
HAL Id: hal-01366558
https://hal.science/hal-01366558v1

Preprint submitted on 14 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Quick and energy-efficient bayesian computing of
binocular disparity using stochastic digital signals

Alexandre Coninx, Pierre Bessière, Jacques Droulez

To cite this version:
Alexandre Coninx, Pierre Bessière, Jacques Droulez. Quick and energy-efficient bayesian computing
of binocular disparity using stochastic digital signals. 2016. �hal-01366558�

https://hal.science/hal-01366558v1
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

Quick and energy-efficient bayesian computing of
binocular disparity using stochastic digital signals

Alexandre Coninxa,∗, Pierre Bessièrea, Jacques Drouleza

aISIR CNRS/UPMC, 4 place Jussieu 75005 Paris, France

Abstract

Reconstruction of the tridimensional geometry of a visual scene using the binoc-
ular disparity information is an important issue in computer vision and mobile
robotics, which can be formulated as a bayesian inference problem. However,
computation of the full disparity distribution with an advanced bayesian model
is usually an intractable problem, and proves computationally challenging even
with a simple model. In this paper, we show how probabilistic hardware us-
ing distributed memory and alternate representation of data as stochastic bit-
streams can solve that problem with high performance and energy efficiency. We
put forward a way to express discrete probability distributions using stochastic
data representations and perform bayesian fusion using those representations,
and show how that approach can be applied to diparity computation. We evalu-
ate the system using a simulated stochastic implementation and discuss possible
hardware implementations of such architectures and their potential for sensori-
motor processing and robotics.

Keywords: Bayesian inference, stochastic computing, sensorimotor
processing, energy efficiency, hardware implementation, binocular disparity

1. Introduction

Using two cameras in a stereoscopic setup to reconstruct the tridimensional
geometry of a visual scene, in a way similar to that performed by human stere-
opsis, is an important issue in computer vision, with major applications to
autonomous robotics (and more specifically autonomous driving (Geiger et al.,
2012)). That issue has been an active research topic since at least 40 years,
and a wide range of methods and algorithms have been proposed (Scharstein &
Szeliski, 2002; Lazaros et al., 2008) and evaluated on standardized benchmarks
(Geiger et al., 2013; Scharstein et al., 2014).

Several works have shown that the binocular disparity computation can ef-
ficiently be formulated as a bayesian inference problem (Belhumeur, 1996; Su

∗Corresponding author
Email address: alexandre.coninx@isir.upmc.fr (Alexandre Coninx)

Preprint submitted to International Journal of Approximate Reasoning September 14, 2016

et al., 2012). The disparity value for each pixel is then expressed as a discrete
probability distribution, which can be computed through a probabilistic model
using likelihood values specified from the image data. However, computing the
full disparity distribution on whole images proves challenging and compuation-
ally demanding. That’s why most works on binocular disparity using bayesian
models instead reduce the output to a single disparity value per pixel (often
using the maximium a-posteriori likelihood estimator). That approach simpli-
fies the computation and allows to reformulate it as an energy minimization
problem that can be solved efficiently by classic optimization techniques such
as dynamic programming (see Belhumeur, 1996, for an exemple).

However, it means that despite using a probabilistic formalism, the com-
putation yields deterministic disparity values and not disparity distributions,
despite the latter representation being richer and offering many benefits, espe-
cially for robotics and sensorimotor systems. Full disparity distributions can
accurately represent cases where stereopsis is not sufficient to completely deter-
minate the world geometry, such as ambiguous pixels with multiple matches, or
pixels with no matches (e.g. due to occlusions). Such probabilistic representa-
tions can also directly be used by Bayesian mapping and navigation methods
such as the bayesian occupation filter (Coue et al., 2006), and more generally
by probabilistic and bayesian robotics techniques (Thrun et al., 2005; Lebeltel,
2006; Bessière et al., 2008). Bayesian inference also provides a powerful frame-
work to express assumptions and prior knowledge about the structure of the
world (for example the location of the ground or other known objects) as prior
probability distributions.

Stochastic computing is a field dedicated to using intentionally stochastic
computers using non-Von Neumann architectures, distributed memory and spe-
cific data representations to perform probabilistic reasoning. More specifically,
the BAMBI project is a research effort to develop stochastic machines imple-
menting bayesian inference (bayesian machines) (Alves et al., 2015). In this
paper, we show how those bayesian machines can be used to efficiently com-
pute full binocular disparity distribution, paving the way towards stochastic
autonomous robots and other sensorimotor systems.

In the remainder of this article, we will first give an overview of the re-
lated work in section 2, both about stochastic computing and quick binocular
disparity computation. We will then describe our bayesian binocular disparity
computation model in section 3. Section 4 will be dedicated to the description of
the stochastic computer implementing that model, focusing first on the general
principles of computation using stochastic bitstream and second to their appli-
cation to the bayesian disparity computation. The evaluation of that system
and its results will be presented in section 5 and further discussed in section 6.
We will then conclude in section 7 by summing up the implications of that work
for the design of bayesian sensorimotor systems using stochastic components
and discussing the future prospects of that topic.

2

2. Previous work

2.1. Computing with stochastic bitstreams

The general idea of stochastic computations with temporal coding can be
traced back to the seminal works of Von Neumann (1956) and Gaines (1969)
who highlighted the interest of such data representations, but their approaches
were not widely pursued due to the rapid development of more efficient deter-
ministic computers. The topic has recently received a renewed attention due
to the development of probabilistic and bayesian models in computer science
and engineering – and more specifically for sensorimotor and cognitive systems
– and the limitations of classic computers to implement those models.

Several approaches to probabilistic computing have been put forward. Some
of them rely on Markov chain Monte Carlo sampling to perform approximate
inference (Mansinghka, 2009; Jonas et al., 2014). Closer to our work, Vigoda
(2003) proposes to perform exact inference using probability distributions en-
coded as analog signals. Recent work conducted in the framework of the BAMBI
project have proposed using digital signals with temporal coding to perform
bayesian inference, and a proof-of-concept to solve a simple sensorimotor prob-
lem has been put forward (Faix et al., 2015). In this paper, we apply the same
principles to a more computationally challenging bayesian model to highlight
their benefits for robotics and sensorimotor systems.

2.2. Disparity computation

As it provides a way to estimate the depth information using data from
standard digital cameras, the binocular disparity problem has received a wide
attention since the beginnings of computer vision. Existing approaches have
been summarized in reviews (Scharstein & Szeliski, 2002; Lazaros et al., 2008),
which show that most methods follow the same general structure which can be
divided in three steps:

1. Computing a matching cost, which is a positive value associated to each
possible pair of matching pixels1 The matching cost is a dissimilarity mea-
sure: the least likely the pixels are to match, the higher it is. The cost is
computed locally, typically by comparing the luminance or color of indi-
vidual pixels. The most common matching cost is the squared difference of
pixel values (Scharstein & Szeliski, 2002), but some other techniques pre-
process the image with operators such as the gradient (Scharstein, 1994)
or use banks of linear spatial filters (Jones & Malik, 1992).

2. Applying an optional cost aggregation, which performs spatial integration
of the pixel-wise information provided by cost values. The main goal of
that step is to take into account the fact that most points of the disparity

1Most algorithms use rectified image pairs, which allows to only consider pixels on corre-
sponding rows for matching, and limit the disparity to a maximum value Dmax corresponding
to a minimum distance. Dmax depends on image resolution, camera focal length and visual
environment; typical values are 50 to 100 pixels.

3

https://www.bambi-fet.eu/
https://www.bambi-fet.eu/

map are locally smooth and therefore neighbouring pixels have correlated
disparity values. The simplest form of cost aggregation relies on averaging
cost values for a given disparity across a given neighborhood.

3. An optimization step, which uses the (aggregated) cost to compute the
final disparity image. This step can be limited to simply selecting the
disparity value associated to the lowest cost in a winner-takes-all way.
But it can also involve global computations to optimize the disparity map
with regard to a given world model (e.g. smoothness, plane surfaces, etc.
(Belhumeur, 1996)), using techniques such as dynamic programming, in
which cases it can complement or replace cost aggregation.

2.2.1. Bayesian disparity computation

Several of the existing works (Belhumeur, 1996; Su et al., 2012) use the
bayesian inference framework to describe this process. For example, Belhumeur
(1996) proposes to reconstruct the scene geometry S from the left and right
images Il and Ir using a bayesian model:

P (S|Il, Ir) ∝ P (S) · P (Il, Ir|S) (1)

with P (S) being a prior specifying the expected shape (smooth, etc.) of the
world and P (Il, Ir|S) a data term computed from the matching cost. Comput-
ing P (Il, Ir|S) therefore corresponds to the matching cost computation step,
there is no cost aggregation step, and computing and integrating the prior con-
stitutes the optimization step. Belhumeur uses squared difference to compute
the cost and proposes three increasingly complex world models to define the
prior, but the computation of the full posterior probability distribution – which
has cardinality (Dmax + 1)w×h – is intractable.

He therefore uses an energy formalism and defines E[S] = − log(P (S) ·
P (Il, Ir|S)), which allows to compute Ŝ = arg max

S
P (S|Il, Ir) by minimizing

E[S], and shows that a simplified form of this optimization problem can be
solved by dynamic programming. As mentioned in section 1, despite that algo-
rithm being based on bayesian inference, it only yields a single disparity value
for each pixel.

2.2.2. Supervised techniques

The development of public image pairs datasets provided with a disparity
baseline such as the KITTI dataset (Geiger et al., 2013) or the Middlebury
dataset (Scharstein et al., 2014) have made it possible to treat disparity com-
putation as a supervised machine learning problem. Some algorithms use deep
convolutional networks to learn the matching cost (Žbontar & LeCun, 2014;
Mayer et al., 2015), and perform cost aggregation and optimization using other
techniques.

Those techniques currently top the KITTI leaderboard2. Although they are

2http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo,

4

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo

extremely accurate on benchmarks, their efficiency depend on the existence of
a relevant supervised training dataset. Besides, they are computationally very
intensive, using high-end CPUs and GPUs and sometimes requiring a computing
time of several minutes per frame. Those features would make applying those
techniques in a mobile robotics context challenging.

2.2.3. Sampling approach

An approach that is directly relevant to our positioning is the method pro-
posed by Jonas et al. (2014) as an application of his aforementioned hardware
architecture for approximate inference. In that work, he models the disparity
distribution using a Markov random field, and use his hardware architecture
using Gibbs sampling to sample the posterior distribution. Although this ap-
proach is efficient and allows to use a computationally intensive bayesian dispar-
ity model with global optimization, it uses a unique, centralized pseudo-random
number generator as source of entropy and lacks some of the features of our
system, such as the high parallelism and the robust computation of the full
disparity with a very low number of clock cycle.

3. Bayesian disparity computation model

3.1. Overview

The goal of the disparity computation is to estimate the tridimensional ge-
ometry of a visual scene from two rectified images taken from two identical
cameras with focal length f distant from a known baseline distance B. If an
object projects into the left camera’s image plane I l at position x and in the
right camera’s image plane Ir at position x− d, its depth Z from the cameras
can be computed by Z = B·f

d (see fig. 1). The goal of a disparity algorithm is
therefore to identify matching pixels in the two images to compute the disparity.

3.2. Model description

As mentioned in section 2.2.1, the main obstacle to computing full disparity
distributions is the very high cardinality of the considered distribution: inte-
grating smoothness constraints in the probabilistic model requires to perform
inference on distributions of size (Dmax+1)Npixels , where Npixels is the number of
pixels in the domain on which the optimization is performed. If the optimization
is performed on the whole image or on entire rows or columns (as is the case
in (Belhumeur, 1996)) the problem becomes completely intractable, but even
smaller integration neighborhoods are problematic. In order to avoid that issue,
we will perform all of the spatial information integration as image preprocessing
operations, and only perform completely local bayesian operations on tractable
distributions.

consulted 24/03/2016

5

Z

XY

IL IR

(xl, y) (xr, y)

B

Object

(X,Y,Z)

Figure 1: Object observed by two cameras in a stereoscopic vision system. Matching
corresponding pixels in the two images is key to computing the disparity d and therefore
the depth Z.

Our stereo matching method relies on the preprocessing of images using lin-
ear convolution filters to extract relevant features. Other algorithms have used
linear spatial filters for disparity computation Jones & Malik (1992), although
they use the feature information from those filter in a different way that is not
based on. The relevance of using such linear spatial filters as a preprocessing
step is also highlighted by recent works using deep neural networks to compute
disparity (Žbontar & LeCun, 2014; Mayer et al., 2015), which use a convolu-
tional layer (with filters trained through supervised learning) as their input.

The feature maps output by the filters are used to compute feature matching
costs for pixel pairs corresponding to the possible disparities. Those costs are
used to compute probabilistic likelihood functions, that are then combined using
naive bayesian fusion.

In our method, we only use three simple square spatial filters of size 5 pixels
to process images of width W and height H:

• One simple linear averaging filter m;

• One linear horizontalgradient filter gH ;

• One linear vertical gradient filter gV .

For each of the three filters f ∈ {m, gH , gV }, we compute the left and right
feature maps by applying the filter to the left and right images: f l = I l ∗ f and
fr = Ir ∗ f . Due to the size of the convolution filters, those feature maps have
width Wf = W − 4 and height Hf = H − 4.

For each pair of feature maps and each possible disparity value we compute
a matching cost, using the simple squared difference:

Cf (x, y, d) = (f l(x, y)− fr(x− d, y))2 (2)

6

for d ∈ J0;DmaxK and x ≥ Dmax.
The cost shown by 2 measures the dissimilarity between the pixels at coor-

dinate (x, y) in the left image and (x−d, y) in the right image for the feature f .
In order to use a bayesian inference framework, we use these costs to compute
likelihood probability values:

p(fr(x− d, y)|f l(x, y), [D(x, y) = d]) = p0 + (1− p0)e
−
Cf (x,y,d)

2σ2
f (3)

Equation 3 expresses the likelihood of observing the value fr(x−d, y) in the
right feature map if the value f l(x, y) is observed in the left feature map and
the disparity at coordinates (x, y) is d. That probabilistic formulation allows us
to specify a base probability p0 of the features matching even if the cost is high
(which can happen when the two images locally differ for reasons unrelated to
the problem, for example because of specular reflections), and a parameter σf
representing the expected inaccuracy of the cost measurement (a small value of
σf results in a null or very small cost being required to give a high likelihood
value).

In the following, we will drop the (x, y) and (x − d, y) spatial coordinates
in equations for better readability. We can compute the disparity distribution
from the likelihoods using naive bayesian fusion:

p([D = d]|I l, Ir) ∝ p([D = d])
∏

f∈{m,gH ,gV }

p(fr|f l, [D = d]) (4)

where p(fr|f l, [D = d]) are the the likelihoods computed by eq. 3 and p(D) is
a prior on the disparity distribution, which can either be set to uniform or be
used to represent prior information about the world (for example, if we know
the world contains a flat floor with no holes, the prior probability of disparities
corresponding to objects under the floor can be set to zero). p(D|I l, Ir), is
the posterior disparity distribution, which can be used in further probabilistic
computation or estimated using the maximum a-posteriori (MAP) estimator:
d∗ = arg max

d∈J0;DmaxK
p([D = d]|I l, Ir)

4. Stochastic implementation of the model

Previous work (Faix et al., 2015) has shown that naive bayesian fusion could
be performed by stochastic machines. In this section, we will describe that
structure of a bayesian machine architectured as a matrix of stochastic operators
and explain how it can be used to implement the probabilistic binocular disparity
computation detailed in section 3.2.

4.1. Stochastic bayesian fusion: the bayesian machine

4.1.1. Probabilities as stochastic bitstreams

Our stochastic computational architecture represents data using stochastic
bitstreams. Stochastic bitstreams are random digital binary signals that express

7

a probability value (p-value)) by the proportion of bits set to 1 in a given signal
(Fig. 2a). Generating a stochastic bitstream b encoding probability p is therefore
done by using a random number generator outputing random bits set to 1 with
a probability p. Conversely, extracting the value of p from b and storing it as
a floating point or fixed point number requires to integrate information from b
on an extended duration to count the proportion of bits set to 1, the precision
of the recovered p value increasing with the integration time.

If two probability values p1 and p2 are encoded by two uncorrelated stochas-
tic bitstreams b1 and b2 and those two signals are input to a logic AND gate,
the probability pout of the output signal sout to be in state 1 at a given time is
given by :

pout = P ([sout = 1])

= P ([s1 = 1] ∧ [s2 = 1])

= P ([s1 = 1]) · P ([s2 = 1]|[s1 = 1])

= P ([s1 = 1]) · P ([s2 = 1])

= p1 · p2

The stochastic signal data representation allows to perform probability product
with a simple logic circuit.

4.1.2. Representation of discrete random variables: the stochastic bus

A discrete random variable V with cardinality M can be represented by a
set of M stochastic bitstreams b1, . . . , bM , which we will name a stochastic bus
of width M . The j-th bitstream bj encodes a probability pj = C · P ([V =
Vj]). C is a bus normalization constant chosen to facilitate data encoding and
processing : since

∑
j

P ([V = Vj]) = 1, we have
∑
j

pj = C. A useful choice is

Cmax = 1
max
j

P ([V=Vj])
, which allows to represent the most probable value V max

j

by pmax
j = 1 and maximizes the p-values of other signals on the bus.

Stochastic buses can be instanciated by a set of M random number gener-
ators outputting the individual bitstreams. Similarly, a set of M counters can
be used to recover the unnormalized probability distribution C · P (V).

That data representation implies that the average number of bits before ob-
serving a ”1” on the j-th signal of the bus is Tavg = 1

C·P ([V=Vj])
. That number,

which directly determines the number of bits necessary to get an accurate re-
construction of the distribution using counters, depends on the shape of the
distribution and on the value of C, which is modified by the computations done
on the bus and can often not be easily controlled or computed. This creates
two problems. First, the number of bits necessary to reconstruct the distribu-
tion with a given desired precision can’t be easily anticipated. Second, in some
cases – especially if C is low – that number may be very high, which leads to
poor performance of the stochastic machine (which we call the time dilution
problem).

8

The first problem can be adressed by integrating the data until a given num-
ber of ”1” bits have been observed on a signal, instead of during a fixed number
of bits. This can easily be achieved using counters overflow. If a stochastic
bitstream of width M is connected to counters with a maximum value nmax, we
can run the signals until one of the M counters (with index (jmax) overflows. If
the computation is stopped at that moment, the counter with index jmax stores
the value nmax corresponding to the p-value pmax

j = 1, and the other counters

store values nj corresponding to p-values pj =
nj

nmax
.

That process allows to renormalize the distribution with regard to the maxi-
mum probability value pmax

j , and to read it as a set of fixed-point numbers with
precision depending on nmax. Furthermore, the index of the overflowing counter
immediately gives the index of the most probable value, which implements the
maximum a-posteriori estimator.

4.1.3. Bayesian inference with stochastic bitstreams: the bayesian machine

One of the most common bayesian computing techniques is naive bayesian
fusion (Bessière et al., 2013) : computing the posterior probability distribution
on a searched variable S, knowing a prior distribution P (S) and the conditional
distributions P (Ki|S) on some known variables K1, . . . ,KN . If the Ki variables
are conditionally independant given S, the inference is computed by :

P (S|K1, . . . ,KN) =
1

Z
P (S)

N∏
i=1

P (Ki|S) (5)

where Z is a normalization constant.
This distribution can be computed using stochastic bitstreams by represent-

ing both the prior P (S) and the data terms P (Ki|S) with stochastic buses
of width M , corresponding to the cardinality of S. After the bitstreams bj,0
(j ∈ {1, . . . ,M}) encoding the prior values P (S = Sj) (with a bus normaliza-
tion constant C0) are generated, the data terms can be integrated using simple
computational modules comprised of a memory, a random generator and a logic
AND gate as described in fig. 2b. For each line j ∈ {1, . . . ,M} in the stochas-
tic bus and for each data term i ∈ {1, . . . , N}, the memory stores the value
pi,j = Ci · P (Ki|S = Sj) (where Ci is the bus normalization constant associ-
ated with data term i), the random generator generates a stochastic bitstream
encoding probability pi,j , and the AND gate perform the probability product
between that signal and the signal bj,i−1 from the previous element, outputting
signal bj,i.

The resulting architecture performs bayesian inference using a matrix of
stochastic operators, with a number of rows equal to the cardinality M of vari-
able S and a number of columns equal to the number of data terms N (see fig. 3).
The output stochastic bus, comprised of the signals bj,N for j ∈ {1, . . . ,M},
encodes the posterior probability distribution P (S|K1, . . . ,Kn), with a bus nor-

malization constant Cout =
N∏
i=0

Ci.

9

0 0 0 0 01 1 1

(a) Stochastic bitstream encod-
ing a probability value p = 3

8

Memory SB Gen.

b
j,i-1

b
j,i

p
i,j

(b) Computational module implementing probabil-
ity product

Figure 2: Computing probability products with stochastic bitstreams. Fig. 2a shows
8 bits of a stochastic bitstream, with 3 bits set to 1, therefore encoding a p-value
p = 3

8
. Fig. 2b shows a computational module performing probability product as part

of a bayesian naive fusion operation: if the input signal has a p-value PV (bj,i−1), the
output signal bj,i encodes a p-value PV (bj,i) = PV (bi−1,j) · Ci · P (Ki|[S = Sj).

K
i

OP(j-1,i-1)

OP(j,i-1)

OP(j+1,i-1)

OP(j,i)

OP(j-1,i)

OP(j+1,i) OP(j+1,i+1)

OP(j,i+1)

OP(j-1,i+1)

K
i+1

K
i-1

S
j-1

S
j

S
j+1

b
j-1,i-2

b
j,i-2

b
j+1,i-2

b
j-1,i-1

b
j,i-1

b
j+1,i-1

b
j-1,i

b
j,i

b
j+1,i

b
j-1,i+

b
j,i+1

b
j+1,i

Figure 3: Architecture computing naive bayesian fusion with stochastic signals. Each
OP(i,j) element is an instance of the module described in fig. 2b. The leftmost in-
put signals bj,0 constitute a stochastic bus encoding the prior distribution P (S), and
the rightmost output signals bj,N constitute a stochastic bus encoding the posterior
distribution P (S|K1, . . . ,KN).

10

d = i

m g
v

g
h

OP(d=i,m) OP(d=i,gv) OP(d=i,gh)p=1
p(d=i)

Counter

Figure 4: Sequence of computational elements computing the stochastic signal corre-
sponding to disparity value i. Each box contains an instance of the module described
in fig. 2b. A set of Dmax + 1 such structures allows us to compute the disparity
distribution (see fig. 6)

4.2. Stochastic disparity computation

4.2.1. General description

The architecture described in section 4.1 can be used to implement the dis-
parity computation model described in section 3. The search variable is the dis-
parity D, which takes values in J0;DmaxK and therefore has cardinality Dmax+1,
and the data terms are the three likelihood values computed from the features
through equation 3.

We therefore use such a matrix of stochastic operators with N = 3 and
M = Dmax + 1 to compute a stochastic bus representation of the posterior
disparity representation. In the following, we will use a uniform disparity prior
(P ([D = d]) = 1

Dmax+1∀i ∈ J0;DmaxK), which can efficiently be represented by
a stochastic bus with all signals constantly equal to 1 (C0 = Dmax + 1). Each
of the data terms are integrated as described above in section 4.1, and the full
disparity distribution for a pixel can be estimated using counters (see fig. 4). If
the posterior disparity distribution is unimodal and clearly indicates a dispar-
ity value, that value can be estimated by the maximum a-posteriori estimator
by simply getting the index of the first overflowing counter, as suggested in
section 4.1.2.

4.2.2. Addressing issues: occlusions and low-contrast areas

Although the previous architecture allows for efficient computation when
the output distribution is unimodal and indicates a clear disparity value or a
small range of values, we must adapt it to take into account some issues that
arise from the fact that disparity values cannot always be computed. We will
describe those problems and their consequence on the architecture, and then
put forward a solution.

In some cases such as occlusion (see fig. 5), some pixels in the left image have
no matching pixel in the right one and the matching costs will therefore be high
for every possible disparity value. In our bayesian model, it means the values
computed by equation 3 will be small for all d ∈ J0;DmaxK, which in our stochas-
tic architecture translates to very low p-values for all output signals. For exam-
ple, in the limit case of a pixel (x, y) where the matching cost Cf (x, y, d) is infi-
nite for all disparity values d ∈ J0;DmaxK and for each feature f ∈ {m, gH , gV } in
equation 3, we have p(fr(x− d, y)|f l(x, y), [D(x, y) = d]) = p0, ∀d ∈ J0;DmaxK,

11

Z

XY

IL IR

(xl, y) (xr, y)

B

Object

(X,Y,Z)

Obstacle

Figure 5: Occlusion example: If an obstacle is positioned such as it hides a distant
object from one of the two cameras, the corresponding pixels can’t be matched and
disparity cannot be computed.

∀f ∈ {m, gH , gV }. In our stochastic computation, all the signals in the output
stochastic bus is have a p-value of p30. This corresponds to a uniform distribu-
tion – which is correct since no information could be inferred about the disparity
value from the data – but that distribution is encoded with a very low bus nor-
malization constant C = (Dmax + 1) · p30, which is problematic because of the
time dilution problem mentioned in section 4.1.2. For p0 = 0.02, for example, it
means that an average of one every 125000 bits will be set to 1, and the machine
has to be run for an average of one million cycles simply to fill a 8-bits counter,
which is very inefficient.

In some other cases, such as large uniform areas with no texture or dis-
tinctive features, the opposite problem arises: many (or possibly all) disparity
values are possible match and therefore have low matching costs. The likelihood
values p(fr(x − d, y)|f l(x, y), [D(x, y) = d]) then have values close to 1 for all
disparity values d ∈ J0;DmaxK, and all the the signals in the output stochas-
tic bus will have a p-value close to 1, which encodes a high-entropy, close to
uniform distribution with a high bus normalization constant. Again, this is a
correct result and the high bus normalization constant means the time dilution
problem does not arises; that output can efficiently be converted to numerical
values or used in further stochastic computations. However, such high-entropy
distributions are ill-suited to the use of the maximum a-posteriori estimator,
which will return a random result among the possible disparity values.

A way to solve both those problems is to explicitly model the case where
a pixel can’t satisfyingly be matched, either because of occlusions or because
of a lack of contrast, with an extra signal on the stochastic bus encoding a
probability pnomatch:

P (nomatch(x, y)) = pnm0 + (1− pnm0)e
− (glV (x,y))2

2σ2nm (6)

12

The first term in the equation is a probability pnm0 � p30 that determines
the time until which an occluded pixel is detected as not matching. It should
be low enough that if the pixel can be correctly matched, the stochastic signal
of the corresponding disparity value j has a p-value pj > pnm, but high enough
that if, as described above, no match is possible because of an occlusion, the
“no match” signal fills its counter and stops the computation in a reasonable
time, while detecting an absence of match.

The second term of equation 6 handles the poorly contrasted areas, which
have been found to be characterized by low values of the vertical gradient3

glV (x, y). Weakly contrasted areas will therefore have a P (nomatch(x, y)) value
very close to 1, and the corresponding stochastic signal will very quickly fill the
counter and detect an absence of match before a spurious match attributed to
the behavior of the MAP estimator can be detected.

The final architecture for our disparity computation stochastic machine is
shown in fig. 6. With the extra “no match” signal, it has a dimension N = 3
and M = Dmax + 2.

5. Stochastic model evaluation

5.1. Model implementation

In order to evaluate the benefits of using a stochastic disparity computation
system, we will compare two implemetations of the bayesian disparity algorithm
described in section 3.2

• A reference implementation performing the computation as floating point
operations.

• A simulated stochastic implementation, using pseudo-random number gen-
erators (PRNG) and bitwise boolean logic operations to simulate the be-
haviour of the bayesian machine described in section 4.2.

Both implementations are programs written in C++ and run on a desktop
computer equipped with an Intel Xeon E3-1271 v3 64-bit CPU. The reference
implementation use FPU computations using 64 bit floating point numbers. The
simulated stochastic implementation uses the Mersenne twister 19937 PRNG
provided by the GNU implementation of C++11 to generate stochastic bit-
streams, and the 64-bit bitwise boolean AND operation to perform probability
product.

5.2. Results

The reference implementation ran in about 1.25 seconds per frame, which
is the order of magnitude of the “fast” disparity algorithms from the state of

3Note that the square of the gradient value of the left image itself is used, and not a
matching cost associated to the gradient as in equation 3. P (nomatch(x, y)) is therefore high
is the gradient is close to zero, that is in weakly contrasted areas.

13

d = 0

d = 1

d = 80

m g
v

g
h

OP(d=0,m)

OP(d=1,m)

OP(d=80,m)

OP(d=1,gv)

OP(d=0,gv)

OP(d=80,gv) OP(d=80,gh)

OP(d=1,gh)

OP(d=0,gh)p=1

p=1

p=1

p(d=0)

Counter

p(d=1)

Counter

p(d=80)

Counter

nomatch
1 OP(nm,gv) 1p=1

p(nomatch)

Counter

Figure 6: Bayesian stochastic machine implementing the disparity computation. Each
“OP” box contains an instance of the module described in fig. 2b. Always-on signals
corresponding to the uniform prior are input in the left, the feature matching likelihood
values are integrated by the computational modules, and the disparity distribution
is output as a stochastic bus on the right and converted to a fixed-point numeric
representation by the counters. If the disparity can be computed, the counter linked
to the corresponding signal will overflow first, otherwise the “no match” channel will
overflow.

14

the art. The simulated stchastic implementation ran in 25 to 110 seconds per
frame (depending on the frame and on the size of the output counters). That
low performance is due to the overhead of simulating stochastic machines using
non-stochastic hardware; the performance of the stochastic system is better
estimated by the number of simulated clock cycles used to compute a frame
(see below).

5.2.1. Dataset and model parameters

We collected stereo image pairs using a PointGrey BumbleBee2 BB2-03S2C-
25 wide-angle color stereoscopic camera, with focal length f = 2.5mm, baseline
distance B = 120mm and resolution 640 × 480 at 25 frames per second. The
images were rectified using the Triclops proprietary PointGrey middleware. The
camera was mounted on a TurtleBot 2 mobile robot base, which was manually
controlled in an office environment to collect data. A total of 6301 frames were
captured, corresponding to 4 minutes and 10 seconds of video.

The 24 bits color images captured were converted to 8 bits luminance images,
with pixel values in J0; 255K. The preprocessing described in section 3.2 therefore
generate feature maps with pixel values in J0; 255K for the averaging filter and
J−127; 127K for the gradients. The Dmax value was set to 80, which corresponds
to a minimum distance of 42 centimeters. A simple grid search performed
during preliminary experiments allowed us to select good values of the other
parameters, summarized in table 1.

Parameter Value
Dmax 80
p0 0.02
σm 10
σgV 10
σgH 10
pnm0 0.01
σnm 8

Table 1: Model parameter values used for the evaluation

The feature maps were used to compute the likelihoods as described in equa-
tion 3, and those likelihoods were used both in the reference implementation and
in the simulated stochastic implementation to compute the disparity distribu-
tion.

5.2.2. Disparity computation accuracy

A feature of stochastic computing using stochastic bitstreams is progressive
precision: the longer the information from a bitstream is integrated, the more
precisely the corresponding p-value can be estimated. In the context of the
stochastic bus framework described in section 4.1.2, it means that precision in-
creases with the size of the counters used to estimate the distribution: the higher

15

0 5 10 15 20 25 30 35
Counter max value

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
RM

S
er
ro
r o

n
m
at
ch

ed
 p
ix
el
s

0.75

0.80

0.85

0.90

no
-m

at
ch

 p
ix
el
 d
et
ec

tio
n
(F
1-
sc

or
e)

(a) Global RMS error (for matched pixels)
and F1-score (for non-match detection)

0 5 10 15 20 25 30 35
Counters max value

0

10

20

30

40

50

60

70

Av
er
ag

e
cy
cle

s n
ee

de
d
pe

r p
ix
el

(b) Average run time per pixel

Figure 7: Performance of the simulated stochastic disparity processor. Fig. 7a shows
that the detection of “no-match” pixels and the quality reconstructed distribution
exponentially improves with counter max value. Fig. 7b depicts the linear relationship
between counter max value and simulated run time (in number of simulated clock
cycles to compute the disparity distribution for one pixel). Data shown are the mean
and standard deviation on a subset of 126 images obtained by regular sampling of the
full dataset.

the counters’ maximum value, the closer to the reference implementation the re-
sulting distribution is expected to be. We therefore used the simulated stochastic
implementation with variable counter sizes to quantify that phenomenon.

The stochastic disparity processor described in section 4.2 performs two
functions: detecting the “no match” pixels, and computing the disparity dis-
tribution on matched pixels. The performance of the “no-match” pixels dis-
crimination task can be assessed by computing the F1-score between the set of
pixels identified as “no-match ” by the reference implementation and the simu-
lated stochastic implementation. The performance of the disparity distribution
computation task can be assessed by measuring the RMS error between the
distributions estimated from the simulated stochastic implementation and the
reference implementation4.

Figure 7a shows that indeed, the F1-score exponentially increases and the
RMS error exponentially decreases with the counter max value. For example,
with 16-bits counters the RMS error is below 0.05 and the F1-score above 80%.

Figure 7b shows the relationship between the counter max value and the
average time (in number of clock cycles) the simulated stochastic machine has
to run before filling a counter. As expected, it grows linearly with maximum
value of the counter: as all signals are uncorrelated, each extra “1” required to
fill the counter generates a constant overhead.

4Using the KL-divergence has also been considered, but proved problematic because of
the frequent occurence of 0 as a p-value in the distributions estimated from the simulated
stochastic implementation.

16

Fig. 8 shows an example of reconstructed disparity image with the reference
implementation, and with the simulated stochastic implementation using two
maximum counter values, 1 and 16. The disparity image from the stochastic
system with the larger counters is visually close to the reference. The image ob-
tained using 1-bit counters, while clearly noisier and lower quality, still correctly
describes the general tridimensional structure of the scene and could possibly be
used to drive a robust robot control system. According to the data from fig. 7b,
the stochastic computation of the disparity distribution requires 2.21 ± 0.09
clock cycles per pixel for 1-bit counters and 27.97 ± 4.58 clock cycles per pixel
for counters with a maximum value of 16. Both those values compare favorably
to the floating point computations performing to the same operations, which
requires at least 81× 3 floating point number products and a maximum search
on a 81-value vector.

6. Discussion: speed, energy and hardware implementation consider-
ations

The above results show that our stochastic computational system can suc-
cessfully implement a bayesian binocular disparity algorithm and compute full
disparity distribution with good accuracy, using stochastic bitstreams and a
reduced number of computation cycles.

However, the stochastic bitstream-based computational system described in
section 4.1 supposes the use of fast, efficient sources of stochastic signals, that
could be integrated at a large scale in a hardware component, jointly with
AND gates, memories and counters, to implement the architecture seen in sec-
tion 4.1.3. In this paper, we used a simulated implementation using Mersenne
twister PRNGs to evaluate the potential of this approach in the absence of such
components. But recent advances in new nanodevices based on spintronics,
such as the superparamagnetic tunnel junction (SMTJ) (Locatelli et al., 2015),
bear the promise that such generators could be available in the short or medium
term. Experimental SMTJ devices have been shown to be able to generate high-
quality stochastic bitstreams at a frequency of 500MHz with a very low power
consumption of 50W. Those components can be built with CMOS technology
using an area equivalent to 12 bytes of SRAM (Querlioz, 2016), making them
suitable to large scale integration with the other components needed to build
the stochastic machines described above.

Using those figures as guidelines, we can compute the order of magnitude of
the speed and power consumption of the disparity computation systen described
in section 4.2 and evaluated in simulation in section 5. The system requires 246
random signal generators, which would have a total power consumption of 12.3
mW. Using counters with a maximum value of 16, which has been shown in
section 5.2.2 to be an adequate tradeoff between speed and accuracy, we need
an average of 27.97 clock cycles per pixel, with (640 − 4 − 80) × (480 − 4)5,

5Each dimension of the original 640× 480 images is reduced by 4 pixels by the prefiltering

17

(a) Left image (b) Reference disparity image (64 bits
floating point computation)

(c) Stochastic computation, counter max
value 1

(d) Stochastic computation, counter max
value 16

Figure 8: Disparity images obtained by applying the MAP estimator to the output
distribution for an exemple frame. Fig. 8a is the rectified frame from the left camera.
Fig. 8b is the reference image obtained by classic 64 bits floating point computation.
Fig. 8c and 8d show the images obtained by the simulated stochastic implementation,
respectively with max counter values 1 and 16. Black pixels are “no-match” pixels;
white pixels have disparity to d = Dmax = 80, and gray pixels have a luminance
proportional to their disparity value in J0;DmaxK

18

which represents an average total of 7402428.32 clock cycles per image. At a
frequency of 500MHz, the architecture would therefore be able to process about
67.5 image pairs per second.

Those computations are only rough estimations; more specifically the energy
consumption computation ignores the energy cost of the AND gates, memories
and counters also necessary to implement the circuit, and the performance does
not take into account the overhead induced by reinitializing the machine between
each pixel (resetting the counters and loading the data memories). Our bayesian
algorithm also makes use of preprocessed images using spatial filters; the cost
(both computational and energetic) of that preprocessing should be taken into
account into any global evaluation of the system. But many methods exist
to perform such spatial filtering (using general-purpose CPUs, GPUs, FPGAs,
dedicated hardware, etc.) with various cost, performance and energy-efficiency
characteristics; further work will explore ways through which such filtering could
be done using stochastic computations. Similarly, the cost computation step is
currently performed using classic floating-point computation, the opportunity
to use stochastic computations instead is currently being studied.

On the other hand, those computations are assumed to be performed sequen-
tially for each pixel on a unique instance of the systems described in section 4.2,
using only 246 of the computing modules described in fig. 2b. But our bayesian
machine architecture is parallel by design, and a higher number of those modules
would allow for parallel processing of many pixels and increased performance,
at the cost of higher circuit size and energy consumption.

7. Conclusion

We have put forward an architecture to compute a class of bayesian in-
ference problems with probabilistic hardware using stochastic bitstreams, and
evaluated that system in simulation on the example of binocular disparity com-
putation, demonstrating high performance and energy-efficiency. Although the
work described in this paper uses simulations of hypothetical stochastic ma-
chines using experimental hardware devices and can therefore only offer rough
estimations of the performance of those systems, it is our belief that those
results clearly highlight the potential of bayesian computation using stochas-
tic bitstreams for sensorimotor processing, especially in applications with tight
constraints on computational and energy resources such as mobile robotics, em-
bedded systems or distributed sensors.

The proposed architecture allows to solve many sensorimotor fusion and
processing problems, yielding full distributions expressed as bus of stochas-
tic bitstreams, with a low power consumption and reduced computational re-
sources. The parallel and distributed nature of our architecture could allow to
easily address a variety of different problems using the same arrays of generic

as seen in section 3.2, and the horizontal dimention is further reduced by Dmax since the
distribution can’t be computed for the Dmax first pixels of each row as shown by equation 2.

19

components, in a way similar to FPGAs. Furthermore, the progressive preci-
sion of the stochastic bitstream data representation allows to easily adjust the
speed/accuracy or power/accuracy tradeoffs by changing the signal integration
time (determined by the counters maximum values), making it possible, for
example, to maintain degraded operation with lower accuracy in low energy
conditions.

Future work will entail continued collaboration with teams developing stochas-
tic signal generator devices, in order to evaluate our architecture on real hard-
ware. Efforts will also be dedicated to extending the breadth of the computa-
tions implemented by stochastic bitstream based systems, combining the dispar-
ity computation to other sensory computations (such as optical flow) to create
an occupancy map, which could then be used for obstacle avoidance and robot
navigation, paving the way to a completely stochastic robot sensorimotor con-
troller.

Acknowledgements

This work was performed within the EU Future and Emerging Technologies
BAMBI project (FP7-ICT-2013- C, project number 618024). It was also partly
supported by ANR Labex SMART (ANR-11-LABX-65).

References

Alves, J. D., Ferreira, J. F., Lobo, J., & Dias, J. (2015). Brief Survey on Com-
putational Solutions for Bayesian Inference. In Workshop on Unconventional
computing for Bayesian inference at IROS2015 . Hamburg.

Belhumeur, P. N. (1996). A Bayesian Approach to Binocular Stereopsis. Inter-
national Journal of Computer Vision, 19 , 237–260.

Bessière, P., Ahuactzin, J.-M., Mekhnacha, K., & Mazer, E. (2013). Bayesian
Programming . Chapman and Hall/CRC. URL: ftp://ftp.inrialpes.fr/
pub/emotion/bayesian.../Bayesian-Programming.pdf.

Bessière, P., Laugier, C., & Siegwart, R. (2008). Probabilistic Reasoning
and Decision Making in Sensory-Motor Systems volume 46 of Springer
Tracts in Advanced Robotics. Berlin, Heidelberg: Springer Berlin Hei-
delberg. URL: http://link.springer.com/10.1007/978-3-540-79007-5.
doi:10.1007/978-3-540-79007-5. arXiv:arXiv:1011.1669v3.

Coue, C., Pradalier, C., Laugier, C., Fraichard, T., & Bessiere, P. (2006).
Bayesian Occupancy Filtering for Multitarget Tracking: An Automotive
Application. The International Journal of Robotics Research, 25 , 19–30.
doi:10.1177/0278364906061158.

20

https://www.bambi-fet.eu/
http://www.smart-labex.fr/
ftp://ftp.inrialpes.fr/pub/emotion/bayesian.../Bayesian-Programming.pdf
ftp://ftp.inrialpes.fr/pub/emotion/bayesian.../Bayesian-Programming.pdf
http://link.springer.com/10.1007/978-3-540-79007-5
http://dx.doi.org/10.1007/978-3-540-79007-5
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1177/0278364906061158

Faix, M., Lobo, J., Laurent, R., Vaufreydaz, D., & Mazer, E. (2015). Stochas-
tic Bayesian Computation for Autonomous Robot Sensorimotor Systems.
In Proceedings of the IROS2015 workshop on Unconventional computing for
Bayesian inference (pp. 27–32).

Gaines, B. (1969). Stochastic computing systems. Advances in information
systems science, (pp. 37–172). URL: http://link.springer.com/chapter/
10.1007/978-1-4899-5841-9{_}2. doi:10.1145/1465482.1465505.

Geiger, a., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets
robotics: The KITTI dataset. The International Journal of Robotics Re-
search, 32 , 1231–1237. URL: http://ijr.sagepub.com/cgi/doi/10.1177/
0278364913491297. doi:10.1177/0278364913491297.

Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for Autonomous
Driving? The \textsc{KITTI} Vision Benchmark Suite. Computer Vision
and Pattern Recognition), .

Jonas, E., Tenenbaum, J. B., & Wilson, M. a. (2014). Stochastic Architec-
tures for Probabilistic Computation by . Ph.D. thesis Massachssets Institute
of Technology.

Jones, D. G., & Malik, J. (1992). A Computational framework for determining
stereo correspondence from a set of linear spatial filters. Image and Vision
Computing , 10 , 699—-708. doi:10.1613/jair.301. arXiv:9605103.

Lazaros, N., Sirakoulis, G. C., & Gasteratos, A. (2008). Review of Stereo Vi-
sion Algorithms: From Software to Hardware. International Journal of Op-
tomechatronics, 2 , 435–462. doi:10.1080/15599610802438680.

Lebeltel, O. (2006). Programmation Bayésienne des Robots. Ph.D. thesis Uni-
versité de Grenoble.

Locatelli, N., Vincent, A. F., Mizrahi, A., Friedman, J. S., Vodenicarevic, D.,
Kim, J.-V., Klein, J.-O., Zhao, W., Grollier, J., & Querlioz, D. (2015). Spin-
tronic Devices as Key Elements for Energy-Efficient Neuroinspired Architec-
tures. Proceedings of the 2015 Design, Automation & Test in Europe Confer-
ence & Exhibition, 1 , 994–999.

Mansinghka, V. (2009). Natively Probabilistic Computation. Ph.D. thesis Mas-
sachusetts Institute of Technology. URL: http://dspace.mit.edu/handle/
1721.1/47892.

Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., & Brox,
T. (2015). A Large Dataset to Train Convolutional Networks for Disparity,
Optical Flow, and Scene Flow Estimation. Technical Report arXiv preprint
1512.02134. URL: http://arxiv.org/abs/1512.02134. arXiv:1512.02134.

Querlioz, D. (2016). Review of IEF’s work - Modelling of superparamagnetic
MTJs. In BAMBI-FET second year annual meeting . Paris.

21

http://link.springer.com/chapter/10.1007/978-1-4899-5841-9{_}2
http://link.springer.com/chapter/10.1007/978-1-4899-5841-9{_}2
http://dx.doi.org/10.1145/1465482.1465505
http://ijr.sagepub.com/cgi/doi/10.1177/0278364913491297
http://ijr.sagepub.com/cgi/doi/10.1177/0278364913491297
http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1613/jair.301
http://arxiv.org/abs/9605103
http://dx.doi.org/10.1080/15599610802438680
http://dspace.mit.edu/handle/1721.1/47892
http://dspace.mit.edu/handle/1721.1/47892
http://arxiv.org/abs/1512.02134
http://arxiv.org/abs/1512.02134

Scharstein, D. (1994). Matching images by comparing their gradient fields.
Proceedings of 12th International Conference on Pattern Recognition, 1 , 4–7.
doi:10.1109/ICPR.1994.576363.

Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang,
X., & Westling, P. (2014). High-resolution stereo datasets with subpixel-
accurate ground truth. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 8753 , 31–42. doi:10.1007/978-3-319-11752-2_3.

Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms. International Journal of Computer
Vision, 47 , 7–42. doi:10.1023/A:1014573219977.

Su, C. C., Bovik, A. C., & Cormack, L. K. (2012). Statistical model of color
and disparity with application to Bayesian stereopsis. Proceedings of the IEEE
Southwest Symposium on Image Analysis and Interpretation, (pp. 169–172).
doi:10.1109/SSIAI.2012.6202480.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. MIT Press.

Vigoda, B. (2003). Analog Logic : Continuous-Time Analog Circuits for Statis-
tical Signal Processing . Ph.D. thesis Massachusetts Institute of Technology.
URL: http://pubs.media.mit.edu/pubs/papers/03.07.vigoda.pdf.

Von Neumann, J. (1956). Probabilistic logics and the synthesis of re-
liable organisms from unreliable components. URL: http://books.

google.com/books?hl=en{&}lr={&}id=QaruU73YWGkC{&}oi=fnd{&}pg=

PA110{&}dq=PROBABILISTIC+LOGICS+AND+THE+SYNTHESIS+OP+RELIABLE.

+ORGANISMS+PROM+UNRELIABLE+COMPONENTS{&}ots=AdOY3cy2Nu{&}sig=

i80DJDGUrK51AETEzojzVtx5LwM. doi:10.1128/AEM.00314-09.

Žbontar, J., & LeCun, Y. (2014). Computing the Stereo Matching Cost with
a Convolutional Neural Network. arXiv preprint arXiv:1409.4326 , . doi:10.
1109/CVPR.2015.7298767. arXiv:1409.4326.

22

http://dx.doi.org/10.1109/ICPR.1994.576363
http://dx.doi.org/10.1007/978-3-319-11752-2_3
http://dx.doi.org/10.1023/A:1014573219977
http://dx.doi.org/10.1109/SSIAI.2012.6202480
http://pubs.media.mit.edu/pubs/papers/03.07.vigoda.pdf
http://books.google.com/books?hl=en{&}lr={&}id=QaruU73YWGkC{&}oi=fnd{&}pg=PA110{&}dq=PROBABILISTIC+LOGICS+AND+THE+SYNTHESIS+OP+RELIABLE.+ORGANISMS+PROM+UNRELIABLE+COMPONENTS{&}ots=AdOY3cy2Nu{&}sig=i80DJDGUrK51AETEzojzVtx5LwM
http://books.google.com/books?hl=en{&}lr={&}id=QaruU73YWGkC{&}oi=fnd{&}pg=PA110{&}dq=PROBABILISTIC+LOGICS+AND+THE+SYNTHESIS+OP+RELIABLE.+ORGANISMS+PROM+UNRELIABLE+COMPONENTS{&}ots=AdOY3cy2Nu{&}sig=i80DJDGUrK51AETEzojzVtx5LwM
http://books.google.com/books?hl=en{&}lr={&}id=QaruU73YWGkC{&}oi=fnd{&}pg=PA110{&}dq=PROBABILISTIC+LOGICS+AND+THE+SYNTHESIS+OP+RELIABLE.+ORGANISMS+PROM+UNRELIABLE+COMPONENTS{&}ots=AdOY3cy2Nu{&}sig=i80DJDGUrK51AETEzojzVtx5LwM
http://books.google.com/books?hl=en{&}lr={&}id=QaruU73YWGkC{&}oi=fnd{&}pg=PA110{&}dq=PROBABILISTIC+LOGICS+AND+THE+SYNTHESIS+OP+RELIABLE.+ORGANISMS+PROM+UNRELIABLE+COMPONENTS{&}ots=AdOY3cy2Nu{&}sig=i80DJDGUrK51AETEzojzVtx5LwM
http://books.google.com/books?hl=en{&}lr={&}id=QaruU73YWGkC{&}oi=fnd{&}pg=PA110{&}dq=PROBABILISTIC+LOGICS+AND+THE+SYNTHESIS+OP+RELIABLE.+ORGANISMS+PROM+UNRELIABLE+COMPONENTS{&}ots=AdOY3cy2Nu{&}sig=i80DJDGUrK51AETEzojzVtx5LwM
http://dx.doi.org/10.1128/AEM.00314-09
http://dx.doi.org/10.1109/CVPR.2015.7298767
http://dx.doi.org/10.1109/CVPR.2015.7298767
http://arxiv.org/abs/1409.4326

	Introduction
	Previous work
	Computing with stochastic bitstreams
	Disparity computation
	Bayesian disparity computation
	Supervised techniques
	Sampling approach

	Bayesian disparity computation model
	Overview
	Model description

	Stochastic implementation of the model
	Stochastic bayesian fusion: the bayesian machine
	Probabilities as stochastic bitstreams
	Representation of discrete random variables: the stochastic bus
	Bayesian inference with stochastic bitstreams: the bayesian machine

	Stochastic disparity computation
	General description
	Addressing issues: occlusions and low-contrast areas

	Stochastic model evaluation
	Model implementation
	Results
	Dataset and model parameters
	Disparity computation accuracy

	Discussion: speed, energy and hardware implementation considerations
	Conclusion

