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Abstract. In this article we study ergodic problems in the whole space
R

m for viscous Hamilton-Jacobi Equations in the case of locally Lips-
chitz continuous and coercive right-hand sides. We prove in particular
the existence of a critical value λ

∗ for which (i) the ergodic problem has
solutions for all λ ≤ λ

∗, (ii) bounded from below solutions exist and are
associated to λ

∗, (iii) such solutions are unique (up to an additive con-
stant). We obtain these properties without additional assumptions in
the superquadratic case, while, in the subquadratic one, we assume the
right-hand side to behave like a power. These results are slight general-
izations of analogous results by N. Ichihara but they are proved in the
present paper by partial differential equations methods, contrarily to N.
Ichihara who is using a combination of pde technics with probabilistic
arguments.
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1. Introduction

We are interested in this article in ergodic problems for viscous Hamilton-
Jacobi Equations in the whole space R

m, namely to find a pair (λ, φ) ∈
R× C2(Rm) which solves

(EP ) −
1

2
∆φ(y) +

1

θ
|Dφ(y)|θ = f(y)− λ in R

m,

where Dφ and ∆φ denotes respectively the gradient and the Laplacian of
φ : R

m → R, θ > 1 and f is (at least) a bounded from below, locally
Lipschitz continuous function. More precise assumptions are given later on.
Sometimes we write, in the sequel, (EP )λ instead of (EP ) to point out the
dependence of the ergodic problem in λ.

Our aim is to prove the following type of properties

• There exists a critical value λ∗ = λ∗(f) such that (EP ) has a solution
for any λ ≤ λ∗.

• Problem (EP ) has bounded from below solutions.
• Bounded from below solutions are unique (up to additive constants)
and associated to λ∗(f).

• λ∗(f) depends continuously and monotonically on f .

Clearly, one needs suitable assumptions to prove such results and we first
point out that there is an important difference between the superquadratic
case (θ ≥ 2) where the coercivity of f turns out to be sufficient and the sub-
quadratic case (θ < 2) where we have to impose more restrictive assumption
on the growth of f(y), typically a behavior like |y|α for some α > 0.

We also point out that most of our results were already proved by Ichi-
hara [14, 15, 16, 17] (see also Cirant [9]) by combining partial differential
equations (pde in short) and probabilistic methods, in particular using in a
crucial way the ergodic measure for the uniqueness parts. Here we only use
pde methods which allow to prove slightly more general results.

The main difficulty in the proofs comes from the unboundedness of solu-
tions and the treatment of infinity, the most common framework for such
ergodic problems being either the periodic case or the case of bounded do-
mains with Neumann boundary conditions.

To provide a complete description of the literature on ergodic problems
is clearly impossible but we can indicate few articles which are milestones
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and which are related to the present work. We cannot avoid starting with
the seminal (yet unpublished) work of Lions, Papanicolaou and Varadhan
[22] about homogenization of first-order Hamilton-Jacobi equations (in the
case of coercive Hamiltonians). Indeed, solving the cell problem is the way
the “effective” (or averaged) Hamilton-Jacobi Equation is determined, and
this cell problem is an ergodic problem in the whole space but with periodic
boundary conditions. This article is the starting point of the “Weak KAM”
theory for which we refer to Fathi [12] and reference therein.

Extensions to the case of unbounded solutions for first-order equations
in the non-periodic case is consider in the paper of Roquejoffre with the
first author ([6]) : the existence of Lipschitz solutions is obtained but the
most important part is to show that key properties of the ergodic problem,
namely that it should govern the large time behavior of solutions of the
associated evolution equation, may be wrong. Some other counterexamples
of the ergodic behavior in the non-periodic case are also obtained in the
work of Souganidis and the first author [7].

For second-order equations, a systematic approach is developed in the
periodic case by Souganidis and the first author [8], where, not only er-
godic problems in the space-time framework are solved, but also the long
time behavior of space-time periodic solutions of quasilinear pdes is estab-
lished. Long time behavior and ergodic problems for second order pdes
with Neumann boundary conditions have been studied in the series of pa-
pers [1, 10, 2]. More recently, ergodic problems for viscous Hamilton-Jacobi
equations in bounded domains, with state-constraint boundary conditions,
have been treated by Tchamba in the superquadratic case [24], and Porretta,
Tchamba and the first author in the subquadratic case [5]. These last results
are playing an important role in the present work since approximations by
bounded domains are natural and we are going to use them.

As we already mentioned it, the results of the present work are close
to the works of Ichihara [14, 15, 16, 17] where he studies the existence of
ergodic constant and the connections with stochastic ergodic control, and
the recurrence/transience of optimal feedback processes. Compared to these
results, we can treat more general f but for some properties we have less
precise results.

Our paper is organized as follows: in Section 2, we prove the existence of
solutions for (EP ), solving the two first point we mention at the beginning
of the introduction. Section 3 is devoted to the uniqueness results, first in
the superquadratic case (θ ≥ 2) where we can actually show that bounded
from below solutions are unique (up to additive constants) for any locally
Lipschitz continuous, coercive functions f (without any restriction on its
growth at infinity), while in the subquadratic case, it holds only when f
grows like |y|α for some α > 0. Finally, in Section 4, we show that bounded
from below solutions are necessarely associated to λ∗(f) and we provide
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some continuity properties of λ∗(f) in f . We also study the convergence
of several approximations and we establish the connections of the ergodic
constant with the large time behavior of solutions of evolution equations.

Acknowledgement : : Joao Meireles was partially supported by EU under
the 7th Framework Programme Marie Curie Initial Training Network “FP7-
PEOPLE-2010-ITN”, SADCO project, GA number 264735-SADCO.

2. General Existence Results for the Ergodic Problem and
Properties of the Ergodic Constants

In this section we investigate all the properties of the ergodic problem
and ergodic constants which are the same in the subquadratic and su-
perquadratic case. Our aim is therefore to use as general assumptions on f as
possible, even if we have to restrict them later. In the sequel, if φ ∈ C2(Rm),
we use the notation G[φ] for the function −1

2∆φ+ 1
θ |Dφ|

θ − f.

2.1. A General Existence Result and its Main Consequences. A
first key result is the

Theorem 2.1. Suppose that f ∈ W 1,∞
loc (Rm). If, for λ ∈ R, (EP )λ has a

C2-subsolution, then (EP )λ has a solution.

Proof. Let ψ be a C2-subsolution of (EP )λ. By Theorem A.1(b) (Appen-
dix A), we know that, for any R > 1, there exists a solution φR ∈ C2(B̄R)
of

G[φR] = −λ in BR, φR = ψ on ∂BR,

where, here and below, BR := {x : |x| < R}. We now set φ̂R = φR − φR(0)

and consider the family of solutions {φ̂R}R>1. By Theorem A.2, we know
that, for all 0 < R′ + 1 < R there exists a constant C > 0 depending only
on R′, θ and m such that

sup
BR′

|Dφ̂R| ≤ C(1 + sup
BR′+1

|f(y)− λ|
1

θ + sup
BR′+1

|Df(y)|
1

2θ−1 ).

In particular, we observe that, for all R > R′ + 1, supBR′
|Dφ̂R| is bounded

by a constant which does not depend on R. This gradient bound together
with the fact that φ̂R(0) = 0 also imply a local L∞-bound depending on R′

but not on R. Then, using elliptic regularity, we deduce from this gradient
bound that φ̂R is bounded in C2,ι(BR′) for any 0 < ι < 1 by a constant
independant of R > R′ + 1.

We point out that this last step use in an essential way the fact that φ̂R is
locally uniformly bounded, an information which may not be true with the
family of solutions {φR}R>1 since φR(0) may go to infinity when R tends to
infinity.
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We can now apply Arzela-Ascoli’s Theorem not only for φ̂R but also for
Dφ̂R and D2φ̂R and conclude, up to a diagonal extraction argument, that
there exist a sequence {Rn}n → +∞ as n→ +∞ such that {φn}n := {φ̂Rn}n
converges locally in R

m to a function φ ∈ C2(Rm) which satisfies G[φ](y) =
−λ in R

m. �

An immediate corollary of Theorem 2.1 is the

Corollary 2.2. (Infinite number of solutions) If (λ1, φ) is a subsolution of
(EP ), then there exist a solution of (EP ) for any λ2 ≤ λ1. In particular,
(EP ) has infinitely many solutions.

An interesting case where these results apply is the case of bounded from
below functions f

Corollary 2.3. If f ∈ W 1,∞
loc (Rm) is bounded from below, then (EP ) has

infinitely many solutions.

Proof. The proof is immediate remarking that, for λ = minRm(f), any con-
stant function is a subsolution of (EP ). �

2.2. Existence of a critical value. The main result of this section is the

Theorem 2.4. Assume that f ∈W 1,∞
loc (Rm) is bounded from below and set

λ∗ := sup{λ ∈ R| (EP ) has a subsolution}. Then λ∗ is finite and (EP )λ∗
has a C2-solution.

Proof. The proof of Corollary 2.3 implies λ∗ ≥ minRm(f) because, for λ =
minRm(f), any constant function is a subsolution of (EP )λ. To prove that
λ∗ < +∞, we argue by contradiction assuming that λ∗ = +∞. Then,
there exists a sequence of solutions {(λk, φk)}k of (EP ) such that λk → +∞

as k → +∞. We define ψk := λ
− 1

θ

k φ̂k where φ̂k = φk − φk(0). Then,

by Theorem A.2, ψ̂k is locally uniformly bounded in W 1,∞ by the same
argument as in the proof of Theorem 2.1 since {(λk, ψk)}k solves

−
1

2
λ
− 1

θ∗

k ∆ψk +
1

θ
|Dψk|

θ = λ−1
k fk − 1 in R

m,

where 1 = 1
θ +

1
θ∗ and λ

− 1

θ∗

k → 0 as k → +∞. Then using the estimate for
the solution given by Theorem A.2 and which is uniform in k, we can apply
Ascoli-Arzela Theorem together with a diagonal extraction procedure : this
shows that there exists a subsequence of the sequence (ψk)k which converges

locally uniformly to a function ψ ∈W 1,∞
loc (Rm).

Therefore, by the stability result for viscosity solutions, ψ satisfies

1

θ
|Dψ|θ ≤ −1

which is a contradiction. Thus λ∗ is finite.
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To complete the proof, we have to show that (EP )λ∗ has a C
2-solution. To

do so, we choose any sequence (λk)k such that λk < λ∗ and λk → λ∗. By the
definition of λ∗ and Corollary 2.2, (EP )λk has a C2-solution φk. Repeating

exactly the arguments of Theorem 2.1 shows that φ̂k := φk−φk(0) converges
to a function φ that is a C2-solution of (EP ) with λ = λ∗. �

We conclude this section by giving immediate properties of the critical
value λ∗(f).

Proposition 2.5. Assume that f ∈W 1,∞
loc (Rm) is bounded from below. Then

(i) For any c ∈ R, λ∗(f + c) = λ∗(f) + c.

(ii) (Monotonicity of λ∗ with respect to f) Suppose that f1, f2 ∈W
1,∞
loc (Rm)

are bounded from below. If f1 ≤ f2, then λ
∗(f1) ≤ λ∗(f2).

(iii) (Concavity of λ∗ with respect to f) For any f1, f2 ∈ W 1,∞
loc (Rm) which

are bounded from below and for any 0 ≤ t ≤ 1

λ∗(tf1 + (1− t)f2) ≥ tλ∗(f1) + (1− t)λ∗(f2) .

Proof. We just prove (iii). If φ1 is a solution of (EP )λ for f1 and λ = λ∗(f1)
and if φ2 is a solution of (EP )λ for f2 and λ = λ∗(f2) then by the convexity
of the equation tφ1 + (1− t)φ2 is a subsolution of (EP )λ for tf1 + (1− t)f2
and with tλ∗(f1)+ (1− t)λ∗(f2). By the definition of λ∗(tf1 +(1− t)f2), we
have the concavity inequality. �

The purpose of the next sections is to show, under different assumptions
in the sub or superquadratic case, that if f ∈ W 1,∞

loc (Rm) is bounded from
below, then bounded from below solutions of (EP )λ can exist only if λ = λ∗

and that these solutions actually exist and are unique up to an additive
constant.

2.3. Bounded from below solutions. Now we turn to the existence of a
bounded from below solution of (EP ).

Theorem 2.6. Assume that f ∈W 1,∞
loc (Rm) and is coercive, i.e.

f(x) → +∞ when |x| → +∞ ,

then there exists a solution of (EP ) which is bounded from below.

Proof. We use results of Tchamba Tabet [24] in the superquadratic case
(here θ > 2) or Porretta, Tchamba and the first author[5] in the subquadratic
case (here θ ≤ 2). For R > 0, we consider the ergodic problem

−
1

2
∆φR +

1

θ
|DφR|θ = f − λR in BR ,

with state constraint boundary conditions: we recall that φR(x) → +∞
when x tend to ∂BR in the subquadratic case (θ ≤ 2) while the boundary
condition just means that a minimum point of φR − χ cannot be on the
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boundary if χ is a smooth function in R
m. We may also assume that φR(0) =

0. By using results or arguments of [24, 5], it is easy to see that, if R ≤ R′

λR ≥ λR′ ≥ λ∗(f) ,

and therefore the λR are uniformly bounded for R ≥ 1.

Before letting R tend to +∞, we show that, at least for large R, the
minimum of φR is achieved in a fixed compact subset of Rm (independent
of R). To do so, we consider minB̄R

(φR(x)) which is achieved at a point

denoted by x̄R. At the point x̄R which is in BR by the properties of φR we
recalled above, we have

0 ≥ f(x̄R)− λR .

i.e f(x̄R) ≤ λR. The λR being uniformly bounded, this means that the x̄R
remain uniformly bounded, independently of R since f is coercive.

Next using the same arguments as in the proof of Theorem 2.1, it is easy
to show that, up to a subsequence, φR converges in C2(Rm) to a function φ
which solves

−
1

2
∆φ+

1

θ
|Dφ|θ = f − λ in R

m ,

with λ = limR(λR).

Finally we have the inequality

φR(x̄R) ≤ φR(x) for any x ∈ B̄R ,

and up to a subsequence we can assume that we have both a local uniform
convergence for φR and x̄R → x̄. By passing to the limit we obtain

φ(x̄) ≤ φ(x) for any x ∈ R
m ,

showing that φ is bounded from below. �

3. Uniqueness results for the ergodic problem

Unfortunately the proof of these uniqueness results are rather different in
the subquadratic case (θ < 2) or superquadratic case (θ ≥ 2). This is why
we have to consider them separately.

3.1. The Superquadratic Case. The first uniqueness result for bounded
from below solutions of (EP ) in the superquadratic case is the

Theorem 3.1. Assume that f ∈W 1,∞
loc (Rm) is coercive and θ ≥ 2. If (λ1, φ)

and (λ2, ψ) are two solutions of (EP ) such that φ and ψ are bounded from
below, then λ1 = λ2 and there exists a constant C ∈ R such that φ = ψ+C.

Before providing the proof of this result, we have to state and prove
an intermediate result. To do so, we introduce a key ingredient in the
superquadratic case, namely the Hopf-Cole transformation z = −e−φ. If
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(λ, φ) is a solution (resp. subsolution, supersolution) of (EP ) then z(y) =

−e−φ(y) is a solution (resp. subsolution, supersolution) of

(1) −
1

2
∆z +N(y, z,Dz) = 0 in R

m ,

where N(y, z,Dz) := z
(

1
2

∣

∣

Dz
z

∣

∣

2
− 1

θ

∣

∣

Dz
z

∣

∣

θ
+ f − λ

)

.

This transformation allows to take care of the problem at infinity in the
following way.

Proposition 3.2. Assume that f ∈ W 1,∞
loc (Rm) is coercive and θ ≥ 2. If

φ, ψ are respectively a bounded from below subsolution and a bounded from
below supersolution of (EP )λ, there exists R > 0 depending only on f and
λ such that: if z1 = −e−φ and z2 = −e−ψ are such that z1 ≤ z2 on ∂BR we
have

z1(y) ≤ z2(y) for all y ∈ Bc
R.

Proof. We first notice that since φ, ψ are bounded from below, the func-
tions z1, z2 are bounded. We argue by contradiction assuming that MR :=
supBc

R
(z1(y)−z2(y)) > 0 and for 0 < δ ≪ 1, we considerM δ

R := supBc
R
(z1(y)−

z2(y)− δ|y|2). We know that M δ
R →MR as δ → 0 and therefore M δ

R > 0 if
δ is small enough.

Since (z1 − z2)(y) − δ|y|2 → −∞ as |y| → +∞, there exists a maximum
point y∗δ in B̄c

R. We cannot have y∗δ ∈ ∂BR because, by our hypothesis,
z1(y

∗
δ )− z2(y

∗
δ ) ≤ 0 and we would get that

M δ
R = z1(y

∗
δ )− z2(y

∗
δ )− δ|y∗δ |

2 ≤ 0.

Therefore y∗δ is not on the boundary and we have

D(z1 − z2)(y
∗
δ ) = 2δy∗δ and ∆(z1 − z2)(y

∗
δ ) ≤ 2δm.

On the other hand

−
1

2
∆z1(y

∗
δ ) +N(y∗δ , z1(y

∗
δ ),Dyz1(y

∗
δ )) ≤ 0

and

−
1

2
∆z2(y

∗
δ ) +N(y∗δ , z2(y

∗
δ ),Dyz2(y

∗
δ )) ≥ 0.

Subtracting the second from the first inequality, we arrive at

−
1

2
∆(z1 − z2)(y

∗
δ ) +N(y∗δ , z1(y

∗
δ ),Dz1(y

∗
δ ))−N(y∗δ , z2(y

∗
δ ),Dz2(y

∗
δ )) ≤ 0,

i.e.,

(2) N(y∗δ , z1(y
∗
δ ),Dz2(y

∗
δ ) + 2δy∗δ )−N(y∗δ , z2(y

∗
δ ),Dz2(y

∗
δ )) ≤ δm.
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Let t ∈ [0, 1] and define X(t) := tz1(y
∗
δ ) + (1 − t)z2(y

∗
δ ), Y (t) := Dz2(y

∗
δ ) +

2tδy∗δ and h(t) := N(y∗δ ,X(t), Y (t)). Then,

N(y∗δ , z1(y
∗
δ ),Dz2(y

∗
δ ) + 2δy∗δ )−N(y∗δ , z2(y

∗
δ ),Dz2(y

∗
δ ))

= N(y∗δ ,X(1), Y (1)) −N(y∗δ ,X(0), Y (0))

= h(1) − h(0)

=

∫ 1

0
h′(t)dt

and

h′(t) =
∂N

∂X
(y∗δ ,X(t), Y (t))(M δ

R + δ|y∗δ |
2) +

∂N

∂Y
(y∗δ ,X(t), Y (t)) · (2δy∗δ ).

Thus inequality (2) can be re-written as
(3)
∫ 1

0

[∂N

∂X
(y∗δ ,X(t), Y (t))(M δ

R + δ|y∗δ |
2) +

∂N

∂Y
(y∗δ ,X(t), Y (t)) · (2δy∗δ )

]

≤ δm.

Set Q := Y
X . We have

∂N

∂X
(y,X, Y ) = −

1

2

∣

∣Q
∣

∣

2
+ (1−

1

θ
)
∣

∣Q
∣

∣

θ
+

(

f(y)− λ
)

and

∂N

∂Y
(y,X, Y ) = X

( Y

X2
−

|Y |θ−2

|X|θ
Y
)

= Q−
X|Y |θ−2

|X|θ
Y

= Q+
|Y |θ−2

|X|θ−1
Y

where we used |X| = −X since z1, z2 ≤ 0.

• Case θ = 2

In this case, ∂N
∂X (y,X, Y ) = f(y) − λ and ∂N

∂Y (y,X, Y ) = 0. Then, (3) is
reduced to

(f(y∗δ )− λ)(Mδ + δ|y∗δ |
2) ≤ δm

a contradiction if δ is small enough because we can choose R large enough
in order to have f(y∗δ )− λ ≥ 1 and M δ

R ≥MR/2.

• Case θ > 2

First we notice, by Cauchy-Schwarz inequality, that

∂N

∂Y
· (2δy∗δ ) ≥ −2δ

∣

∣

∂N

∂Y

∣

∣

∣

∣y∗δ
∣

∣.
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Therefore (3) implies

∫ 1

0

[∂N

∂X
(y∗δ ,X(t), Y (t))(M δ

R + δ|y∗δ |
2)− 2δ

∣

∣

∂N

∂Y
(y∗δ ,X(t), Y (t))

∣

∣

∣

∣y∗δ
∣

∣

]

≤ δm.

(4)

It is easy to see that, for R large enough, since 1−
1

θ
> 1/2

∂N

∂X
(y,X, Y ) = −

1

2
|Q|2 + (1−

1

θ
)|Q|θ + f(y)− λ

≥
1

3
(1 + |Q|θ)

for all |y| ≥ R. Indeed, one can combine Young’s inequality for the |Q|2-term
with the fact that f(y)− λ can be taken as large as we wish by choosing R
large enough.

On the other hand, we have

∣

∣

∂N

∂Y
(y∗δ ,X, Y )

∣

∣ ≤
∣

∣Q
∣

∣+
∣

∣Q
∣

∣

θ−1
≤ 2

(

1 +
∣

∣Q
∣

∣

θ)
.

Indeed, the first inequality follows immediately from the computation of
∂N
∂Y (y,X, Y ) while the second comes by noticing that if

∣

∣Q
∣

∣ ≤ 1 then
∣

∣Q
∣

∣+
∣

∣Q
∣

∣

θ−1
≤ 2 and if

∣

∣Q
∣

∣ > 1 then
∣

∣Q
∣

∣ <
∣

∣Q
∣

∣

θ−1
<

∣

∣Q
∣

∣

θ
because θ > 2.

Hence, combining these two properties, we obtain

∣

∣

∂N

∂Y
(y∗δ ,X, Y )

∣

∣ ≤ 6
∂N

∂X
(y∗δ ,X, Y ).

Then (4) implies

∫ 1

0

[∂N

∂X
(y∗δ ,X(t), Y (t))(M δ

R + δ|y∗δ |
2)− 12δ

∂N

∂X
(y∗δ ,X(t), Y (t))

∣

∣y∗δ
∣

∣

]

≤ δm

∫ 1

0

∂N

∂X
(y∗δ ,X(t), Y (t))(M δ

R + δ|y∗δ |
2 − 12δ|y∗δ |) ≤ δm.(5)

Given that M δ
R →MR, δ|y

∗
δ |

2 → 0 and δ|y∗δ | → 0 as δ → 0, we can see that

M δ
R + δ|y∗δ |

2 − 12δ
∣

∣y∗δ
∣

∣ →MR > 0 when δ → 0.

For δ small enough, this gives a contradiction because ∂N
∂X (y∗δ0 ,X(t), Y (t)) ≥

1/3. �

Remark 3.1. : If φ,ψ → +∞ at infinity then z1 = −e−φ and z2 = −e−ψ

tend to 0 as |y| → ∞. Consequently maxy∈Bc
R
{z1(y) − z2(y)} exists and we

do not need to use the penalisation term δ|y|2.
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Proof of Theorem 3.1. Let R > 1 be as in Proposition 3.2 and suppose that
λ1 ≥ λ2 (otherwise we exchange the roles of φ and ψ in the argument).
Observe that this implies that (λ1, φ) is a subsolution of (EP )λ2 . We will
first prove that φ = ψ in R

m and then conclude that λ1 = λ2.

Adding constants to φ and ψ we may assume that max∂BR
(φ − ψ) = 0

and, if z1 = −e−φ and z2 = −e−ψ, we have z1 ≤ z2 on ∂BR. We deduce
from Proposition 3.2 that

z1(y) ≤ z2(y) for all y ∈ Bc
R.

and this gives φ(y) ≤ ψ(y) for all y ∈ Bc
R.

On the other hand, in BR, applying the Strong Maximum Principle, we
have

(6) max
B̄R

(φ− ψ) = max
∂BR

(φ− ψ) = 0.

But this means that the global maximum of φ − ψ in R
m is achieved at a

point of ∂BR and applying again the Strong Maximum Principle, we deduce
that φ = ψ in R

m (since the max is actually 0), and therefore λ1 = λ2. �

3.2. The Subquadratic case. Unfortunately the result in the subquadratic
case is not as general as in the superquadratic one : we have to impose some
restriction on the growth of f at infinity.

3.3. Existence for right-hand sides with polynomial growth. We as-
sume, in this section, that f satisfies

(H0) f ∈ W 1,∞
loc (Rm) is bounded from below and there exists α, f0 > 0

such that, for all y ∈ R
m

|Df(y)| ≤ f0(1 + |y|α−1) if α ≥ 1 or |Df(y)| ≤ f0 if α < 1 .

In this case, we have a precise estimate on the growth of the solutions of
(EP ).

Proposition 3.3. Let (λ, φ) be a solution of (EP). Then there exists a
constant K > 0 such that

|Dφ(y)| ≤ K(1 + |y|γ−1), |φ(y)| ≤ K(1 + |y|γ), y ∈ R
m,

where γ =
α

θ
+ 1.

Proof. From Corollary A.3 in Appendix A, we have for all r > 0 that there
exists a constant C > 0 such that

sup
Br

|Dφ(y)| ≤ C(1 + sup
Br+1

|f(y)− λ|
1

θ + sup
Br+1

|Df(y)|
1

2θ−1 ).
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Hypothesis (H0) implies that f grows at most like |y|α. Since α
θ = γ−1 and

α−1
2θ−1 < γ − 1 if α ≥ 1 or |Df(y)| is bounded if α < 1, we see that

sup
Br

|Dφ| ≤ C(1 + rγ−1)

for some (possibly different) constant C > 0. From this inequality we deduce
the first estimate of this proposition and the second one follows. �

The next case we investigate is the case when f actually grows like |y|α,
namely satisfies

(H1) f ∈W 1,∞
loc (Rm) and there exists f0, α > 0 such that, for all y ∈ R

m

f−1
0 (|y|α + 1) ≤ f(y) ≤ f0(|y|

α + 1)

It is worth pointing out that this assumption may not seem to be as general
as it could be, because of the lower bound where we could have subtracted
a constant, but, since we are interested in solving the ergodic problem, this
translation by a constant has no effect as it can be seen in Proposition 2.5
(i).

The first result we have is the

Proposition 3.4. Assume that f satisfies (H0)-(H1) and that θ > 1. If φ
is a bounded from below solution of (EP ) then there exists c > 0 such that
φ(y) ≥ c|y|γ − c−1 where γ = α

θ + 1.

Proof. Adding constants to φ if necessary we may assume that φ ≥ 0. We
already know that φ satisfies, for all y ∈ R

m

|Dφ(y)| ≤ K(1 + |y|γ−1) (Proposition 3.3)

and

|φ(y)| ≤ K(1 + |y|γ) (consequence of the previous estimate)

for some constant K.

We argue by contradiction assuming that there exists a sequence |yǫ| →

+∞ such that φ(yǫ)
|yǫ|γ

→ 0. We set Γǫ =
|yǫ|
2 and we introduce

vǫ(y) =
φ(yǫ + Γǫy)

Γǫ
γ for |y| ≤ 1.

Because of the above estimates on φ, we have |vǫ|, |Dvǫ| uniformly bounded
and vǫ satisfies

−
1

2
Γγ−2−α
ǫ ∆vǫ +

1

θ
|Dvǫ|

θ = Γ−α
ǫ

(

f(yǫ + Γǫy)− λ
)

in B1.

Then we notice

γ − 2− α =
α

θ
− 1− α = α(

1

θ
− 1)− 1 < 0
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and therefore Γγ−2−α
ǫ → 0 as ǫ→ 0.

f(yǫ + Γǫy) ≥ f−1
0 (|Γǫ|

α + 1) for |y| ≤ 1,

since |yǫ + Γǫy| ≥ |yǫ| − Γǫ ≥ Γǫ.

Since (vǫ) is precompact in C(B̄1), we can apply Ascoli’s Theorem and
pass to the limit in the viscosity sense: if vǫ → v then

1

θ
|Dv|θ ≥ f−1

0 in B1

and

v ≥ 0 on ∂B1 since φ ≥ 0

therefore v is a supersolution of the equation 1
θ |Du|

θ = f−1
0 with an homoge-

neous boundary condition for which the unique solution is (θf−1
0 )1/θd(y, ∂B(0, 1)).

By comparison principle for the eikonal equation the supersolution is above

the solution. Then, v(y) ≥ (θf−1
0 )

1

θ d(y, ∂B1) and v(0) ≥ (θf−1
0 )

1

θ .

But this is a contradiction since vǫ(0) = 2γ φ(yǫ)|yǫ|γ
→ 0 by our hypothesis.

�

Gathering the results of Proposition 3.4 and Theorem 2.6, we have the

Corollary 3.5. Assume that f satisfies (H0)-(H1) and θ > 1. There exists
a solution (λ, φ) of (EP ) such that φ belongs to Φγ, the set of functions
v ∈ C2(Rm) for which there exists c > 1 such that, for all y ∈ R

m

c−1|y|γ − c ≤ v(y) ≤ c(1 + |y|γ) .

We point out that the results of Proposition 3.4 and Corollary 3.5 are
valid for any θ > 1 and not only in the subquadratic case, even if we use
them only in the subquadratic case.

3.4. Uniqueness. The proof is very different in the subquadratic case:
while we are using the transformation φ → −e−φ in the superquadratic
case for both sub and supersolutions, we are going to use here the transfor-
mation φ→ φq where q > 1 is very close to 1, but only for the supersolution.
If we assume both the sub and supersolution to be in Φγ , this ensures that
the supersolution grows faster at infinity, solving the problem at infinity.

The key result is the

Lemma 3.6. Let (λ, φ) be a supersolution of (EP ) such that φ ∈ Φγ and
φ ≥ 1. Then, there exists R > 1 and q0 > 1 such that for all q ∈ (1, q0),
(λ, φq) is a strict supersolution of (EP ) in Bc

R.

Proof. We wish to prove that, there exists R > 1 and q0 > 1 such that for
all q ∈ (1, q0)

Q(y) > 0 for all y ∈ Bc
R
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where Q(y) := −1
2∆φ

q(y) + 1
θ |Dφ

q(y)|θ − (f(y)− λ). We have,

Dφq = qφq−1Dφ

and
∆φq = q(q − 1)φq−2|Dφ|2 + qφq−1∆φ.

Then Q becomes

Q = −
1

2

(

q(q − 1)φq−2|Dφ|2 + qφq−1∆φ
)

+
1

θ

∣

∣qφq−1Dφ
∣

∣

θ
− (f − λ).

By adding and subtracting 1
θ qφ

q−1|Dφ|θ, using that φ is a supersolution of

(EP ) and noticing that (1− qφq−1) = [(1 − φq−1)− (q − 1)φq−1], we arrive
at

Q ≥ −
1

2
q(q − 1)φq−2|Dφ|2 +

1

θ

(

qθφθ(q−1) − qφq−1
)

|Dφ|θ

− [(1 − φq−1)− (q − 1)φq−1](f − λ)

≥ −
1

2
q(q − 1)φq−2|Dφ|2 +

1

θ

(

qθφθ(q−1) − qφq−1
)

|Dφ|θ − (1− φq−1)(f − λ)

+ (q − 1)φq−1(f − λ).

But
1

θ

(

qθφθ(q−1) − qφq−1
)

|Dφ|θ ≥ 0 and − (1− φq−1)(f − λ) ≥ 0

because q > 1, φ ≥ 1 and for R large enough we have f − λ > 0 in Bc
R.

Therefore, if we prove that there exist large R > 1 such that

Q1 > 0 for all y ∈ Bc
R

where Q1 := −1
2q(q − 1)φq−2|Dφ|2 + (q − 1)φq−1(f − λ), we would have

Q > 0 for all y ∈ Bc
R.

We see that, since q > 1 and φ ≥ 1, Q1 > 0 is equivalent to

1

2
q
|Dφ|2

φ
< f − λ .

By Proposition 3.3, Assumption (H1) and the fact that φ ∈ Φγ we can see
that there are constants K,M > 0 such that

1

2
q
|Dφ(y)|2

φ(y)
≤ K|y|γ−2.

and
f(y)− λ ≥M |y|α

for all y in the complementary of a (possible large) ball BR. Therefore, to
have inequality Q1 > 0 (at least for R large) it is enough to have γ− 2 < α.
But

α− (γ − 2) = α−
α

θ
+ 1 =

α

θ∗
+ 1 > 0.

Consequently, there exist a R > 1 such that Q1 > 0 for all y ∈ Bc
R. It is

worth remarking that such R is independent of q ∈ (1, q0). �
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Proposition 3.7. Suppose that φ and ψ are respectively a subsolution and
a supersolution of (EP ) such that φ,ψ ∈ Φγ, ψ ≥ 1 and φ ≤ ψ on ∂BR. If
R > 1 is as in Lemma 3.6, then φ ≤ ψq in Bc

R.

Proof. By Lemma 3.6, we know that (λ, ψq) is a strict supersolution of (EP )
in Bc

R. We wish to prove that φ ≤ ψq in Bc
R.

We first notice that, since φ,ψ ∈ Φγ , φ grows like |y|γ at infinity while ψq

grows like |y|qγ . Since q > 1, we can conclude

(φ− ψq)(y) → −∞ as |y| → ∞.

Hence there exists a maximum point y∗ ∈ Bc
R of φ−ψq: if (φ−ψq)(y∗) ≤ 0,

we are done. Therefore we can assume that (φ− ψq)(y∗) > 0.

If y∗ ∈ ∂BR, φ(y
∗) ≤ ψ(y∗) ≤ ψq(y∗) because ψ ≥ 1 and then we would

have that φ(y∗) − ψq(y∗) ≤ 0 a contradiction. Therefore |y∗| > R and we
have

Dφ = Dψq and ∆(φ− ψq) ≤ 0.

We then arrive at

f(y∗)− λ ≥ −
1

2
∆φ(y∗) +

1

θ
|Dφ(y∗)|θ ≥−

1

2
∆ψq(y∗) +

1

θ
|Dψq(y∗)|θ

>f(y∗)− λ in Bc
R

a contradiction. Therefore, φ ≤ ψq in Bc
R. �

Corollary 3.8. Suppose that φ and ψ are, respectively, a subsolution and
a supersolution of (EP ) such that φ,ψ ∈ Φγ, ψ ≥ 1 and φ ≤ ψ on ∂BR. If
R > 1 is as in Lemma 3.6, then φ ≤ ψ in Bc

R.

Proof. Since R in Lemma 3.6 is independent of q, the conclusion follows by
letting q → 1 in Proposition 3.7. �

Theorem 3.9. Let θ < 2 and suppose that (λ1, φ) and (λ2, ψ) are two
solutions of (EP ) such that φ,ψ ∈ Φγ. Then, φ = ψ +C and λ1 = λ2.

Proof. Suppose that λ1 ≥ λ2. Otherwise we exchange the roles of φ and ψ
in the argument. Notice that if λ1 ≥ λ2, then (λ1, φ) is a subsolution of
(EP ) with λ = λ2.

We saw in Step 1 of Theorem 3.1 that for a fixed R > 1 we can always
add constants to φ and ψ and ask that max∂BR

(φ− ψ) = 0 and ψ ≥ 1. We
now look at R > 1 given by Lemma 3.6 for which we know that (λ2, (ψ)

q)
for q > 1 is a strict supersolution of (EP ) with λ = λ2. Corollary 3.8 give us
now φ ≤ ψ in Bc

R. From another point of view, max∂BR
(φ− ψ) = 0 implies

a comparison in the ball, φ ≤ ψ in B̄R. Therefore, φ ≤ ψ in R
m and we

can repeat the argument of Theorem 3.1 to conclude that φ − ψ = C is a
constant in R

m. Consequently, from the equation of (EP ), λ1 = λ2. �
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Since solutions of (EP ) that are bounded from below belong to Φγ (Propo-
sition 3.4), we have

Theorem 3.10. (Uniqueness result) Let θ < 2 and suppose that (λ1, φ) and
(λ2, ψ) are two solutions of (EP ) bounded from below. Then, φ = ψ + C
and λ1 = λ2.

4. Consequence of the uniqueness results : properties of λ∗

Theorem 2.4 shows the existence of a critical value

λ∗ := sup{λ ∈ R| (EP ) has a subsolution}

such that (EP ) admits a classical subsolution φ ∈ C2(Rm) if and only if
λ ≤ λ∗. The following result gives a caracterisation of λ∗.

Proposition 4.1. Under either the assumptions of Proposition 3.2 or 3.7,
if (λ, φ) is solution of (EP )with φ bounded from below. Then λ = λ∗.

Proof. Let ψ be a solution of (EP )λ∗ (see Theorem 2.4). We know that
λ ≤ λ∗. It remains to show that λ∗ ≤ λ.

We notice that ψ is a subsolution for (EP )λ. Choosing R large enough,
we may assume that max∂BR

(ψ − φ) = 0 and then consider χ := max(ψ, φ)
which is still a bounded from below subsolution of (EP )λ with max∂BR

(χ−
φ) = 0.

We deduce from one of the comparison results in Bc
R (either the sub or

superquadratic one) that χ ≤ φ in R
m, i.e. ψ ≤ φ in R

m. But by the Strong
Maximum Principle, ψ − φ achieving a maximum at a point of ∂BR, we
conclude that ψ = φ in R

m and that λ = λ∗. �

4.1. Convergence of approximations, large time behavior. Our first
result is the

Proposition 4.2. Under the assumptions of Proposition 4.1, we have the
following

(i) Let (φR, λR) be, as in the proof of Theorem 2.6, a solution of the
ergodic problem in BR with state-constraints boundary conditions and with
φR(0) = 0. Then, as R→ +∞, (φR, λR) converges to (φ, λ∗(f)) where φ is
a solution of G[φ] = λ∗(f) in R

m.

(ii) Let, for R≫ 1, (ψR, λ̃R) be a solution of an ergodic problem associated

to fR ∈W 1,∞
loc (Rm) where the fR are uniformly bounded in W 1,∞

loc and which,
in the subquadratic case, satisfy (H0) with uniform constants. If fR → f
locally uniformly where f satisfies (H0)-(H1) and if the φR are uniformly

bounded from below, then λ̃R → λ∗(f) and φR−φR(0) converges to φ where
φ is a solution of G[φ] = λ∗(f) in R

m.
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We leave the easy proof of this result to the reader and turn to the ap-
plication to the large time behavior of solutions of the associated parabolic
equation

(7) ut −
1

2
∆u+

1

θ
|Du|θ = f in R

m × (0,+∞) ,

(8) u(x, 0) = u0(x) in R
m ,

where u0 is locally Lipschitz continuous coercive function.

Theorem 4.3. Under the assumptions of Proposition 4.1 and if u0 is locally
Lipschitz continuous coercive function, which satisfies in the subquadratic
case

c0|y|
γ − c1 ≤ u0(y) ≤ c1(1 + |y|γ) in R

m ,

for some constants c0, c1 > 0, there exists a unique, global in time, solution
u of (7)-(8) which satisfies

lim
t→+∞

[

u(x, t)

t

]

= λ∗(f) locally uniformly in R
m .

Proof. The existence and uniqueness properties are obtained by borrowing
the arguments we already use for proving the existence and uniqueness prop-
erties for the solutions of the ergodic problem, so we skip them.

To prove the ergodic limit property, we argue by approximation : if
(φR, λR) is a solution of the ergodic problem in BR with state-constraints
boundary conditions, we have by the comparison results of Tchamba Tabet
[24] in the superquadratic case or Porretta, Tchamba and the first author[5]
in the subquadratic case [adding, if necessary a constant to φR]

u(x, t) ≤ φR(x) + λRt in R
m × (0,+∞) ,

since u is a subsolution of the parabolic state constraint problem in BR ×
(0,+∞) and φR(x) + λRt is a solution. Therefore

lim sup
t→+∞

[

u(x, t)

t

]

≤ λR locally uniformly in R
m .

And since this is true for any R, we conclude that the same inequality holds
for λ∗(f) by Proposition 4.2.

It remains to prove the opposite inequality with the lim inf and, to do so,
we approximate f from below by fR defined in the following way: since f
is coercive, min(f,R)(y) is equal to R for |y| large enough, say for |y| ≥ SR
and clearly SR → +∞ as R → +∞. We define fR as being the 2SRZ

m-
periodic function which is equal to min(f,R) on [−SR, SR]

m. By results
in the periodic case (see [8] and references therein), there exists a solution

(ψR, λ̃R) of the ergodic problem associated to fR and by (easier) comparison
results, we have

u(x, t) ≥ ψR(x) + λ̃Rt in R
m × (0,+∞) ,
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shifting again the periodic function ψR(x) in order to have ψR(x) ≤ u0(x)
in R

m.

Therefore

lim inf
t→+∞

[

u(x, t)

t

]

≥ λ̃R locally uniformly in R
m .

And since this is true for any R, we conclude that the same inequality holds
for λ∗(f) by Proposition 4.2. �

4.2. Continuity properties. In applications to singular perturbation type
problems, as it is the case for homogenization type problems, the continu-
ity properties of λ∗(f) in f are important. The next result refines these
continuity properties.

Proposition 4.4. Assume that f1, f2 satisfies (H0)-(H1) with α ≥ 1 and
with a fixed f0 and set

m := sup
Rm

(
|f1(y)− f2(y)|

1 + |y|α
) .

We have

|λ∗(f2)− λ∗(f1)| ≤
f0m

1 + f0m
max(λ∗(f1), λ

∗(f2)) .

Proof. By definition of m, we have

f1(y) ≤ f2(y) +m(1 + |y|α) .

Let φ1 be a solution of (EP )λ∗ associated to f1. If we consider tφ1 for
t ∈ (0, 1), it is a subsolution of the equation with a right hand side with is
t(f1 − λ∗(f1)). On the other hand

tf1(y) ≤ tf2(y) + tm(1 + |y|α) ≤ t(1 + f0m)f2(y) .

Choosing t = (1+f0m)−1, we deduce that tφ1 is subsolution with right-hand
side f2(y)− tλ∗(f1) and therefore

tλ∗(f1) ≤ λ∗(f2) .

From which we deduce

(t− 1)λ∗(f1) ≤ λ∗(f2)− λ∗(f1) ,

i.e.

−
f0m

1 + f0m
λ∗(f1) ≤ λ∗(f2)− λ∗(f1) ,

and reversing the role of f1, f2, the inequality we wanted to prove. �

Remark 4.1. Of course, if we want to take into account function f which
satisfy a little bit more general assumption than (H1) (in particular, for
the lower bound), we have just to add a suitable constant to f1 and f2,
λ∗(f1), λ

∗(f2) being shifted by the same constant according to Proposition 2.5.
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Finally in order to have a (uniform in f0) estimate of the λ∗(fi), i = 1, 2
in the previous result, we use the

Proposition 4.5. Let c > 0. If α ≥ 1, then

λ∗(c|y|α) = c
θ∗

θ∗+αλ∗(|y|α).

If 0 < α < 1, then

0 ≤ λ∗(c(1 + |y|2)
α
2 ) ≤ c+ c

θ∗

θ∗+1λ∗(|y|).

Proof. We first observe that |y|α satisfy assumption (H0) when α ≥ 1 and is
clearly nonnegative. Let (λ∗(|y|α), φ1) be a solution of (EP ) with f(y) = |y|α

given by Theorem 2.4. We will now construct a solution of (EP ) with

f(y) = c|y|α by considering φ2(y) = β
2−θ
θ−1φ1(βy) and the right choice of β.

We have,

−
1

2
∆φ2(y) +

1

θ
|Dφ2(y)|

θ = −
1

2
∆(β

2−θ
θ−1φ1(βy)) +

1

θ
|D(β

2−θ
θ−1φ1(βy))|

θ

= −
1

2
β

θ
θ−1∆(φ1(βy)) +

1

θ
β

θ
θ−1 |Dφ1(βy)|

θ

= β
θ

θ−1

(

−
1

2
∆(φ1(βy)) +

1

θ
|Dφ1(βy)|

θ
)

= βθ
∗(

βα|y|α − λ∗(|yα|)
)

using the chain rule for the second equality and the fact that (λ∗(|y|α), φ1)
is a solution of (EP ) with f(y) = |y|α and θ

θ−1 = θ∗ for the last.

Therefore

βθ
∗

λ∗(|yα|)−
1

2
∆φ2(y) +

1

θ
|Dφ2(y)|

θ = βθ
∗+α|y|α

and choosing βθ
∗+α = c, i.e., β = c

1

θ∗+α we arrive at

c
θ∗

θ∗+αλ∗(|yα|)−
1

2
∆φ2(y) +

1

θ
|Dφ2(y)|

θ = c|y|α.

By definition of λ∗(c|y|α), we obtain

c
θ∗

θ∗+αλ∗(|yα|) ≤ λ∗(c|y|α).

The reverse inequality is obtained in an equivalent manner by looking at the
solution (λ∗(c|y|α), ψ1) of (EP ) with f(y) = c|y|α and then constructing a

solution of (EP ) with f(y) = |y|α by considering ψ2(y) = β
2−θ
θ−1ψ1(βy) and

β = (1c )
1

θ∗+α .

In the case when 0 < α < 1, we look at c(1+ |y|2)
α
2 which is inW 1,∞

loc (Rm)

and is non-negative. By the proof of Theorem 2.4, λ∗(c(1+ |y|2)
α
2 ) ≥ 0, and

since
c(1 + |y|2)

α
2 ≤ c(1 + |y|α) ≤ c(1 + |y|),
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using Propositions 2.9, 2.8 and the first part of this proof with α ≥ 1,

0 ≤ λ∗(c(1 + |y|2)
α
2 ) ≤ c+ c

θ∗

θ∗+1λ∗(|y|)

as we wished to show. �

Appendix Appendix A - Gradient Estimate

In this Appendix, we present some results and estimates needed in this
article. We start with the following result

Theorem A.1. For any R > 0, f1 ∈W 1,∞(BR) and g1 ∈ C2,ι(∂BR) where
ι ∈ (0, 1). Then,

(a) For any ǫ > 0, the Dirichlet problem

−
1

2
∆φ(y) +

1

θ
|Dφ(y)|θ + ǫφ = f1 in BR, φ = g1 on ∂BR,

has a C2,ι(B̄R)-solution.
(b) The Dirichlet problem

−
1

2
∆φ(y) +

1

θ
|Dφ(y)|θ = f1 in BR, φ = g1 on ∂BR,

has a C2,ι(B̄R)-solution provided it has a subsolution which is in
C2(BR) ∩ C(B̄R).

Proof. Claim (a) is a particular case of results of [21]. Claim (b) can be
found in Theorem A.1 of [21] and it uses the convexity of the operator I and
Theorem 6.14 of [13]. �

The following result appears in [16] (see also [20]).

Theorem A.2. Let Ω and Ω′ be two bounded open sets in R
m such that

Ω̄′ ⊂ Ω. For given ǫ ∈ [0, 1) and f1 ∈ W 1,∞
loc

(Rm), if φ ∈ C2(Rm) is a
solution of the elliptic equation

(9) −
1

2
∆φ+

1

θ
|Dφ|θ + ǫφ = f1 in Ω ,

then, there exists a constant K > 0 depending only on m, θ and dist(Ω′, ∂Ω)
such that

sup
Ω′

|Dφ| ≤ K(1 + sup
Ω

|ǫφ|
1

θ + sup
Ω

|f1|
1

θ + sup
Ω

|Df1|
1

2θ−1 ).

In particular, in the case when Ω = BR and Ω′ = BR′ for some R ≥ R′+1 >
0, there exists K > 0 depending only on m and θ > 1 such that

sup
BR′

|Dφ| ≤ K(1 + sup
BR

|f1|
1

θ + sup
BR

|Df1|
1

2θ−1 ).

for any C2-solution of Equation (9).
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