∫

R

(1 + |ξ|2)s
∣∣∣f̂(ξ)

∣∣∣
2
dξ.

2.1. Hilbert transform and fractional Laplacian. The Hilbert transform is defined as

Hf(x) = p.v.

∫

R

f(y)

x− y
dy.

The differential operator Λγ = (
√
−∆)γ is defined by the action of the following kernels [11]:

Λγf(x) = cγp.v.

∫

R

f(x)− f(y)

|x− y|1+γ
dy, (2.1)

where cγ > 0 is a normalized constant. When γ = 1,

Λf(x) = Hfx(x).
Moreover, we have the following identity:

H (θx (Hθx)) =
1

2

[
(Λθ)2 − (θx)

2
]
. (2.2)

We also recall the following pointwise property of Λα.

Lemma 2.1. [11] Let 0 ≤ α ≤ 2 and f ∈ S. Then,

f(x)Λαf(x) ≥ 1

2
Λα
(
f2(x)

)
,

f2(x)Λf(x) ≥ 1

3
Λ
(
f3(x)

)
when f ≥ 0
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2.2. Minimum and Maximum Principles. In Theorem 1.1 and 1.2, we assume θ0 > 0. To
obtain global-in-time solutions, we need θ(t, x) ≥ 0 for all time. We first assume that θ(t, x) ∈
C1 ([0, T ] × R) and xt be a point such that m(t) = θ(t, xt). If m(t) > 0 for all time, nothing is
left to prove. So, we check a point (t, xt) where m(t) = 0. Since m(t) is a continuous Lipschitz
function, it is differentiable at almost every t by Rademacher’s theorem. From the definition of Λγ ,

d

dt
m(t) = −δθ(t, xt)p.v.

∫

R

θ(t, xt)− θ(t, y)

|xt − y|1+γ
dy − p.v.

∫

R

θ(t, xt)− θ(t, y)

|xt − y|1+γ
dy

≥
[
−δp.v.

∫

R

θ(t, xt)− θ(t, y)

|xt − y|1+γ
dy

]
m(t).

Since the quantity in the bracket is nonnegative when δ ≥ 0, we have that m(t) is non-decreasing
in time if θ0 > 0 and thus θ(t, x) ≥ 0 for all time. Similarly, maximum values of θ(t, x) are non-
increasing in time when θ0 > 0 with θ0 ∈ L∞. For general initial data satisfying (1.4) and (1.5), we
can use regularization method. For such a regularized problem with smooth solution θǫ, the same
argument works. Then, we construct θ as the limit of θǫ. As θ will be also the pointwise limit of
θǫ almost everywhere, we conclude that θ(t, x) ≥ 0.

Since (1.7) is purely a dissipative transport equation, we immediately have that

‖θ(t)‖L∞ ≤ ‖θ0‖L∞ .

2.3. The Wiener spaces Aα. The Wiener space is defined as

A0 =
{
f ∈ L1

loc : f̂(ξ) ∈ L1
}
,

where f̂ denotes the Fourier transform of f

f̂(ξ) =
1√
2π

∫

R

f(x)e−ix·ξdx.

A0 is a Banach space endowed with the norm

‖f‖A0 = ‖f̂‖L1 .

Furthermore, using Fubini’s Theorem, A0 is a Banach algebra, i.e.

‖fg‖A0 ≤ ‖f‖A0‖g‖A0 .

Once we have defined A0, we can define the full scale of homogeneous, Ȧα, and inhomogeneous,
Aα, Wiener spaces as

Ȧα =

{
f ∈ L1

loc : ‖f‖Ȧα =

∫

R

|ξ|α|f̂(ξ)|dξ <∞
}
,

Aα =

{
f ∈ L1

loc : ‖f‖Aα =

∫

R

(1 + |ξ|α)|f̂(ξ)|dξ
}
.

(2.3)

For these spaces, the following inequalities hold

‖f‖C(R) ≤ ‖f‖A0(Rd) ∀ f ∈ A0(R) (2.4)

‖f‖Ȧα(R) ≤ ‖f‖1−θ
A0(Rd)

‖f‖θ
Ȧ

α
θ (Rd)

∀ 0 < θ < 1, α ≥ 0, f ∈ A0(R) ∩Aα
θ (R). (2.5)

As a consequence of (2.4), we obtain that if u ∈ A0 has infinite energy then

lim sup
|x|→∞

|u(x)|+ lim inf
|x|→∞

|u(x)| <∞.



6 HANTAEK BAE, RAFAEL GRANERO-BELINCHÓN, AND OMAR LAZAR

2.4. Commutator estimate. In the proof of Theorem 1.1, we need to estimate a commutator

term involving Λ
1

2 . To do this, we first recall Hardy-Littlewood-Sobolev inequality in 1D. Let
Kα(x) =

1
|x|λ

and Tλf = Kλ ∗ f . Then,

‖Tλf‖Lq ≤ C‖f‖Lp ,
1

q
+ 1 =

1

p
+ λ.

Lemma 2.2. For f ∈ L
3

2 , g ∈ L 3

2 and ψ ∈W 1,∞,
∥∥∥
[
Λ

1

2 , ψ
]
f −

[
Λ

1

2 , ψ
]
g
∥∥∥
L6

≤ C‖ψ‖W 1,∞ ‖f − g‖
L

3
2
.

Proof. By the definition of Λ
1

2 , we have
([

Λ
1

2 , ψ
]
f −

[
Λ

1

2 , ψ
]
g
)
(x) = c1p.v.

∫
(ψ(y) − ψ(x))(f(y) − g(y))

|x− y| 32
dy

and thus
∣∣∣
[
Λ

1

2 , ψ
]
f −

[
Λ

1

2 , ψ
]
g
∣∣∣ (x) ≤ C‖∇ψ‖L∞

∫ |f(y)− g(y)|
|x− y| 12

dy. (2.6)

Using Hardy-Littlewood-Sobolev inequality, we obtain that
∥∥∥
[
Λ

1

2 , ψ
]
f −

[
Λ

1

2 , ψ
]
g
∥∥∥
L6

≤ C ‖∇ψ‖L∞ ‖f − g‖
L

3
2

(2.7)

which completes the proof. �

2.5. Muckenhoupt weights. We briefly introduce weighted spaces. A weight w is a positive and
locally integrable function. A measurable function θ on R belongs to the weighted Lebesgue spaces
Lp(wdx) with 1 ≤ p <∞ if and only if

‖θ‖p
Lp(wdx)

=

∫

R

|θ(x)|pw(x)dx <∞.

An important class of weights is the Muckenhoupt class Ap for 1 < p <∞ [7, 24]. Let 1 < p <∞,
we say that w ∈ Ap if and only if there exists a constant Cp,w > 0 such that

sup
r>0,x0∈R

(
1

2r

∫

[x0−r,x0+r]
wdx

)(
1

2r

∫

[x0−r,x0+r]
w

1

1−p dx

)p−1

≤ Cp,w.

This class satisfies the following properties.

(1) Calderón-Zygmund type operators are bound on Lp(wdx) when w ∈ Ap and 1 < p <∞ [29].
(2) Let w ∈ Ap. We define weighted Sobolev spaces as follows

f ∈ H1(wdx) ⇐⇒ f ∈ L2(wdx) and fx ∈ L2(wdx),

f ∈ H1(wdx) ⇐⇒ (1− ∂xx)
1

2 f ∈ L2(wdx) ⇐⇒ f ∈ L2(wdx) and Λf ∈ L2(wdx),

f ∈ H
1

2 (wdx) ⇐⇒ (1− ∂xx)
1

4 f ∈ L2(wdx) ⇐⇒ f ∈ L2(wdx) and Λ
1

2 f ∈ L2(wdx).

(2.8)

(3) Gagliardo-Nirenberg type inequalities (see e.g [22])
∥∥∥Λ

1

2 f
∥∥∥
L2(wdx)

≤ C ‖f‖
1

2

L2(wdx)
‖Λf‖

1

2

L2(wdx)
,

‖θ‖L4(wdx) ≤ C‖θ‖
1

2

L2(wdx)

∥∥∥Λ
1

2 θ
∥∥∥

1

2

L2(wdx)
.

(2.9)
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This latter inequality can be proved for instance by using the weighted Sobolev embeddingH
1

4 (wdx) →֒
L4(wdx), and then by weighted interpolation one recover the second inequality in (2.9).

In this paper, we take weights wβ = (1 + |x|2)−β
2 , 0 < β < 1, which belongs to the Ap class

of Muckenhoupt for all 1 < p < ∞. These weights also satisfy the following properties. For the
proofs, see [18].

Lemma 2.3. Let wβ = (1 + |x|2)−β
2 , 0 < β < 1.

(1) For 2 ≤ p < ∞ such that β(1 − p−1) < 1/2, the commutator 1
wβ

[
Λ

1

2 , wβ

]
is bounded from

Lp(wβdx) to L
p(wβdx).

(2) |∂xwβ(x)| ≤ Cwβ(x) and |Λwβ(x)| ≤ Cwβ(x), where C > 0 depends only on β.

Note that one can also derive commutator estimates for generalized Muckenhoupt weights of the

type wβ = (1 + |x|k)−β
k ∈ A∞ where k is an even integer (see [17] for instance). However, our aim

here is just to show the existence of global infinite energy solutions not to be optimal in the family
of weights.

2.6. Compactness. Since we look for weak solutions, we use compactness arguments when we
pass to the limit in weak formulations.

Lemma 2.4. [30] Let X0,X,X1 be reflexive Banach spaces such that

X0 ⊂⊂ X ⊂ X1,

where X0 is compactly embedded in X. Let T > 0 be a finite number and let α0 and α1 be two
finite numbers such that αi > 1. Then, Y = {u ∈ Lα0 (0, T ;X0) , ∂tu ∈ Lα1 (0, T ;X1)} is compactly
embedded in Lα0 (0, T ;X).

Lemma 2.5 ([9]). Consider a sequence (θǫ) ∈ C([0, T ] × BR(0)) that is uniformly bounded in
L∞([0, T ],W 1,∞(BR(0))). Assume further that the weak derivative dθǫ

dt
is in L∞([0, T ], L∞(BR(0)))

(not necessarily uniform) and is uniformly bounded in L∞([0, T ],W−2,∞
∗ (BR(0))). Finally suppose

that θǫx ∈ C([0, T ] × BR(0)). Then there exists a subsequence of (θǫ) that converges strongly in
L∞([0, T ]×BR(0)).

3. Proof of Theorem 1.1

3.1. A priori estimates. We first obtain a priori bounds of the equation

θt + (Hθ) θx + δθΛθ + Λγθ = 0, (3.1)

We note that by the minimum principle applied to (3.1), we have θ(t, x) ≥ 0 for all t ≥ 0.

To obtain H
1

2 bound of θ, we begin with the L2 bound. We multiply (3.1) by θ and integrate
over R. Then,

1

2

d

dt
‖θ‖2L2 +

∥∥∥Λ
γ
2 θ
∥∥∥
2

L2
= −

∫
[(Hθ) θxθ] dx− δ

∫ [
θ2Λθ

]
dx =

(
1

2
− δ

)∫ [
θ2Λθ

]
dx.

Since θ ≥ 0, we have
∫ [

θ2Λθ
]
dx =

∫ ∫
(θ(x)− θ(y))2

|x− y|2 · θ(x) + θ(y)

2
dxdy ≥ 0

and thus

‖θ(t)‖2L2 + 2

∫ t

0

∥∥∥Λ
γ
2 θ(s)

∥∥∥
2

L2
ds ≤ ‖θ0‖2L2 . (3.2)
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We next estimate θ in Ḣ
1

2 . We multiply (3.1) by Λθ and integrate over R:

1

2

d

dt

∥∥∥Λ
1

2 θ
∥∥∥
2

L2
+
∥∥∥Λ

1+γ
2 θ
∥∥∥
2

L2
= −

∫
[(Hθ) θxΛθ] dx− δ

∫ [
θ (Λθ)2

]
dx.

By (2.2), we have

−
∫

[(Hθ) θxΛθ] dx =

∫
[θH (θx (Hθx))] dx =

1

2

∫ [
θ
(
(Λθ)2 − (θx)

2
)]
dx,

and hence

1

2

d

dt

∥∥∥Λ
1

2 θ
∥∥∥
2

L2
+
∥∥∥Λ

1+γ
2 θ
∥∥∥
2

L2
=

(
1

2
− δ

)∫ [
θ (Λθ)2

]
dx− 1

2

∫ [
θ (θx)

2
]
dx ≤ 0,

where we use the sign conditions θ ≥ 0 and δ ≥ 1
2 . This leads to the inequality

∥∥∥Λ
1

2 θ(t)
∥∥∥
2

L2
+ 2

∫ t

0

∥∥∥Λ
1+γ
2 θ(s)

∥∥∥
2

L2
ds ≤

∥∥∥Λ
1

2 θ0

∥∥∥
2

L2
. (3.3)

By (3.2) and (3.3), we obtain that

‖θ(t)‖2
H

1
2
+ 2

∫ t

0

∥∥∥Λ
γ
2 θ(s)

∥∥∥
2

H
1
2

ds ≤ ‖θ0‖2
H

1
2
. (3.4)

We finally estimate θ in L1. Since θ ≥ 0,

d

dt
‖θ‖L1 =

d

dt

∫
θdx = (1− δ)

∫
θΛθdx ≤ C

∥∥∥Λ
1

2 θ
∥∥∥
2

L2

and thus we conclude that

‖θ(t)‖L1 ≤ ‖θ0‖L1 + C

∫ t

0
‖θ(s)‖2

Ḣ
1
2
ds ≤ ‖θ0‖L1 + Ct ‖θ0‖2

H
1
2
. (3.5)

3.2. Approximation and passing to limit. We first regularize initial data as θǫ0 = ρǫ ∗ θ0 where
ρǫ is a standard mollifier. We then regularize the equation by putting the Laplacian with the
coefficient ǫ:

θǫt + (Hθǫ) θǫx + δθǫΛθǫ + Λγθǫ = ǫθǫxx. (3.6)

For the proof of the existence of a global-in-time smooth solution, see [18] (Section 6). Moreover,
(θǫ) satisfies that

‖θǫ(t)‖L1 + ‖θǫ(t)‖2
H

1
2
+ 2

∫ t

0

∥∥∥Λ
γ
2 θǫ(s)

∥∥∥
2

H
1
2

ds+ ǫ ‖∇θǫ‖2
H

1
2
≤ ‖θ0‖L1 + C(1 + t) ‖θ0‖2

H
1
2
.

Therefore, (θǫ) is bounded in AT uniformly in ǫ > 0. From this, we have uniform bounds

Hθǫ ∈ L4
(
0, T ;L4

)
, θǫ ∈ L2

(
0, T ;L4

)

and hence

((Hθǫ) θǫ)x ∈ L
4

3

(
0, T ;H−1

)
.

Moreover,

Λγθǫ + ǫθǫxx ∈ L2
(
0, T ;H−1

)
.
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To estimate θǫΛθǫ, we use the duality argument. For any χ ∈ L2
(
0, T ;H2

)
,

|〈θǫΛθǫ, χ〉| ≤
∫ ∣∣∣θ̂ǫΛθǫ(ξ)χ̂(ξ)

∣∣∣ dξ ≤
∫ ∫ ∣∣∣θ̂ǫ(ξ − η)

∣∣∣ |η|
∣∣∣θ̂ǫ(η)

∣∣∣ |χ̂(ξ)| dηdξ

≤
∫ ∫ ∣∣∣θ̂ǫ(ξ − η)

∣∣∣
(
|η| 12

(
|ξ − η| 12 + |ξ| 12

)) ∣∣∣θ̂ǫ(η)
∣∣∣ |χ̂(ξ)| dηdξ

=

∫ ∫
|ξ − η| 12

∣∣∣θ̂ǫ(ξ − η)
∣∣∣ |η| 12

∣∣∣θ̂ǫ(η)
∣∣∣ |χ̂(ξ)| dηdξ

+

∫ ∫ ∣∣∣θ̂ǫ(ξ − η)
∣∣∣ |η| 12

∣∣∣θ̂ǫ(η)
∣∣∣ |ξ| 12 |χ̂(ξ)| dηdξ

≤
∥∥∥Λ

1

2 θǫ
∥∥∥
2

L2
‖χ̂‖L1 +

∥∥∥Λ
1

2 θǫ
∥∥∥
L2

∥∥∥θ̂
∥∥∥
L1

∥∥∥Λ
1

2χ
∥∥∥
L2

≤ C
∥∥∥(1 + Λ)

1

2
+ γ

4 θǫ
∥∥∥
2

L2
‖χ‖H2 .

Since (1 + Λ)
1

2
+ γ

4 θǫ ∈ L4
(
0, T ;L2

)
uniformly in ǫ > 0, we have

∫
|〈θǫΛθǫ, χ〉| dt ≤ C

∥∥∥(1 + Λ)
1

2
+ γ

4 θǫ
∥∥∥
2

L4
T
L2

‖χ‖L2
T
H2 .

This implies that θǫΛθǫ ∈ L2
(
0, T ;H−2

)
. So, we conclude that from the equation of θǫt

θǫt ∈ L
4

3

(
0, T ;H−2

)
.

We now extract a subsequence of (θǫ), using the same index ǫ for simplicity, and a function
θ ∈ AT such that

θǫ
⋆
⇀ θ in L∞

(
0, T ;Lp ∩H 1

2

)
for all p ∈ (1,∞),

θǫ ⇀ θ in L2
(
0, T ;H

γ+1

2

)
,

θǫ → θ in L2
(
0, T ;H

1

2

)
,

θǫ → θ in L2
(
0, T ;Lp

loc

)
for all p ∈ (1,∞)

(3.7)

where we use Lemma 2.4 for the strong convergence.
We now multiply (3.6) by a test function ψ ∈ C∞

c ([0, T )× R) and integrate over R. Then,
∫ T

0

∫
[θǫψt + (Hθǫ) θǫψx + (1− δ)Λθǫθǫψ − θǫΛψ + ǫθǫψxx] dxdt =

∫
θǫ0(x)ψ(0, x)dx

which can be rewritten as
∫ T

0

∫ [
θǫψt + (Hθǫ) θǫψx︸ ︷︷ ︸

I

−θǫΛψ + ǫθǫψxx

]
dxdt−

∫
θǫ0(x)ψ(0, x)dx

= −(1− δ)

∫ T

0

∫
Λ

1

2 θǫ
[
Λ

1

2 , ψ
]
θǫ

︸ ︷︷ ︸
II

dxdt− (1− δ)

∫ T

0

∫ ∣∣∣Λ
1

2 θǫ
∣∣∣
2
ψ

︸ ︷︷ ︸
III

dxdt.

(3.8)

By Lemma 2.4 with

X0 = L2
(
0, T ;H

1

2

)
, X = L2

(
0, T ;L2

loc

)
, X1 = L2

(
0, T ;H−2

)
,

we can pass to the limit to I. Moreover, since
[
Λ

1

2 , ψ
]
θǫ →

[
Λ

1

2 , ψ
]
θ
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strongly in L2
(
0, T ;L6

)
by Lemma 2.2 and Λ

1

2 θǫ converges weakly in L2
(
0, T ;L2

)
by (3.7), we can

pass to the limit to II. Lastly, Lemma 2.4 with

X0 = L2
(
0, T ;H

1+γ
2

)
, X = L2

(
0, T ;H

1

2

loc

)
, X1 = L2

(
0, T ;H−2

)
,

allows to pass to the limit to III. Combining all the limits together, we obtain that
∫ T

0

∫
[θψt + (Hθ) θψx + (1− δ)Λθθǫψ] dxdt =

∫
θ0(x)ψ(0, x)dx. (3.9)

3.3. Uniqueness when γ = 1. To show the uniqueness of a weak solution, let θ = θ1 − θ2. Then,
θ satisfies the following equation:

θt + Λθ = − (Hθ) θ1x − (Hθ2) θx − δθΛθ1 − δθ2Λθ, θ(0, x) = 0. (3.10)

We multiply θ to (3.10) and integrate over R. Then,

1

2

d

dt
‖θ‖2L2 +

∥∥∥Λ
1

2 θ
∥∥∥
2

L2
=

∫
[− (Hθ) θ1x − (Hθ2) θx − δθΛθ1 − δθ2Λθ] θdx.

The first three terms in the right-hand side are easily bounded by

C ‖θ1x‖L2 ‖θ‖2L4 + C ‖θ2x‖L2 ‖θ‖2L4 .

Moreover, the last term is bounded by using Lemma 2.1

−δ
∫
θ2θΛθdx ≤ −δ

2

∫
θ2Λθ

2dx = −δ
2

∫
θ2Λθ2dx ≤ C ‖θ2x‖L2 ‖θ‖2L4 .

Hence we derive that

d

dt
‖θ‖2L2 +

∥∥∥Λ
1

2 θ
∥∥∥
2

L2
≤ C ‖θ1x‖L2 ‖θ‖2L4 + C ‖θ2x‖L2 ‖θ‖2L4

≤ C
(
‖θ1x‖2L2 + ‖θ2x‖2L2

)
‖θ‖2L2 +

1

2

∥∥∥Λ
1

2 θ
∥∥∥
2

L2
.

Since

θ1x ∈ L2
(
0, T : L2

)
, θ2x ∈ L2

(
0, T : L2

)

when γ = 1, we conclude that θ = 0 in L2 and thus a weak solution is unique. This completes the
proof of Theorem 1.1.

4. Proof of Theorem 1.2

4.1. A priori estimate. We consider the equation

θt + (Hθ) θx + δθΛθ + Λθ = 0. (4.1)

Since (4.1) satisfies the minimum and maximum principles, we have

θ(t, x) ≥ 0, ‖θ(t)‖L∞ ≤ ‖θ0‖L∞ .

We begin with the L2(wβdx) bound. For notational simplicity, we suppress the dependence of β.
We multiply (4.1) by θw and integrate in x. Then,

1

2

d

dt

∫
‖θ‖2L2(wdx) +

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)
= −

∫
(Hθ) θxθwdx− δ

∫
θ (Λθ) θwdx−

∫
Λ

1

2 θ
[
Λ

1

2 , w
]
θdx

= −1

2

∫
(Hθ)

(
θ2
)
x
wdx− δ

∫
θ2 (Λθ)wdx−

∫
Λ

1

2 θ
[
Λ

1

2 , w
]
θdx

=

(
1

2
− δ

)∫
θ2 (Λθ)wdx+

1

2

∫
(Hθ) θ2wxdx−

∫
Λ

1

2 θ
[
Λ

1

2 , w
]
θdx.
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Since 1
2 − δ ≤ 0 and θ ≥ 0, we use Lemma 2.1 to have
(
1

2
− δ

)∫
θ2 (Λθ)wdx ≤ −1

3

(
1

2
− δ

)∫
Λ
(
θ3
)
wdx = −1

3

(
1

2
− δ

)∫
θ3Λwdx

≤ C‖θ‖L∞

∫
θ2wdx ≤ C‖θ0‖L∞ ‖θ‖2L2(wdx) ,

where we use Lemma 2.3 to bound Λw by w. Moreover, by the L2(wdx) boundedness of the Hilbert
transform, we also have

1

2

∫
(Hθ) θ2wxdx ≤ C‖θ‖L∞

∫
|θ| |Hθ|wdx ≤ C‖θ0‖L∞ ‖θ‖2L2(wdx) .

We finally estimate the commutator term. By Lemma 2.3,
∣∣∣∣
∫

Λ
1

2 θ
[
Λ

1

2 , w
]
θdx

∣∣∣∣ ≤
∫ ∣∣∣∣
(
Λ

1

2 θ
)
w
1

w

[
Λ

1

2 , w
]
θ

∣∣∣∣ dx ≤ C
∥∥∥Λ

1

2 θ
∥∥∥
L2(wdx)

∥∥∥∥
1

w

[
Λ

1

2 , w
]
θ

∥∥∥∥
L2(wdx)

≤ C
∥∥∥Λ

1

2 θ
∥∥∥
L2(wdx)

‖θ‖L2(wdx) ≤
1

2

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)
+ C ‖θ‖2L2(wdx) .

Collecting all terms together, we obtain that

d

dt
‖θ‖2L2(wdx) +

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)
≤ C(1 + ‖θ0‖L∞) ‖θ‖2L2(wdx) . (4.2)

We next multiply (4.1) by Λ
1

2

(
wΛ

1

2 θ
)
and integrate in x. Then,

1

2

d

dt

∥∥∥Λ
1

2 θ
∥∥∥
L2(wdx)

+ ‖Λθ‖L2(wdx)

= −
∫

(Hθ) θxΛ
1

2

(
wΛ

1

2 θ
)
dx− δ

∫
θ (Λθ)Λ

1

2

(
wΛ

1

2 θ
)
dx−

∫
Λθ
[
Λ

1

2 , w
]
Λ

1

2 θdx

= I+II+III.

We note that since δ > 0 and θ ≥ 0

II = −δ
∫
θ |Λθ|2 wdx− δ

∫
θΛθ

[
Λ

1

2 , w
]
Λ

1

2 θdx ≤ −δ
∫
θΛθ

[
Λ

1

2 , w
]
Λ

1

2 θdx (4.3)

and thus we only need to estimate I and III and the right-hand side of (4.3). (There is an extra
term θ in the right-hand side of (4.3) but we can take the L∞ norm to θ and it does not affect the
proof.) These bounds are obtained in [18]:

I+III− δ

∫
Λθ
[
Λ

1

2 , w
]
Λ

1

2 θdx ≤ C
(
‖θ0‖L∞ + ‖θ0‖4L∞

)
‖θ‖2L2(wdx) + C

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)

+ C‖θ0‖L∞ ‖Λθ‖2L2(wdx) +
1

2
‖Λθ‖2L2(wdx) .

Hence we have that

d

dt

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)
+ ‖Λθ‖2L2(wdx)

≤ C
(
‖θ0‖L∞ + ‖θ0‖4L∞

)
‖θ‖2L2(wdx) + C

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)
+ C‖θ0‖L∞ ‖Λθ‖2L2(wdx)

(4.4)

By (4.2) and (4.4),

d

dt
‖θ‖2

H
1
2 (wdx)

+
∥∥∥Λ

1

2 θ
∥∥∥
2

L2(wdx)
+ ‖Λθ‖2L2(wdx) ≤ C

(
‖θ0‖L∞ + ‖θ0‖4L∞

)
‖θ‖2

H
1
2 (wdx)

+ C‖θ0‖L∞ ‖Λθ‖2L2(wdx) .
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If ‖θ0‖L∞ is sufficiently small,

d

dt
‖θ‖2

H
1
2 (wdx)

+
∥∥∥Λ

1

2 θ
∥∥∥
2

H
1
2 (wdx)

≤ C
(
‖θ0‖L∞ + ‖θ0‖4L∞

)
‖θ‖2

H
1
2 (wdx)

and hence we derive the following inequality

‖θ(t)‖2
H

1
2 (wdx)

+

∫ t

0

∥∥∥Λ
1

2 θ(s)
∥∥∥
2

H
1
2 (wdx)

ds ≤ ‖θ0‖2
H

1
2 (wdx)

exp
(
C
(
‖θ0‖L∞ + ‖θ0‖4L∞

)
t
)
. (4.5)

4.2. Approximation and passing to limit. To show the existence of a weak solution in DT , we
first approximate the initial data θ0. Let χ be a smooth positive function such that χ(x) = 1 for
|x| ≤ 1 and χ(x) = 0 for |x| ≥ 2. Let χR(x) = χ(x/N), N ∈ N, and consider truncated initial data
θN0 (x) = θ0(x)χN (x). Then, a direct computation shows that

lim
N→∞

∥∥θN0 − θ0
∥∥
H

1
2 (wdx)

= 0.

Moreover, this truncation does not alter the non-negativity and does not increase the L∞ norm.
So, if ‖θ0‖L∞ is sufficiently small, there is a global-in-time solution of

∂tθ
N +HθN∂xθN + δθNΛθN + ΛθN = 0, θN(0, x) = θN0 (x). (4.6)

¿From the a priori estimates, the sequence (θN ) is bounded in

L∞([0, T ],H
1

2 (wdx)) ∩ L2([0, T ],H1(wdx))

uniformly with respect to N . We now take a test function ψ ∈ C∞
c ([0, T ) ×R). Then, ψθN is

bounded in L2([0, T ],H1). Moreover, since θN ∈ L∞([0, T ] × R)

ψ
(
HθN∂xθN + δθNΛθN + ΛθN

)

= (ψHθNθN )x − ψxHθNθN + (δ − 1)ψθNΛθN + ψΛθN ∈ L2([0, T ],H−1).

By Lemma 2.4, we can pass to the limit to the weak formulation,
∫ T

0

∫ [
θNψt +

(
HθN

)
θNψx + (1− δ)ΛθNθNψ − θNΛψ

]
dxdt =

∫
θN0 (x)ψ(0, x)dx,

to obtain a weak solution θ which is also in

L∞([0, T ],H
1

2 (wdx)) ∩ L2([0, T ],H1(wdx)).

4.3. Uniqueness. To show the uniqueness of a weak solution, we consider the equation of θ =
θ1 − θ2 given by

θt + Λθ = − (Hθ) θ1x − (Hθ2) θx − δθΛθ1 − δθ2Λθ, θ(0, x) = 0. (4.7)

We multiply wθ to (4.7) and integrate over R. Then,

1

2

d

dt
‖θ‖2L2(wdx) +

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)
=

∫
[− (Hθ) θ1x − (Hθ2) θx − δθΛθ1 − δθ2Λθ] θwdx

−
∫

Λ
1

2 θ
[
Λ

1

2 , w
]
θdx.

As before, the last term is bounded by
∫

Λ
1

2 θ
[
Λ

1

2 , w
]
θdx ≤ 1

2

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)
+ C ‖θ‖2L2(wdx) .

The first three terms in the right-hand side are easily bounded by

C
(
‖θ1x‖L2(wdx) + ‖θ2x‖L2(wdx) + ‖θ2‖L2(wdx)

)
‖θ‖2L4(wdx).
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Moreover, since δ > 0, θ2 ≥ 0 and w ≥ 0, the fourth term is bounded by using Lemma 2.1

−δ
∫
θ2θΛθwdx ≤ −δ

2

∫
θ2wΛθ

2dx = −δ
2

∫
θ2Λ(θ2w)dx =

δ

2

∫
H(θ2)(θ2w)xdx

≤ C
(
‖θ2x‖L2(wdx) + ‖θ2‖L2(wdx)

)
‖θ‖2L4(wdx).

Hence we obtain that
d

dt
‖θ‖2L2(wdx) +

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)

≤ C
(
‖θ1x‖L2(wdx) + ‖θ2x‖L2(wdx) + ‖θ2‖L2(wdx)

)
‖θ‖2L4(wdx) + C ‖θ‖2L2(wdx)

≤ C
(
1 + ‖θ1x‖2L2(wdx) + ‖θ2x‖2L2(wdx) + ‖θ2‖2L2(wdx)

)
‖θ‖2L2(wdx) +

1

2

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)
,

where we use (2.9) to obtain the last inequality. Since

θ1x ∈ L2
(
0, T : L2(wdx)

)
, θ2x ∈ L2

(
0, T : H1(wdx)

)
,

we conclude that θ = 0 in L2(wdx) and thus a weak solution is unique. This completes the proof
of Theorem 1.2.

5. Proof of Theorem 1.3

5.1. A priori estimates. Taking the Fourier transform of (1.2), we have that

∂t|θ̂(ξ)| =
¯̂
θ(ξ)∂tθ̂(ξ) + θ̂(ξ)∂t

¯̂
θ(ξ)

2|θ̂(ξ)|
=

Re
(
¯̂
θ(ξ)∂tθ̂(ξ)

)

|θ̂(ξ)|

= −Re

[∫

R

−iζ
|ζ| θ̂(ζ)i(ξ − ζ))θ̂(ξ − ζ)− δθ̂(ζ)|ξ − ζ|θ̂(ξ − ζ)dζ

¯̂
θ(ξ)

|θ̂(ξ)|

]
1√
2π

− |ξ||θ̂|.

Consequently,

d

dt
‖θ‖A0 ≤ (1 + |δ|)

∫

R

∫

R

|θ̂(ζ)||ξ − ζ||θ̂(ξ − ζ)|dζdξ 1√
2π

− ‖θ‖Ȧ1

≤ (1 + |δ|)
∫

R

∫

R

|θ̂(ζ)||ξ − ζ||θ̂(ξ − ζ)|dξdζ 1√
2π

− ‖θ‖Ȧ1 ≤
(
(1 + |δ|)‖θ‖A0√

2π
− 1

)
‖θ‖Ȧ1 .

Thus, if θ0 satisfies the condition (1.6), we have

‖θ(t)‖A0 +

(
1− (1 + |δ|)‖θ0‖A0√

2π

)∫ ∞

0
‖θ(s)‖Ȧ1ds ≤ ‖θ0‖A0 . (5.1)

Similarly,

∂t|ξθ̂| = −Re

[ ∫

R

−iζ
|ζ| θ̂(ζ)(i(ξ − ζ))2θ̂(ξ − ζ) + |ζ|θ̂(ζ)i(ξ − ζ))θ̂(ξ − ζ)dζ

− δ

∫

R

iζθ̂(ζ)|ξ − ζ|θ̂(ξ − ζ) + θ̂(ζ)i(ξ − ζ)|ξ − ζ|θ̂(ξ − ζ)dζ
iξθ̂(ξ)

|ξ||θ̂(ξ)|

]
1√
2π

− |ξ|2|θ̂|.

Thus, using (2.5), we have that

d

dt
‖θ‖Ȧ1 ≤

(
‖θ‖A0‖θ‖Ȧ2 + ‖θ‖2A1

) 1 + |δ|√
2π

− ‖θ‖Ȧ2 ≤
(
2(1 + |δ|)‖θ‖A0√

2π
− 1

)
‖θ‖Ȧ2 .

As a consequence, we obtain that, if θ0 satisfies the condition (1.6), we also have

‖θ(t)‖Ȧ1 +

(
1− 2(1 + |δ|)‖θ0‖A0√

2π

)∫ ∞

0
‖θ(s)‖Ȧ2ds ≤ ‖θ0‖Ȧ1 . (5.2)
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By (5.1) and (5.2), we conclude that

‖θ(t)‖A1 +

(
1− 2(1 + |δ|)‖θ0‖A0√

2π

)∫ t

0
‖θx(s)‖A1ds ≤ ‖θ0‖A1 (5.3)

for all t ≥ 0.

5.2. Approximation and passing to the limit. Define eǫ∂
2
x the heat semigroup, i.e.

̂eǫ∂
2
xf(x) = e−ǫξ2 f̂(ξ),

and gǫ(x) = e−ǫx2

. Note that

ĝǫ(ξ) =
1√
2ǫ
e−

ξ2

4ǫ , ‖ĝǫ‖L1 =
√
2π.

Given θ0(x) ∈ A1, we consider θǫ0(x) = gǫ(x)e
ǫ∂2

xθ0(x). As θ0(x) is a bounded function, we have
that θǫ0 is infinitely smooth and has finite total mass:

‖θǫ0‖L1 ≤ ‖gǫ‖L1

∥∥∥eǫ∂2
xθ0

∥∥∥
L∞

≤
√
π

ǫ
‖θ0‖L∞ .

Furthermore, using Young’s inequality and the definition of gǫ,

‖θǫ0‖A0 =
1√
2π

∥∥∥ĝǫ ∗
(
e−ǫξ2 θ̂0

)∥∥∥
L1

≤
∥∥∥e−ǫξ2 θ̂0

∥∥∥
L1

≤ ‖θ0‖A0 .

Similarly,

‖θǫ0‖Ȧ1 = ‖∂xθǫ0‖A0 ≤ ‖θ0‖Ȧ1 +
∥∥∥∂xgǫeǫ∂

2
xθ0

∥∥∥
A0

= ‖θ0‖Ȧ1 + cǫ‖θ0‖A0 .

Now we define the approximated problems

θǫt + (Hθǫ) θǫx + δθǫΛθǫ +Λθǫ = ǫ∂2xθ
ǫ, (5.4)

with finite energy approximated initial data θǫ0. These problems have unique smooth solutions
denoted by θǫ. Moreover, (θǫ) satisfies a uniform bound

‖θǫ(t)‖A1 +

(
1− 2(1 + |δ|)‖θ0‖A0√

2π

)∫ t

0
‖θǫx(s)‖A1ds+ ǫ

∫ t

0
‖θǫx(s)‖A2ds ≤ ‖θ0‖A1 .

uniformly in ǫ. Thus, the a priori estimates lead to the following uniform-in-ǫ bounds

sup
t∈[0,∞)

‖θǫ(t)‖C0(R) ≤ sup
t∈[0,∞)

‖θǫ(t)‖A0 ≤ ‖θ0‖A0 <

√
2π

1 + |δ| ,

sup
t∈[0,∞)

‖θǫ(t)‖Ċ1(R) ≤ sup
t∈[0,∞)

‖θǫ(t)‖Ȧ1 < ‖θ0‖Ȧ1 + cǫ‖θ0‖A0 ,

sup
t∈[0,∞)

‖Λθǫ(t)‖C0(R) < ‖θ0‖Ȧ1 + cǫ‖θ0‖A0 .

(5.5)

Moreover, from the equation (5.4) we also obtain uniform bounds

sup
t∈[0,∞)

‖∂tθǫ(t)‖C0(R) + sup
t∈[0,∞)

‖∂tHθǫ(t)‖C0(R) ≤ 2 sup
t∈[0,∞)

‖∂tθǫ(t)‖A0(R) ≤ F1(‖θ0‖A1 , δ),

‖Hθǫ‖C1([0,∞)×R) + ‖θǫ‖C1([0,∞)×R) ≤ F2(‖θ0‖A1 , δ)
(5.6)

where F1 and F2 only depend on the quantities in the right-hand side of (5.5). Due to Banach-
Alaoglu Theorem, there exists a subsequence (denoted by ǫ) and a limit function θ ∈W 1,∞([0,∞)×
R) such that

θǫ
⋆
⇀ θ in L∞

(
0, T ;W 1,∞

)
, Λθǫ

⋆
⇀ Λθ in L∞ (0, T ;L∞)

for all T > 0. Using Lemma 2.5, we have the following strong convergence

lim
ǫ→0

‖θǫ − θ‖L∞(K) + ‖Hθǫ −Hθ‖L∞(K) = 0
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for K = [0, T ] × [−R,R] for any R > 0. Since L∞(K) ⊂ L2(K), we can pass to the limit to the
weak formulation

∫ T

0

∫
[θǫψt + (Hθǫ) θǫψx + (1− δ)Λθǫθǫψ − θǫΛψ + ǫθǫψxx] dxdt =

∫
θǫ0(x)ψ(0, x)dx

to obtain a weak solution θ satisfying

θ ∈ WT , sup
t∈[0,T ]

‖θ(t)‖A1 +

(
1−

√
2‖θ0‖A0√

π

)∫ T

0
‖θx(t)‖A1dt ≤ ‖θ0‖A1

for all T > 0.

5.3. Uniqueness. To show the uniqueness of a weak solution, we consider the equation of θ =
θ1 − θ2 given by

θt + Λθ = − (Hθ) θ1x − (Hθ2) θx − δθΛθ1 − δθ2Λθ, θ(0, x) = 0. (5.7)

Taking the Fourier transform of (5.7) and multiply by θ̂

|θ̂|
, we have

d

dt
‖θ‖A0 + ‖θ‖Ȧ1 ≤ 1 + |δ|√

2π
‖θ1‖Ȧ1 ‖θ‖A0 +

1 + |δ|√
2π

‖θ2‖A0 ‖θ‖Ȧ1 . (5.8)

Since
(1 + |δ|) ‖θ2‖A0√

2π
< 1, ‖θ1(t)‖Ȧ1 ∈ L1([0,∞)),

we have θ(t, x) = 0 in A0 for all time. This implies that a weak solution is unique.

6. Proof of Theorem 1.4

6.1. A priori estimate. We consider the equation

θt + uθx + Λγθ = 0, u = (1− ∂xx)
−αθ (6.1)

Since (6.1) satisfies the maximum principle, we have

‖θ(t)‖L∞ ≤ ‖θ0‖L∞ .

We also obtain that

1

2

d

dt
‖θ‖2L2 +

∥∥∥Λ
γ
2 θ
∥∥∥
2

L2
= −

∫
uθxθdx ≤ ‖θ‖L∞‖ux‖L2‖θ‖L2

≤ C
(
‖θ0‖L∞ + ‖θ0‖2L∞

)
‖θ‖2L2 +

1

2

∥∥∥Λ
γ
2 θ
∥∥∥
2

L2

where we use the condition α = 1
2 −

γ
4 to bound ux as

‖ux‖L2 ≤ C
(
‖θ‖L2 +

∥∥∥Λ
γ
2 θ
∥∥∥
L2

)
.

Therefore, we obtain that

‖θ(t)‖2L2 +

∫ t

0

∥∥∥Λ
γ
2 θ(s)

∥∥∥
2

L2
ds ≤ ‖θ0‖2L2e

C(1+‖θ0‖2L∞)t.
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6.2. Approximation and passing to limit. We consider the following equation with regularized
initial data:

θǫt + uǫθǫx + Λγθǫ = 0, θǫ0 = ρǫ ∗ θ0. (6.2)

Then, there exists a global-in-time smooth solution θǫ. Moreover, θǫ satisfies that

‖θǫ(t)‖L∞ + ‖θǫ(t)‖2L2 +

∫ t

0

∥∥∥Λ
γ
2 θǫ(s)

∥∥∥
2

L2
ds+ ǫ ‖∇θǫ‖2L2 ≤ ‖θ0‖L∞ + ‖θ0‖2L2e

C(1+‖θ0‖2L∞)t. (6.3)

Therefore, (θǫ) is bounded in CT uniformly in ǫ > 0. This implies the uniform bounds

uǫ ∈ L4
(
0, T ;L4

)
, θǫ ∈ L4

(
0, T ;L4

)
, uǫx ∈ L2

(
0, T ;L2

)
.

Moreover, these bounds with the equation

θǫt = −uǫθǫx − Λγθǫ + ǫθǫxx = − (uǫθǫ)x + uǫxθ
ǫ − Λγθǫ + ǫθǫxx

we also have that
θǫt ∈ L

4

3

(
0, T ;H−2

)
.

We now extract a subsequence of (θǫ), using the same index ǫ for simplicity, and a function
θ ∈ CT and u = (1− ∂xx)

−αθ such that

θǫ
⋆
⇀ θ in L∞ (0, T ;Lp) for all p ∈ (1,∞),

θǫ ⇀ θ in L2
(
0, T ;H

γ
2

)
,

θǫ → θ in L2
(
0, T ;Lp

loc

)
for all p ∈ (1,∞),

uǫx ⇀ ux in L2
(
0, T ;L2

)
,

(6.4)

where we use Lemma 2.4 to obtain the strong convergence.
We now multiply (6.2) by a test function ψ ∈ C∞

c ([0, T )× R) and integrate over R. Then,
∫ T

0

∫
[θǫψt + uǫθǫψx + uǫxθ

ǫψ − θǫΛγψ + ǫθǫψxx] dxdt =

∫
θǫ0(x)ψ(0, x)dx.

By Lemma 2.4 with

X0 = L2
(
0, T ;H

γ
2

)
, X = L2

(
0, T ;L2

loc

)
, X1 = L2

(
0, T ;H−2

)

and using (6.4), we can pass to the limit to obtain that
∫ T

0

∫
[θψt + uθψx + uxθψ − θΛγψ] dxdt =

∫
θ0(x)ψ(0, x)dx (6.5)

This completes the proof.

7. Proof of Theorem 1.5

7.1. A priori estimate. We consider the equation

θt + uθx + Λθ = 0, u = (1− ∂xx)
− 1

4 θ (7.1)

We multiply (7.1) by θw and integrate in x. Then,

1

2

d

dt
‖θ‖2L2(wdx) +

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)
= −

∫
uθxθwdx−

∫
Λ

1

2 θ
[
Λ

1

2 , w
]
θdx

=
1

2

∫
uxθ

2wdx+
1

2

∫
uθ2wxdx−

∫
Λ

1

2 θ
[
Λ

1

2 , w
]
θdx.

As in the proof of Theorem 1.2, we bound the commutator term as∫
Λ

1

2 θ
[
Λ

1

2 , w
]
θdx ≤ 1

4

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)
+ C ‖θ‖2L2(wdx) .
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To estimate terms involving u, we use θ = (1− ∂xx)
1

4u and (2.8) to obtain that
∫
uxθ

2wdx+

∫
uθ2wxdx ≤ C‖θ0‖L∞

(
‖u‖L2(wdx) + ‖ux‖L2(wdx)

)
‖θ‖L2(wdx)

≤ C‖θ0‖L∞

(
‖θ‖L2(wdx) +

∥∥∥Λ
1

2 θ
∥∥∥
L2(wdx)

)
‖θ‖L2(wdx)

≤ C
(
‖θ0‖L∞ + ‖θ0‖2L∞

)
‖θ‖2L2(wdx) +

1

4

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)
.

Collecting all terms together, we obtain that

d

dt
‖θ‖2L2(wdx) +

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)
≤ C

(
‖θ0‖L∞ + ‖θ0‖2L∞

)
‖θ‖2L2(wdx)

and hence that

‖θ(t)‖2L2(wdx) +

∫ t

0

∥∥∥Λ
1

2 θ(s)
∥∥∥
2

L2(wdx)
≤ ‖θ0‖2L2(wdx) exp

[
C
(
‖θ0‖L∞ + ‖θ0‖2L∞

)
t
]
. (7.2)

We next multiply (7.1) by −(θxw)x and integrate in x. Then,

1

2

d

dt
‖θx‖2L2(wdx) +

∥∥∥Λ
3

2 θ
∥∥∥
2

L2(wdx)
=

∫
uθx(θxw)xdx+

∫
Λ

3

2 θ
[
Λ

1

2 , w
]
Λθdx

= −1

2

∫
ux(θx)

2wdx+
1

2

∫
u(θx)

2wxdx−
∫

Λ
1

2 θ
[
Λ

1

2 , w
]
θdx+

∫
Λθθxwxdx.

Following the computation in [18],

d

dt
‖θx‖2L2(wdx) +

∥∥∥Λ
3

2 θ
∥∥∥
2

L2(wdx)
≤ C‖u‖H1(wdx) ‖θx‖2L4(wdx) + C ‖θx‖2L2(wdx) +

1

4

∥∥∥Λ
3

2 θ
∥∥∥
2

L2(wdx)

≤ C‖θ‖
H

1
2 (wdx)

‖θx‖2L4(wdx) + C ‖θx‖2L2(wdx) +
1

4

∥∥∥Λ
3

2 θ
∥∥∥
2

L2(wdx)
,

where we use the relation in (2.8) to bound u in terms of θ. Since

‖θ‖
H

1
2 (wdx)

‖θx‖2L4(wdx) ≤ C‖θ‖
H

1
2 (wdx)

‖θx‖L2(wdx)

∥∥∥Λ
3

2 θ
∥∥∥
L2(wdx)

≤ C‖θ‖2
H

1
2 (wdx)

‖θx‖2L2(wdx) +
1

4

∥∥∥Λ
3

2 θ
∥∥∥
2

L2(wdx)

(7.3)

by (2.9), we obtain that

d

dt
‖θx‖2L2(wdx) +

∥∥∥Λ
3

2 θ
∥∥∥
2

L2(wdx)
≤ C

(
1 + ‖θ‖2

H
1
2 (wdx)

)
‖θx‖2L2(wdx) . (7.4)

Integrating in time (7.4) and using (7.2), we obtain that

‖θx(t)‖2L2(wdx) +

∫ t

0

∥∥∥Λ
3

2 θ(s)
∥∥∥
2

L2(wdx)

≤ ‖θ0x‖2L2(wdx) exp

[∫ t

0
C

(
1 + ‖θ(s)‖2

H
1
2 (wdx)

)]

≤ ‖θ0x‖2L2(wdx) exp
[
Ct+ ‖θ0‖2L2(wdx) exp

[
C
(
‖θ0‖L∞ + ‖θ0‖2L∞

)
t
]]
.

(7.5)

By (7.2) and (7.5), we finally obtain that

‖θ(t)‖2H1(wdx) +

∫ t

0

∥∥∥Λ
1

2 θ(s)
∥∥∥
2

H1(wdx)

≤ C ‖θ0‖2H1(wdx) exp
[
Ct+ ‖θ0‖2L2(wdx) exp

[
C
(
‖θ0‖L∞ + ‖θ0‖2L∞

)
t
]]
.

(7.6)
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7.2. Approximation and passing to limit. Since θ is more regular than a solution in Theorem
1.2, we can follow the procedure in the proof of Theorem 1.2.

7.3. Uniqueness. To show the uniqueness of a weak solution, we consider the equation of θ =
θ1 − θ2 given by

θt + Λθ = −u1θx + uθ2x, θ(0, x) = 0. (7.7)

We multiply wθ to (7.7) and integrate over R. Then,

1

2

d

dt
‖θ‖2L2(wdx) +

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)
=

∫
[−u1θx + uθ2x] θwdx−

∫
Λ

1

2 θ
[
Λ

1

2 , w
]
θdx

=
1

2

∫
u1xθ

2wdx+
1

2

∫
u1θ

2wxdx+

∫
uθ2xθwdx−

∫
Λ

1

2 θ
[
Λ

1

2 , w
]
θdx.

As before, the last term is bounded by
∫

Λ
1

2 θ
[
Λ

1

2 , w
]
θdx ≤ 1

2

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)
+ C ‖θ‖2L2(wdx) .

The first three terms in the right-hand side are easily bounded by

C
(
‖θ2x‖L2(wdx) + ‖θ1‖

H
1
2 (wdx)

)(
‖θ‖2L4(wdx) + ‖θ‖L4(wdx)‖u‖L4(wdx)

)
.

By (2.9), we obtain that

d

dt
‖θ‖2L2(wdx) +

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)
≤ C

(
1 + ‖θ2‖2H1(wdx) + ‖θ1‖2

H
1
2 (wdx)

)
‖θ‖2L2(wdx) +

1

2

∥∥∥Λ
1

2 θ
∥∥∥
2

L2(wdx)
.

Since

θ2 ∈ L2
(
0, T : H1(wdx)

)
, θ1 ∈ L2

(
0, T : H

1

2 (wdx)
)
,

we conclude that θ = 0 in L2(wdx) and thus a weak solution is unique. This completes the proof
of Theorem 1.5.

8. Proof of Theorem 1.6

Taking the Fourier transform of (1.7), we have that

∂t|θ̂(ξ)| = −Re

[∫

R

1

(1 + |ζ|2)α θ̂(ζ)i(ξ − ζ))θ̂(ξ − ζ)dζ
¯̂
θ(ξ)

|θ̂(ξ)|

]
1√
2π

− |ξ||θ̂|.

Consequently, ignoring the factor 1
(1+|ζ|2)α , we follow the proof of Theorem 1.3 with δ = 0 and the

smallness condition (1.8) to obtain that

‖θ(t)‖A1 +

(
1−

√
2‖θ0‖A0√

π

)∫ t

0
‖θx(s)‖A1ds ≤ ‖θ0‖A1 (8.1)

for all t ≥ 0. We also follow the proof of Theorem 1.3 to obtain a unique weak solution via the
approximation procedure. This completes the proof.
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Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd.
du 11 novembre 1918, F-69622 Villeurbanne cedex, France.

E-mail address: granero@math.univ-lyon1.fr

Instituto de Ciencias Matemáticas (ICMAT), Consejo Superior de Investigaciones Cient́ıficas, Spain
E-mail address: omar.lazar@icmat.es


	1. Introduction
	1.1. The case N=H
	1.2. The case N=(1-xx )- and =0

	2. Preliminaries
	2.1. Hilbert transform and fractional Laplacian
	2.2. Minimum and Maximum Principles
	2.3. The Wiener spaces A
	2.4. Commutator estimate
	2.5. Muckenhoupt weights
	2.6. Compactness

	3. Proof of Theorem 1.1
	3.1. A priori estimates
	3.2. Approximation and passing to limit
	3.3. Uniqueness when =1

	4. Proof of Theorem 1.2
	4.1. A priori estimate
	4.2. Approximation and passing to limit
	4.3. Uniqueness

	5. Proof of Theorem 1.3
	5.1. A priori estimates
	5.2. Approximation and passing to the limit
	5.3. Uniqueness

	6. Proof of Theorem 1.4
	6.1. A priori estimate
	6.2. Approximation and passing to limit

	7. Proof of Theorem 1.5
	7.1. A priori estimate
	7.2. Approximation and passing to limit
	7.3. Uniqueness

	8. Proof of Theorem 1.6
	Acknowledgments
	References

