
HAL Id: hal-01366564
https://hal.science/hal-01366564v1

Submitted on 2 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A genetic algorithm for topology optimization of
area-to-point heat conduction problem

R. Boichot, Yilin Fan

To cite this version:
R. Boichot, Yilin Fan. A genetic algorithm for topology optimization of area-to-point
heat conduction problem. International Journal of Thermal Sciences, 2016, 108, pp.209-217.
�10.1016/j.ijthermalsci.2016.05.015�. �hal-01366564�

https://hal.science/hal-01366564v1
https://hal.archives-ouvertes.fr


Boichot, R., & Fan, Y. (2016). A genetic algorithm for topology optimization of area-To-point heat 

conduction problem. International Journal of Thermal Sciences, 108, 209–217. 

https://doi.org/10.1016/j.ijthermalsci.2016.05.015 

 

A genetic algorithm for topology optimization of area-to-point heat conduction problem 

R. Boichot1, Y. Fan2. 
 
1 Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble, France. CNRS, SIMAP, F-38000 
Grenoble, France. 
 
2 LTN Nantes, La Chantrerie, rue Christian Pauc BP 90604, 44306 Nantes Cedex 3. 
 

Abstract 

This paper presents a way of solving the classical area (volume)-to-point heat conduction 

problem by the means of a simple Genetic Algorithm (GA) in square configuration. After a 

short description of the numerical method, the optimal solutions proposed for minimizing the 

peak or mean temperature of a domain are presented. The effects of the conductivity ratio and 

the filling ratio on the configurations of the conductive tree are also analyzed and discussed. 

A numerical benchmark is then established to assess the influence of mesh resolution and the 

reproducibility of the GA optimization. Results show that GA is capable of proposing 

solutions having almost the same cooling effectiveness for different mesh resolutions or 

random seed generators. GA is also relevant compared to other optimization techniques 

presented here. It can be considered as a simple, easy to adapt and robust but computation 

time consuming method for addressing the general area (volume)-to-point heat conduction 

problem. 
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Nomenclature :  
 
A, R  non-dimensional thermal resistances     - 
 
H   Height of the domain       m 
 

pk   Thermal conductivity of highly conductive material  W m–1K–1 

0k   Thermal conductivity of heat generating material   W m–1K–1 

adk   Thermal conductivity of adiabatic elements    W m–1K–1 

L   Width of the domain       m 

maxT   Temperature of the hottest element of the domain   K 

meanT   Mean temperature of the domain     K 

sinkT   Temperature of the heat sink      K 

p   Heat generation rate per unit volume or surface   W m–3 

φ   Volume fraction of high conductivity material at elemental scale  - 

 
1. Introduction  

The problem of cooling a continuous heat generating area (or volume) is widely recognized in 

electronic industries because the accumulation of generated heat, if not timely removed, will 

cause severely damage of the electronic components. One usual solution is to integrate a 
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certain quantity of highly conductive material in the area (volume) to drain the generated heat 

to a heat sink (point) by pure heat conduction. The cooling effectiveness depends not only on 

the quantity (filling ratio, ϕ) and quality (conductivity ratio, kp/k0) of the available highly 

conductive material, but also on the topological configuration of the material to form the 

conducting path. How to determine the optimal configuration of the highly conductive 

material subjected to different objectives (e.g. minimum thermal resistance, minimum peak 

temperature, etc.) within the framework of the general “area (volume)-to-point” heat 

conduction problem has received a great attention in the literature. 

Bejan (1997) analytically studied this issue by proposing a “constructal approach” through 

first determining the shape of the optimal rectangular elemental areas and then assembling 

them scale by scale to pave the whole surface. The final optimal shape of the conducting path 

turns out to be tree-like networks, not inferred by assumptions but deduced by optimization. 

The fundamental constructal theory (Bejan 2000; Bejan and Lorente 2008) was followed and 

extended in various aspects through formulating different objective functions, releasing the 

constraints or adding degrees of freedom, as summarized in the review article of Chen (2012). 

These extensive analytical efforts offer an elegant way of solving the basic area (volume)-to-

point problem with reduced global thermal resistance and enhanced cooling effect. 

Nevertheless, the analytical method becomes mathematically difficult, sometimes impossible, 

when dealing with irregular or unspecified geometries. 

So emerges the idea that classic analytical approaches may benefit from modern numerical 

computing by adding more degrees of morphologic freedom. The numerical methods consist 

in freely paving the surface to be topologically optimized with the only constraint of the 

meshing, and so, the computational power available. The first attempt in this direction was 

made by Ererra and Bejan (1998) by analogy with fluid flow in river drainage basins. After, 

Cheng et al. (2003) and Xia et al. (2004) used the bionic optimization method based on a 



gradient attraction to enhance heat drain topology efficiency. Within the same class of local 

attraction algorithm, Mathieu-Potvin and Gosselin (2007) and Boichot et al. (2009; 2010) 

successively proposed cellular automaton (CA) algorithms driven by thermal gradients, by 

temperature or by both. It was reported (Marck, 2012) that the CA algorithms (including 

bionic optimization) can offer a simple way (in terms of computational efforts) to obtain a 

sub-optimal but acceptable solution to the area-to-point problem with rational values of 

conductivity ratio (kp/k0). Nevertheless, the drawbacks of the CA algorithms are apparent: no 

clue implies that the final configuration is the optimum, i.e. no objective function to minimize 

is explicitly used but only local attraction based on intuitive hypotheses. 

More recently, a variety of numerical algorithms were proposed to tackle this problem. To list 

some, Xu et al. (2006) used a simulated annealing (SA) method. Zhang and Liu (2008) 

proposed a Solid Isotropic Material with Penalization (SIMP) model for topology 

optimization. The method of moving asymptotes (MMA) algorithm was used by Dirker and 

Meyer (2013) in order to reduce the average internal temperature for square domains (Burger 

2013). Marck et al. (2012) coupled the SIMP model with an aggregated objective function 

approach (AOF) to tackle this topology optimization problem through a multi-objective 

strategy. A systematic and quantitative robustness analysis of solutions of various 

optimization algorithms was provided by Song and Guo (2011). 

Meanwhile, another class of numerical optimization algorithms that is extensively used in 

heat transfer problems (Gosselin et al. 2009)-the Genetic algorithm (GA)-has rarely been 

applied for solving this heat conduction problem. Genetic algorithms, based on the Darwin’s 

theory of evolution (Darwin, 1872), are characterized by a poor sensitivity to local minima so 

that the global best solutions can theoretically be reached. Moreover, GA is well-adapted to 

objective functions with a huge number of parameters (or dimensions) and non-differentiable 

(discrete) problems. The only effort in the literature in this regard was carried out by Xu et al. 



(2007), who formulated a GA for the minimization of peak or mean temperature of a 2D 

domain. Their pioneer work (Xu et al. 2007) showed that GA proposed better solutions 

compared to those of bionic optimization, especially for high conductivity ratio conditions. 

Due to the computational time consuming nature of GA however, only a few cases were 

studied, with limited meshing fineness, limited values of conductivity ratio (kp/k0=3; 10; 100) 

and filling ratio (ϕ=0.1). In fact, besides the fitness (the objective function), a number of more 

intrinsic parameters in the sense of numerical methods (e.g. the mutation probability, the 

crossing probability, the rate of selection of the best individuals, etc.) have to be assessed to 

optimize the convergence of the GA. In-depth investigations and systematic analyses are still 

in need in this area due to the strong influence of these parameters on convergence. 

The goal of this study is to formulate a GA for efficiently solving the area-to-point heat 

conduction problem on one hand, and to analyze the effects of various parameters of practical 

use on the evolved topology on the other hand. We shall first present the GA method with a 

general 2D case, appropriate for introducing the notations and for describing in detail the 

basic principles of optimization. Then, the performances of the algorithm will be assessed for 

the minimization of two different objective functions: the peak temperature and the mean 

temperature across the domain. The effects of different conductivity ratios (kp/k0=2; 10; 50; 

250) and filling ratio (ϕ=0.1; 0.3; 0.5) on the optimal configuration of conductive paths will 

be analyzed and discussed. After that, a dedicated numerical benchmark will be developed to 

investigate the meshing sensitivity and the reproducibility of GA method. Comparison with 

other methods addressing this problem is also proposed. Finally, technical remarks and main 

conclusions will be summarized. 

2. Genetic algorithm 



The GA is coded using software suite Matlab, assisted by the Parallel Computing toolbox 

(www.mathworks.com/products/parallel-computing/). The basic idea is to imitate the natural 

selection and survival of the fittest that exists in the genetics of the species. A synthesis of GA 

principles, applications and examples are given by Goldberg (1989). 

2.1. Geometry and boundary conditions 

The sketch of a typical area-to-point heat conduction problem to be solved by GA is given in 

Figure 1. The entire domain was discretized into small and homogeneous square elements, 

each element having determinate conductivity, uniform temperature and heating rate. In this 

study, a mesh of 100×50 square elements was used, considering a compromise between 

calculation time and precision. Other mesh resolutions (12×25, 25×50 and 100×200) were 

also assessed and the effects of mesh resolution on the complexity of optimal conductive trees 

will be discussed in the later section. 



 

Figure 1: geometry and mesh used for this study. Note the symmetry on the right border. 

Five kind of elements are defined to cover the entire calculation domain, as described below. 

• Heat sink elements (blue): cells with a constant temperature (Tsink=293K) and a 

thermal conductivity equal to kp. The isothermal heat sink has an aperture width of 

20% of one side of the domain. 

• Symmetry elements (red): the right boundary of the domain shown in Figure 1 is 

defined as symmetry to represent a square domain. Numerically, these elements are 

coded similar to adiabatic elements (quasi-perfect insulators). 

• Adiabatic elements (grey): cells defined with a constant temperature (Tsink=293K, in 

order to relax constraints on the finite difference formulation used) and a negligible 



conductivity (typically kad/k0=10-9). The adiabatic elements and the heat sink elements 

enclose the entire domain. We have verified that the kad/k0 ratio used do not influence 

the estimation of temperature of the calculation domain (no thermal leaks at the 

borders). 

• Heat generating elements (white): heat generating cells with heat generation rate p and 

relatively low conductivity k0. 

• Conductive elements (black): cells with relatively high conductivity kp and zero heat 

generation rate (p=0). The filling ratio ϕ is defined as the ratio between the number of 

conductive elements and the sum of conductive and heat generating elements. 

Calculation domain is enclosed by symmetry, adiabatic or heat sink elements. The heat 

equation for conduction is solved. The domain is considered as solid and no other thermal 

resistances than the conduction between elements is considered. 

2.2. GA procedure 

The general principle of GA is to assess the best configurations among a starting random 

population of configurations, keep the best (those meeting best the objective function or 

fitness), and then cross and mutate them to get a new child population of the same size, and so 

on. The main procedure of GA for the area-to-point heat conduction problem is described 

below. 

• Step 1: generate 1000 configurations with random paving of conductive and heat-

generating elements with fixed ϕ and kp/k0 ratio; 

• Step 2: evaluate the fitness (objective function) of each configuration; 



• Step 3: keep the best (in terms of fitness) 200 of 1000 evaluated configurations (future 

parents); eliminate the others from reproduction. 

• Step 4: keep the best parent as the first individual of the children population (elitism);  

• Step 5: cross two random parents among the best (with uniform probability) with a 

random crossing probability between 0 and 20% to give two children; see next 

paragraph for the chromosome format. 

• Step 6: mutate the two children with a random mutation probability between 0 and a 

maximal value for each element (see next paragraph). Correct the children so that ϕ 

remains constant by random substitutions; 

• Step 7: go to step 5 until 1000 children are made; 

• Step 8: go to step 2 until the relative residuals in temperature reach 10-6 or less for at 

least 1000 iterations or no better children are found for 1000 iterations. 

We introduced only three constraints in our modeling. The first constraint used is keeping the 

ϕ parameter constant from one iteration to the next, which is ensured by a small sub-routine of 

random balancing of elements type into the mutation function - which is not conservative by 

essence - in step 6. This means that the fraction of each element is forced constant after 

mutation to restore the balance of element types. The second constraint use is the avoidance 

of single (non connected to similar elements in terms of property) elements: a mutated 

element must have a property similar to one of its neighboring element. This fastens the 

convergence of shapes and still allows non connected islands of more than one isolated 

element to appear and survive. Finally the heat sink, symmetry and adiabatic elements are not 

allowed to move or mutate to keep the boundary conditions constant. 



The maximal mutation probability is first initialized at 5% (first iteration), then exponentially 

decreased each iteration so that it is divided by two every 700 iterations. Indeed, it was found 

by trial and error tests that this rate allows to maximize the probability of finding better 

children at each iteration and consequently to speed up the convergence without "freezing" 

the topology into local minima. 

The algorithm is stopped when the relative tolerance on temperature between two consecutive 

best children stays below 10-6 for 1000 iterations or if not better children are found for 1000 

iterations (near convergence, each iteration or generation does not give “birth” to better 

configuration or children). It should be noted that the cross-over function is written to choose 

a random crossing direction (horizontal or vertical on each configuration) each time it is 

called, in order to avoid any crossing direction artifact. The "chromosome" used for crossing 

and mutation is just a vector of 5000 variables (50×100), each variable being an integer 

coding the type of elements for each element of the domain.  

2.3. Calculation of the temperature field 

One important step in the algorithm is the fast calculation of temperature field in the studied 

domain. This involves the solving of heat transfer equation numerically by a finite difference 

method. Details of the finite difference method for the calculation of temperature field may be 

referred to our earlier papers (Boichot et al. 2009; Boichot and Luo 2010) and will not be 

repeated here. The linear system obtained with finite difference method is solved with 

numerical methods optimized for sparse diagonal-dominant matrices and parallel computing 

and implemented with Matlab Software. Comparison with finite volume method will be given 

in the "Results and analysis section". 

2.4. Example of topology convergence 



Figure 2 shows an example of topology convergence with iteration number for ϕ=0.3 and 

kp/k0=10, with the objective function defined as the minimization of the peak temperature of 

the domain. In this figure, the average image of 1000 conductive trees (full population at a 

given iteration or time) is represented versus generation number (or iteration). It can be 

observed that after a relatively rapid establishment of the structure frame (tree trunk) the 

solution converges slowly at smaller scales (branches). Using an Intel Xeon 3.60 GHz (4 

processors used in parallel), a converged solution (in terms of convergence criterion chosen 

for a 50x100 elements domain) can be obtained within 72 hours. Each generation (iteration) 

costs 30 to 40 seconds calculation time (fitness evaluation + GA procedure for 1000 

topologies). 



  

Figure 2: example of topology convergence for ϕ=0.3 and kp/k0=10 vs. generation (iteration). The conductive 

matter is black, the non conductive matter white. Grey levels indicate the cohabitation of several types of 

elements at a given position in the population for a given iteration.  

 



3. Results and analysis 

In this section, the results of GA for area-to-point heat conduction problem will be presented 

and analyzed. Two objective functions are identified for the study: the peak temperature and 

the mean temperature, with different values of ϕ and kp/k0 values. The minimization of both 

objective functions will lead to the generation of conductive tree configurations.  

We first performed the GA to minimize the peak temperature, then the mean temperature of 

the domain. The performance of the evolved configuration was assessed by the non-

dimensional thermal resistances R (Bejan 1997) or A (Marck 2012) in the case of peak 

temperature minimization and mean temperature minimization, respectively. The two 

parameters are expressed as:  

max sink
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Figure 3 presents the optimal configuration of conductive path proposed by GA for peak and 

mean temperature minimization (ϕ=0.3; kp/k0 varying from 2 to 250). Figure 4 presents the 

optimization results for ϕ varying from 0.1 to 0.5 and kp/k0=10.  



 

Figure 3: Optimal configuration proposed by GA for peak (left) or mean (right) temperature minimization 

(ϕ=0.3; kp/k0 from 2 to 250). 



 

Figure 4: Optimal configuration proposed by GA for peak (left) or mean (right) temperature minimization 

(kp/k0=10; ϕ from 0.1 to 0.5). 

From Figure 3, we may observe that similar optimal configurations (ramified trees) are 

obtained for two different objective functions, with the exception for kp/k0=2. For mean 

temperature minimization (kp/k0=2), the optimal conductive path consists in the agglomeration 

of high conductivity material around the heat sink: the heat generating elements are pushed 

far against the heat sink. Whereas for peak temperature minimization (kp/k0=2), a part of the 

high conductivity materials fill the farthest corner of the domain rather than making 



continuous cooling trees. This obviously counter-intuitive result is due to the fact that peak 

temperature usually appears in the farthest corners of the domain where the conductive trees 

try to grow toward. In case that the conductivity heat generating elements is close to that of 

conductive material (e.g. kp/k0=2), the conductive material will be optimally used for 

reshaping the heating area. This trend is also reported by Mathieu-Potvin and Gosselin 

(2007).  

Figure 3 indicates the influences of conductivity ratio on the optimal configuration of 

conductive path, for both objective functions. Lower kp/k0 values imply thicker trunk for 

draining the heat current. In contrast, higher kp/k0 values lead to slenderer trunks and more 

branching levels. The high conductivity material tends to disperse through the calculation 

domain. Figure 4 illustrates the influence of filling ratio on the optimal configuration of 

conductive path. It can be observed that the higher the φ values, the thicker the trunks for a 

same kp/k0 ratio. It is worth noting that trees evolved based on local attraction parameters (CA 

algorithms) or evolutionary algorithms (GA method) present similar trends on branching 

properties with respect to the kp/k0 and ϕ parameters (Boichot et al. 2009) despite the absence 

of objective function in CA algorithms (local attraction). 

 

By comparing the left column and right column on figures 3 and 4 for the same values of kp/k0 

and φ, one may observe that the optimal conductive trees proposed by minimizing peak 

temperature are generally slenderer than those proposed by minimizing mean temperature. 

The conductive trees tend to cover the farthest zones from the heat sink on the domain, which 

consequently leads to the thermal resistance equipartition from the adiabatic boundaries to the 

heat sink. This may be observed by examining the temperature isolines for converged solution 

shown in Figures 5 and 6 (particularly figure 5). 



 

Figure 5: temperature isolines into the geometry converged for maximal (peak) temperature minimization with 

ϕ=0.3 and kp/k0 from 2 to 250. 



 

Figure 6: temperature isolines into the geometry converged for mean temperature minimization with ϕ=0.3 and 

kp/k0 from 2 to 250. 

 

It appears that in case of peak temperature minimization, the GA proposes optimal conductive 

tree that tends to equalize as possible the temperature at the adiabatic borders, in particular for 

high kp/k0 ratios. This point is of particular interest: to decrease at most the peak temperature of 

a domain, an intuitive reaction is trying to equalize the temperature along the adiabatic 



borders with a conductive tree. The reductio ad absurdum is to consider that if it is not the case 

(temperature equipartition not reached), you will always be able to lower the maximal 

temperature point by modifying the conductive tree in exchange of an increase of the 

temperature in another area of the border (which is not the hottest). We can observe in figure 

5 that the higher the kp to k0 ratio, the closer to this optimal property the converged shape 

tends to. There must be a particular condition in minimal kp/k0 or (kp/k0)φ that allows borders 

temperature equipartition by sufficient bending of thermal streamlines.  

On other hand, the isolines of figure 6 for the case of mean temperature minimization clearly 

indicate that such an optimality criterion is not relevant for tree evaluation. 

The performance of GA optimized conductive trees, measured by the non-dimensional 

thermal resistance R (peak temperature minimization) and A (mean temperature minimization) 

for different values of (kp/k0)φ product can be compared with some other numerical methods 

to assess the efficiency of genetic algorithm to solve the area-to-point problem in square 

configuration. The A and R relationship with (kp/k0)φ for our genetic algorithm can be fitted 

by the following relationships: 

 

 

Figure 7 and 8 present the comparison of A and R parameters between Cellular Automaton 

method (CA) proposed by Boichot et al. (2009; 2010) and improved by Marck (2012), 

Constructal approach proposed by Bejan (1997) and modified by Ghodoossi and Egrican 

(2003), Evolutionary Structural Optimization (ESO) by extension proposed by Marck (2012) 

and SIMP model with an aggregated objective function approach (AOF) developped by 

Marck et al. (2012), data compiled and proposed by Marck (2012).  
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Figure 7: Benchmark of different optimization methods for A parameter. 



 

 Figure 8: Benchmark of different optimization methods for R parameter. Black arrow indicates performance of 

trees represented in figures 11 and 12. 

 

It appears that GA algorithm performance overcomes both constructal approach, CA and ESO 

algorithms. Results with SIMP algorithm are similar in terms of performance for A parameter 

(data not available for R parameter). It can be emphasized that GA algorithm and SIMP 

algorithm should be close to the optimal method to solve the area-to-point problem. Shapes 

obtained are interestingly very similar between GA and SIMP method also. It should be 

finally noted that Cellular Automaton algorithm, which is not an optimization technique per 

se, can provide interesting trees, close to the GA algorithm, with a much reduced 

computational effort (CA algorithm converges 3.104 faster than GA algorithm on the same 

computer, see Luo (2013)).  



To assess whether the numerical method used in this study  to calculate the temperature map 

(direct finite difference method) introduces a bias, we have performed cross validations with a 

finite volume method implemented into a commercial CFD software (CFD-Ace version 

2014.0.0.11217 from ESI group), with the two converged trees obtained with the highest kp/k0 

ratio (250).  

Figure 9 present the comparison between Matlab temperature map calculated with direct finite 

difference method (5000 elements) and CFD-Ace temperature map obtained with 68772 

elements (unstructured meshing), an external adiabatic frontier and nodes frontier coinciding 

with frontier between low and high conductivity materials for the shape converged that 

minimizes maximal temperature. The relative difference for R parameter is 6.3% (Matlab 

code slightly overestimates R compared to CFD-Ace), while the thermal isolines nearly 

coincide. The calculation time is 0.019 second for direct method with 5000 elements versus 

more than one hour for finite volume method with 68772 elements and the commercial 

software. 



 



Figure 9: temperature map obtained with Matlab and CFD-Ace softwares for the shape 

obtained with ϕ=0.3 and kp/k0 = 250, converged for maximal (peak) temperature 

minimization. 

 

Figure 10 present the comparison between Matlab temperature map calculated with direct 

finite difference method (5000 elements) and CFD-Ace temperature map obtained with 64137 

elements (unstructured meshing), an external adiabatic frontier and nodes frontier coinciding 

with frontier between low and high conductivity materials for the shape converged that 

minimizes mean temperature of the domain. The relative difference for A parameter is 5.6% 

(Matlab code slightly overestimates A compared to CFD-Ace), while the thermal isolines 

nearly coincide. The calculation time ratio is about the same than previously evocated. 



 



Figure 10: temperature map obtained with Matlab and CFD-Ace for the shape obtained with 

ϕ=0.3 and kp/k0 = 250, converged for mean temperature minimization. 

Cross validations with finite volume method implemented into a commercial software 

confirmed the performance of the evolved trees and indicated that the direct finite difference 

method used in this study tends to slightly underestimate the real physical performance of the 

trees converges.  

Robustness analysis 

In this section, a numerical benchmark is dedicated to the robustness of the GA for area-to-

point heat conduction problem. More precisely, the sensitivity of mesh resolution and the 

reproducibility with a different random seed generator for GA are assessed, for constant 

values of ϕ=0.3 and kp/k0=10 and peak temperature minimization. 

4.1. Mesh sensitivity 

Figure 11 shows the optimal conductive trees proposed by GA, for different mesh resolutions 

varying from 25×25 to 200×200. The conductive tree obtained at convergence clearly 

depends of the mesh resolution of the domain. The coarser the mesh, the larger the smallest 

dimensions that will be reached by the conductive tree is. Since the configurations at 

convergence should barely suffer from any issue of local optimum, they can be considered as 

close to the best that can be expected for a given mesh resolution. 



  

Figure 11: optimal conductive tree as a function of the mesh resolution with ϕ=0.3 and kp/k0=10. 

By examining Figure 11, it is clear that the optimal solution complexity changes with the 

mesh resolution (and the freedom allows to algorithm), not excluding an intrinsic infinite 

complexity if element size tends to zero. By increasing the mesh resolution, at least at the 

scales performed, the converged configuration is allowed to develop slender branches and 

more branching levels. Each refinement of the mesh gives a refinement of the observed 

converged configuration. Then one question arises: is the complexity of optimal conductive 



trees infinite or not? More precisely, will the branching levels always increase with increasing 

mesh resolution? At the still very coarse mesh resolutions we tested, it does appear that way.  

The solutions proposed by GA are surprisingly robust regarding different mesh resolutions, at 

least in the range tested. Indeed, the standard deviation of the four R values obtained fall 

below 0.5% for the trees presented in figure 9, and more surprisingly, the geometry 200x200 

leads to the less performing tree (the best is the 100x100 elements geometry). To our point of 

view, this is mainly due to the poor convergence that deteriorates quality of tree for a too 

refined geometry: the stopping criterion of the GA algorithm is too coarse to allow the 

200x200 elements geometry to converge adequately (i.e. the change of few elements should 

modify the objective function below the convergence criterion). The convergence for 

200x200 elements geometry took 17 days, so a parametric study of stopping criterion in this 

particular case is currently out of reach. Additionally, the values of R parameters for trees of 

figure 11 are represented on figure 8: the mark size does not allow seeing any difference in 

value. Each tree converged is optimal at the mesh size used, which is a strong constraint by 

itself. It should be however noticed than with such coarse mesh as 25x25 geometry, a bias 

between mathematical and physical thermal performance may exist.  

4.2. Reproducibility 

Another aspect of the robustness study is whether the configuration obtained at convergence 

is reproducible. In fact, a diversified configuration may possibly be obtained each time by 

running the GA with a different seed generator (with a Mersenne twister algorithm generating 

random numbers), as shown in Figure 12. It can be clearly observed that the solution 

converges to globally similar but locally slightly different configurations. However, the three 

final conductive trees have almost the same cooling effectiveness, measured by a standard 



deviation on R values that falls below 0.6%. As a result, these solutions may be considered as 

very close to the global optimum.  

 

Figure 12: Conductive trees at convergence with different seed generators for the random number algorithm 

with ϕ=0.3 and kp/k0=10. 

This observation may also lead us to retrospectively consider that the differences in R values 

obtained by refining the mesh must be considered with caution. If the converged configurations 

having slight differences in local details present very close cooling performances, it means that 

the objective function is very flat regarding to variation of its 5000 discrete parameters near the 



global optimal point. Then the open question is: is there any interest of pushing the convergence 

limit further for the purpose of designing real objects of practical use for thermal engineering? 

From the engineering point of view, once the conductive trees of a given GA iteration 

"condensates" (see for example in Figure 2) to a configuration with sharp borders, the further 

small adjustment of local details, very time consuming due to GA nature, may not noticeably 

augment the performance. In that sense, relaxing the convergence criterion could be a way of 

decreasing time needed for acceptable convergence. 

From an industrial point of view, making efficient conductive tree shapes for practical use as 

heat sink could be easily achieved by micro fabrication, printing, laser/water cutting or metal 

extrusion. The issue is not how to make these objects, but what to do with these and where they 

can be efficiently included to improve thermal performances of real objects. This kind of fins 

minimizing space occupied and conductive mass could be embedded into sorption cooler beds, 

high temperature fuel cells (as interconnect), nuclear fuel claddings or high power electronics to 

decrease their thermal resistance, for example. Where thermal gradients impede the 

lifetime/function of objects, topology optimization could play a key role. Preliminary 

applications of GA algorithm applied to topology optimization to circular area-to-point problem 

(Luo, 2013) showed that this method is very easily expendable to any geometry without any 

particular code modification and even produce counter intuitive optimal solutions. 

5. Conclusion 

We proposed here a genetic algorithm to solve the general area-to-point heat conduction 

problem. Conductive trees may be generated by GA for minimizing the peak or mean 

temperature of the domain. Their configurations depend strongly on the values of conductivity 

ratio as well as the filling ratio. A robustness study on the mesh sensitivity and the 

reproducibility also implies that the converged solutions proposed by GA approach the close-to-



optimal configuration because of the absence of constraints used (except the square meshing of 

the domain) and the relative tolerance to local minima.  

The main advantage of GA numerical method is clearly neither its velocity of convergence nor 

the easiness to define a stopping criterion, but the noticeable simplicity and more morphologic 

freedom offered for addressing unspecified problems. Further works should focus on numerical 

methods which allow fast temperature map calculation without any bias to verify if the absolute 

accuracy of temperature map has an influence on the evolved trees. 
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