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We study the Anderson transition on a generic model of random graphs with a tunable branching
parameter 1 < K ≤ 2, through a combination of large scale numerical simulations and finite-
size scaling analysis. We find that a single Anderson transition separates a localized phase from
an unusual delocalized phase which is ergodic at large scales but strongly non-ergodic at smaller
scales. The critical regime is characterized by multifractal wavefunctions located on few branches
of the graph. Two different scaling laws apply on both sides of the transition: a linear scaling as a
function of the linear size of the system on the localized side, and an unusual volumic scaling on the
delocalized side. The critical scalings and exponents are found to be independent of the branching
parameter and should describe all infinite dimensional random graphs without boundary.

Ergodicity properties of quantum states are crucial to
assess transport properties and thermalization processes
in condensed matter systems. It is at the heart of the
eigenstate thermalization hypothesis which has attracted
enormous attention lately [1]. A paramount example of
non-ergodicity is Anderson localization where the inter-
play between disorder and quantum interference leads to
exponentially localized states [2]. In 3D, a critical value
of disorder separates a localized from an ergodic delocal-
ized phase. At the critical point eigenfunctions are mul-
tifractal, another non trivial example of non-ergodicity
[3, 4]. Recently, those questions have been particularly
highlighted in the problem of many-body localization [5–
9]. Because Fock space has locally a tree-like structure,
the problem of Anderson localization on different types
of graphs [10–15] has attracted a renewed activity [16–
25]. In particular, the existence of a delocalized phase
with non-ergodic (multifractal) eigenfunctions in a broad
range of disorder is debated [19–21, 23, 25].

The problem of non-ergodicity also arises in another
context corresponding to glassy physics [26]. For directed
polymers on the Bethe lattice [27], a glass transition oc-
curs at low temperature, leading to a phase where the di-
rected polymer explores few branches of the tree instead
of the exponential number of branches at its disposal, a
strongly non-ergodic behavior. As there is a mapping to
directed polymer models in the Anderson-localized phase
[10, 28–30], it has been recently proposed that this type
of non-ergodicity is also relevant in the delocalized phase
[18].

In this letter, we study the Anderson transition in a
family of random graphs [31–33], where a tunable pa-
rameter p allows us to interpolate continuously between
the 1D Anderson model and the random regular graph

model of infinite dimensionality. Our main tool is the
single parameter scaling theory of localization [34]. It
has been used as a crucial tool to interpret the numerical
simulations of Anderson localization in finite dimensions
[3, 35, 36] and to achieve the first experimental measure-
ment of the critical exponent of the Anderson transition
in 3D [37]. In our case, the infinite dimension of the
graphs leads to highly non-trivial finite-size scaling prop-
erties: unusually, we find different scaling laws on each
side of the transition. Our detailed analysis of extensive
numerical simulations leads to the following scenario. A
single Anderson transition is present which separates a lo-
calized phase from an ergodic delocalized phase. However
a characteristic non-ergodicity volume Λ emerges in the
latter phase. For scales below Λ, states are non-ergodic
in the sense that they take significant values only on few
branches, and display a multifractal behavior. For scales
above Λ, this structure repeats itself and leads to large
scale ergodicity. At the threshold, Λ diverges, and the
behavior below Λ extends to the whole system. The crit-
ical behaviors do not depend on the graph parameter p,
which strongly supports the universality of this scenario.

In order to describe the localization properties, we use
two complementary approaches. First we derive recursive
equations for the local Green function using a mapping
to a tree [10], which we solve using the pool method from
glassy physics [16, 28], and analyse the critical behavior
by finite-size scaling. Second, we perform exact diago-
nalization of very large system sizes up to N ≈ 2.106,
and we extract the scaling properties of eigenfunction
moments. We use the box-counting method in this new
context of graphs of infinite dimensionality to perform a
local analysis and to extract the non-ergodicity volume
Λ unambiguously.
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Random graph model.— We consider a 1D lattice of N
sites with periodic boundary conditions. Each site is con-
nected to its nearest neighbors and ⌊pN⌋ shortcut links
are added (⌊.⌋ is the integer part). These shortcuts give
an average distance between pairs of sites that increase
logarithmically with N , so that the graph has an infi-
nite dimensionality (see Supplemental Material and [38]).
The system is described by an N -dimensional Hamilto-

nian H =
∑N

i=1 εi|i〉〈i| +
∑

〈i,j〉 |i〉〈j| +
∑⌊pN⌋

k=1 (|ik〉〈jk| +

|jk〉〈ik|) in the position basis {|i〉, 1 ≤ i ≤ N}. The first
term describes on-site disorder, with εi i.i.d. Gaussian
random variables with zero mean and standard devia-
tion W . The second term runs over nearest neighbors.
The third term gives the long-range links that connect
pairs (ik, jk), randomly chosen such that |ik − jk| > 1.
The case p = 0 is the usual 1D Anderson model. At finite
p, our system is a random graph with mean connectiv-
ity K = 1 + 2p, allowing us to access a regime where
1 < K ≤ 2.
Glassy physics approach.— We first use a recursive

technique used to investigate localization on the Bethe
lattice [10, 16, 27, 28, 39]. It is exact for a Cayley tree
(which has no loop), but only an approximation in the
case of a generic graph. For a regular tree graph with
K + 1 neighbors, the diagonal elements Gii of the Green
operator follow Gii = (ǫi − E −

∑K
j=1Gjj)

−1, where the
sum runs over the K children j of node i [10]. The lo-
cal tree-like structure of our random graph model is such
that each parent node has either one or two children.
This leads to three recursion equations which determine
the probability distribution of G (see Supp. Mat.).
In order to probe the localization properties on the dis-

ordered graph, we use the belief propagation method (or
pool method), which consists of sampling the distribu-
tion of G with a Monte-Carlo approach [16, 28]. For a
fixed value of E, we start from an initial pool of Mpool

complex values for the local variables Gii, 1 ≤ i ≤Mpool

and calculate the next generation by applying the re-
cursion relations. The important quantity is the typi-
cal value of the imaginary part ImG which goes to zero
in the localized phase as 〈ln ImG〉 ∼ −Mg/ξl when the
number of generations Mg tends to infinity, (here 〈X〉
denotes ensemble averaging) whereas in the delocalized
phase 〈ln ImG〉 converges to a finite value. We observed
that the localization length ξl diverges at the transition
as ξl ∼ [W −Wc(Mpool)]

−νl with the critical exponent
νl ≈ 1 and a critical disorder Wc(Mpool) which depends
on Mpool (see also [16, 28]). We determined Wc(Mpool)
for values of Mpool up to 106. The results, presented in
the inset of Fig. 1, show that Wc(Mpool) converges to
W∞

c ≈ 1.77 for p = 0.06 as Mpool → ∞.
Following [16, 40], we assume that 〈ln ImG〉 follows a

single parameter scaling law:

〈ln ImG〉 = −(Mg)
ρ FG(Mg/ξ) , (1)

with the scaling parameter ξ ∼ |W −Wc(Mpool)|
−ν [41].
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FIG. 1. Single parameter scaling of 〈ln ImG〉 versus number of
generations Mg, for Mpool = 400, Mg from 2Mpool to 105, p =
0.06 and W ∈ [1.3, 1.65] (see color code). 〈ln ImG〉 ∼ −Mg

ρ

with ρ ≈ 0.28 at W = 1.46 ≈ Wc(Mpool). Finite-size scaling
of −〈ln ImG〉/Mg

ρ following Eq. (1). The scaling parameter
ξ diverges at the threshold as ξ ∼ |W −Wc(Mpool)|

−ν , with
ν ≈ 1.4 and Wc(Mpool) ≈ 1.46. Inset: Value of the critical
disorder Wc(Mpool) as a function of Mpool. The line is a
fit by Wc(Mpool) = W∞

c + A0 Mpool
−β with A0 a constant,

W∞

c = 1.77 and β = 0.33.

In order to sample correctly the distribution of ImG, val-
ues of Mpool as large as possible are usually considered,
which entails typicallyMg ≤Mpool (see above). However
our numerical results show that the scaling behavior (1)
is valid but visible only forMg ≫Mpool. Moreover, for a
given initial pool, the fluctuations of 〈ln ImG〉 whenMg is
varied can be extremely large (especially at criticality).
In order to analyze the scaling behavior (1) we there-
fore considered values of Mpool from 50 to 800, Mg from
2Mpool to 105, and averaged additionally over 100 differ-
ent realizations of the pool. The one-parameter scaling
hypothesis (1) is confirmed by the data collapse shown in
Fig. 1, which allows us to extract the scaling exponents
ν ≈ 1.4± 0.2 and ρ ≈ 0.28± 0.07, that do not depend on
Mpool. Therefore, in the delocalized phase, the typical
value of ImG vanishes at the transition with an essen-
tial singularity limMg→∞〈ln ImG〉 ∼ −(Wc(Mpool)−W )κ

with κ = ρν ≈ 0.39±0.16 the critical exponent in the de-
localized phase, compatible with the value 1/2 predicted
analytically [14, 15]. Moreover, from νl = ν(1 − ρ) we
recover the value νl ≈ 1.0± 0.2 (see also [16]).

Scaling analysis of eigenfunction moments.— We now
describe the results of our second approach. We per-
formed exact diagonalizations of a large number of re-
alizations of graphs with up to N ∼ 2 × 106 sites and
obtained for each realization 16 eigenfunctions closest to
the center of the band using the Jacobi-Davidson itera-
tive method [42]. We performed a multifractal analysis
of the eigenfunctions |ψ〉 by considering the scaling of

average moments 〈Pq〉 = 〈
∑N

i=1 |ψi|
2q〉 for real q as a

function of N . For a d-dimensional system of linear size
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FIG. 2. Scaling of the moment 〈P2〉 with N for p = 0.06 and
W ∈ [0.8, 3]. For W > Wc (localized phase), linear scal-
ing of 〈P2〉/(log2 N)−τ2 following Eq. (2) with τ2 = 0.42.
For W < Wc (delocalized phase), volumic scaling follow-
ing Eq. (3). Upper inset: The critical behavior of 〈P2〉 at
W = 1.6 ≈ Wc is very well fitted (black line) by 〈P2〉 =
A0(log2 N)−τ2 with A0 a constant and τ2 ≈ 0.42. Lower in-
set: correlation volume Λ (circles) and localization length ξ
(squares) on both sides of the transition. Solid lines are the
fits: lnΛ = A1 + A2(Wc − W )−κ and ξ = A3(W − Wc)

−νl ,
with Wc = 1.6 (assigned value), yielding κ ≈ 0.46 and νl ≈ 1.

L and volume N = Ld, multifractal eigenfunctions have
〈Pq〉 ∼ L−τq at large L, or equivalently 〈Pq〉 ∼ N−χq with
χq = τq/d, defining non-trivial multifractal dimensions
Dq = τq/(q−1). In the localized case Dq = 0 whereas for
wavefunctions delocalized over the whole space Dq = d.
Our graphs however correspond to a case of infinite di-
mensionality [43], where the system volume N = Vg(dN )
is exponential in the linear size dN ∼ log2N , the diame-
ter of the system (see Supp. Mat.). Figure 2 shows that
the critical behavior 〈P2〉 ∼ (log2N)−τ2 ∼ dN

−τ2 indeed
holds with τ2 ≈ 0.42 for p = 0.06 andW = 1.6 ≈Wc (up-
per right inset). One recovers the analytical predictions
[4, 13, 15] that χq = 0 at infinite dimensionality. More-
over, in the light of the analogy with directed polymers,
eigenfunctions are localized on few branches in the local-
ized phase. At criticality the localization length diverges
to the system size dN and one should observe multifrac-
tality at the level of few branches of the graph.
The following one-parameter scaling hypothesis should

naturally follow:

〈Pq〉 = d
−τq
N Flin(dN/ξ) . (2)

It is consistent with the scaling theory for both the An-
derson transition in finite dimension [44] and the glassy
physics approach detailed above. A careful finite-size
scaling analysis of our data shows that (2) yields a very
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FIG. 3. 〈P2〉 versus the box volume ℓ for N = 221 with
p = 0.06 and W = 1.0 (�), 1.3 (◦), 1.6 (△), 2.4 (⋄) . The
gray shaded area on the left delimits the small ℓ < 1/2p mul-
tifractal behavior (the dotted line has slope 0.53). The light-
blue shaded area on the right delimits the large scale ℓ ≫ λ
ergodic behavior (the dashed line has slope 1).

good data collapse on the localized side of the transition,
see Fig. 2, upper branch in the main panel. The scal-
ing parameter ξ ∼ ξl the localization length diverges as
ξ ∝ (W −Wc)

−νl near the transition, with νl ≈ 1.± 0.1
(in agreement with the value found by our first glassy
physics approach).
However, in the delocalized phase, small but system-

atic deviations are observed (see Supp. Mat.). This leads
us to propose a different scaling in this phase. Indeed,
the linear scaling (2) of the moments with dN rescaled
by the length ξ is not the only possibility: the system
volume N could instead be rescaled by a characteristic
volume Λ (correlation volume):

〈Pq〉 = d
−τq
N Fvol(N/Λ). (3)

Both scaling hypotheses (2) and (3) are strictly equiv-
alent in finite dimension, but lead to very different be-
haviors for a graph of infinite dimensionality. In the first
linear scaling picture (2), the delocalized states consist of
the repetition of linear critical structures of size ξ and the
moments behave as 〈Pq〉 ≈ ξ−τqN−(q−1)/ξ. It is reminis-
cent of the non-ergodic behavior discussed in [19–21, 23].
In the second volumic scaling picture (3), a delocalized
state consists of N/Λ volumic critical structures of size

Λ, and moments behave as 〈Pq〉 ≈
(

Λ
N

)q−1
(

1− τq
ξ
dN

)

(see Supp. Mat.). This is consistent with previous an-
alytical results [14, 15]. The finite size scaling shown in
Fig. 2 clearly indicates that the volumic scaling (3) puts
all the curves onto a single scaling function in the delocal-
ized phase W < Wc, with correlation volume diverging
exponentially at the transition as lnΛ ≈ (Wc −W )−κ,
κ ≈ 0.46 ± 0.1 (similar to the value obtained with our
glassy physics approach and to the analytical prediction
κ = 1/2 [14, 15]).
Non-ergodicity volume.— In order to probe the local



4

`=�

~�2

10410210�10�2

10�

10��

10�2

W

�:�

�

1:6

1:�

0:8

(log2 N)=�

N=�

�
�
�	
�

�
�


	
�

10�10�

10�10410210�10�2

10�2

10�3

10�4

10�5

FIG. 4. Scaling behavior of the non-ergodicity volume λ with
N = 210 to 221, p = 0.06 and W ∈ [0.8, 2.4]. At the thresh-
old W = Wc ≈ 1.6, λ ∼ N/ log2 N . In the localized phase,
the data collapse is excellent when plotted as a function of
(log2 N)/ξ (linear scaling, see text). In the delocalized regime,
a volumic scaling as function of N/Λ makes the curves col-
lapse. Inset: Determination of the non-ergodicity volume λ
through the rescaling of π̃2(ℓ) data (see text) as a function of
ℓ/λ in the large scale ℓ ≫ λ ergodic regime, for W = 1.6 and
N = 210 (�), 214 (◦), 218 (△) and 221 (⋄).

properties of localization in our system, we use the box-
counting method, which consists of investigating the scal-
ing properties of moments of coarse-grained wavefunc-
tions. Dividing the system of N sites into boxes of ℓ con-
secutive sites along the lattice (i.e. not following the long-
range links) and defining a measure µk =

∑

i∈box k |ψi|
2

of each box, moments are defined as Pq(ℓ) =
∑

k µ
q
k.

For a multifractal state, they are expected to scale as
〈Pq(ℓ)〉 ∼ ℓπq at large N with nontrivial πq [45]. In the
localized case πq = 0 whereas for a wavefunction delocal-
ized over the whole system πq = q− 1. Figure 3 displays
the moments 〈P2(ℓ)〉 as a function of ℓ for different W ,
and shows that three distinct regimes can be identified.
At scales below the mean distance 1/(2p) between two
long-range links, all moments have a power-law behav-
ior with π2 ≈ 0.53, independently of W . The value of
π2 is close to τ2 ≈ 0.42 found above and measures the
critical multifractality on few branches. At intermediate
scales, the moments follow a plateau characteristic of a
strongly non-ergodic behavior. Beyond a certain charac-
teristic scale λ which depends onW and N , the moments
are linear in ℓ, which corresponds to an ergodic behavior.
In the localized case λ ∼ N , so that there is no ergodic
behavior, while in the delocalized case, λ saturates to a
finite value (see below), and states are ergodic at scales
above λ, non-ergodic below: we therefore call λ the non-
ergodicity volume. One can extract λ from a rescaling

of the local slopes π̃q(ℓ) ≡
d ln〈Pq(ℓ)〉

d ln ℓ [45] in the ergodic
regime ℓ≫ λ (see inset of Fig. 4).

The data shown in Fig. 4 can be described by a linear

scaling λ
N/ log

2
N = Glin

(

log
2
N

ξ

)

in the localized regime,

with ξ ∼ ξl the localization length, and by a volumic scal-
ing λ

N/ log
2
N = Gvol

(

N
Λ

)

in the delocalized regime. At the

threshold, the critical behavior λ ∼ N/ log2N shows that
wavefunctions are located on single branches of log2N
sites. This confirms the description of the critical behav-
ior as multifractal on few branches, an extension of the
glassy non-ergodic character of the localized phase when
ξ diverges. Moreover, the volumic scaling shows that in
the limit N ≫ Λ the non-ergodicity volume λ saturates
to the correlation volume Λ (see Supp. Mat.), which
therefore can be interpreted as the non-ergodicity vol-
ume in the thermodynamic limit. This implies that the
delocalized phase is ergodic in the limit of large N ≫ Λ.

For other values of q, we have checked that the scaling
properties are the same for q ≥ 1 whereas for q < 1 the
volumic behavior of the delocalized phase extends to the
critical and localized regimes. This is to be expected [15,
17, 46, 47]: for q < 1 all small values of the wavefunction,
even outside the few localization branches, contribute to
the moment.

Universality.— We checked the universality of our re-
sults by considering different values of the graph param-
eter from p = 0.01 to p = 0.49 (see Supp. Mat.), which
changes the average branching parameter K = 1 + 2p
considerably. Our data show that the critical scalings
are insensitive to the value of p. Moreover, the critical
exponents have universal values κ ≈ 0.5 and νl ≈ 1.

Conclusion.— Our study strongly supports the follow-
ing picture for the Anderson transition on infinite di-
mensional random graphs of any branching K without
boundary: A single transition separates a localized phase
from an ergodic delocalized phase. In the delocalized
phase, the non-ergodicity volume Λ marks the thresh-
old between a non-ergodic behavior reminiscent of glassy
physics at small scales and an ergodic behavior at large
scales. At the transition, Λ diverges, so that the behav-
ior below Λ extends to the whole system. This highlights
a new type of strong non-ergodicity with multifractal-
ity restricted to few branches. To detect such features
has required the use of state of the art exact diagonal-
izations of very large size systems, along with a highly
non-trivial finite-size scaling analysis. In particular, the
ergodic character of the delocalized phase is controlled by
the unusual volumic scaling in this phase, different from
the linear scaling which applies in the localized phase
and to the whole transition in the Cayley tree as found
in our glassy physics approach, where boundary effects
are important and the delocalized phase is believed to
be non-ergodic [17, 21, 23, 25]. It will be very inter-
esting to study the consequences of the unusual features
we found on the dynamics of such systems and to see
whether the non-trivial scaling laws we observed apply
to other models, for example in many-body localization
where non-ergodicity is a crucial issue.
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Supplemental material to

“Scaling theory of the Anderson transition in random graphs:
ergodicity and universality”

Topological properties of the random graph model

In this Section we want to assess the topological properties of the random graphs considered in our model more in
details. In particular random graphs often refer to Erdös-Renyi random graphs, i.e. graphs having N vertices and
(p+ 1)N links which are chosen with a uniform probability over the set of all such graphs. In this Section it will be
explained that, while the set of random graphs considered here is a subset of the set of Erdös-Renyi random graphs,
they share several generic features of those graphs. This strenghtens the idea that our model for graphs posesses
generic properties. We also want to stress that our random graph model coincides with the model of Random Regular
Graphs (RRG) at the limit p = 0.5.
The first reason why the considered random graphs are generic, is that they have infinite dimension. The dimension

refers here to the Hausdorff dimension of a graph. First one defines a distance between two vertices i and j as the
number of vertices of a shortest path connecting i and j. Then one can compute the mean pair distance l as the
average distance between any pair of vertices of the graph. Another quantity of interest for our study is the diameter,
or the linear size, of our graph. It is denoted by dN and is defined as the largest distance between any pair of vertices
of the graph. The Hausdorff dimension of the graph is evaluated by taking a sequence of graphs with increasing
number of vertices N . The variation of l as a function of N leads to the definition of the Hausdorff dimension dH, see
e.g. [S2]:

l ∼ N1/dH , N → ∞ . (S1)

Erdös-Renyi random graphs have infinite dimension as the mean pair distance grows like l ∼ lnN for large N . We
checked that this is also the case for our model of random graphs whenever p is positive. More precisely for p = 0.49
we found numerically an asymptotic form l ≈ 1.44 lnN , which agrees with the prediction l ∼ lnN for 3−regular
graphs in RRG. Such a scaling for the mean pair distance also means that the diameter grows logarithmically as a
function of N for large graphs. This is illustrated for three different values of p in Fig. S1. In particular for p = 0.49
the best fit is close to the prediction dN ∼ lnN for 3−regular graphs in RRG (see [S1]).
The second common feature between our graphs and Erdös-Renyi random graphs is the clustering coefficient. It is

defined as the probability that two given neighbors of a fixed vertex are themselves connected by a link. An important
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FIG. S1. (Color online) Diameter dN of our random graph model as a function of the total number N of vertices. For each
value of N , 10000 random graphs were sampled. The values reported here are the center of a Gaussian fit of the distribution
of their diameter. Red circles: numerical data for p = 0.01. Red dashed line: Logarithmic fit, dN ∼ 78 ln(0.015N). Green
squares: numerical data for p = 0.06. Green dashed line: Logarithmic fit, dN ∼ 13 ln(0.10N). Blue triangles: numerical data
for p = 0.49. Blue dashed line: Logarithmic fit, dN ∼ 1.8 ln(1.5N).
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property of Erdös-Renyi random graphs is that, when the vertex number N increases, the clustering coefficient grows
like N−1 [S2]. For our model of random graphs, it was found numerically that the clustering coefficient obeys the
following law, for any p:

C(N, p) ≃
3

N
p(1− p) , (S2)

which agrees with the scaling for Erdös-Renyi random graphs.
Another common point with Erdös-Renyi random graphs is that the graphs considered in our study locally look

like a tree. More precisely the number of small loops is independent of the number of vertices [S2].
Furthermore, as we have checked that l quickly decreases as a function of p, our model of random graphs shares

also the main features of smallworld networks [S3].

Recursion equations

For a regular tree graph with K+1 neighbors, the recursion equation is obtained by considering the Green operator
G(E) = (M − E I)−1 of the adjacency matrix M of the network with some vertex m removed. If i is a child node of

m, the diagonal entry Gii(E) of the Green function can be expanded (see e.g. [S4]) as Gii = (Mii−E−
∑K

j=1Gjj)
−1,

where the sum runs over the neighbors j of node i other than m. As the tree is self-similar, the Gjj and Gii all have
the same probability distribution P (G). Moreover, the Gjj are independent and also are independent of the random
variables Mii = ǫi, so that at a fixed value of the energy E the above relation determines a functional equation for
the probability P (G).
In order to obtain a similar recursion relation for our random graph model, we consider the local tree-like structure

of the graph. The tree is such that each parent node has either one or two children, with probability respectively
1 − 2p and 2p. Following the cavity method [S5], we consider a graph where some parent node (say m) has been
removed. Each child node i is the root of a tree which can be of three different types: either i has one remaining
neighbor (case A), or two neighbors connected by two nearest-neighbor links (case B), or two neighbors connected by
one nearest-neighbor and one long-range link (case C). We thus have to distinguish between three types Ai, Bi and
Ci, of local random variables G̃ii(E), corresponding to the three possible local patterns. We introduce a fourth type
G of random variable Gi, equal to Ai with probability 1− 2p and to Bi with probability 2p. Local pattern of type A
are those where node i has a single child j, which can itself be of type A or B (note that type C is excluded since the
link between i and j is of nearest-neighbor type). That is, the child is of type G. In case B, node i has a neighbor of
type C and a neighbor of type G. In case C, the two children are of type G. The analog of the recursion equation on
the regular tree now takes the form of three recursion relations

Ai =
1

ǫi − E −Gj
, (S3)

Bi =
1

ǫi − E −Gj1 − Cj2

, (S4)

Ci =
1

ǫi − E −Gj1 −Gj2

, (S5)

together with the condition

Gi =

∣

∣

∣

∣

Ai with probability 1− 2p
Bi with probability 2p

. (S6)

The probability distributions for each type of random variable follow a set of functional equations that can be directly
inferred from Eqs. (S3)–(S6).

Scaling analysis

Deviations to the linear scaling hypothesis in the delocalized regime

Here we show the results of finite-size scaling of the moment 〈P2〉 for p = 0.06 following the linear scaling hypothesis
(2) in the delocalized regime W < Wc ≈ 1.6. In Fig. S2, the best rescaling of the data when the linear size of the
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FIG. S2. Deviations to the linear scaling hypothesis (2) for the moment 〈P2〉 in the delocalized regime W < Wc ≈ 1.6 for
p = 0.06. The best rescaling of the data as a function of (log2 N)/ξ shows small but systematic deviations. The data are
represented by lines of different colors according to W .

graph dN ∼ log2N is rescaled by the scaling parameter ξ is shown. Small but systematic deviations are observed
(data have been represented with lines to better see these deviations). Clearly, the lines corresponding to different
values of the disorder strength do not have the right curvature to be put on each other via such a rescaling. On
the contrary, we recall that the linear scaling hypothesis (2) is fully consistent with our data in the localized regime
W > Wc (see Fig. 2).

Asymptotic behaviors in the delocalized phase

The linear scaling hypothesis (2) predicts a non-ergodic delocalized phase in the sense of [S6, S7] which has its
origin in the glassy non-ergodicity of the localized phase. Following the scaling law hypothesis (2), a delocalized state
is built from critical structures of size ξ. As a critical structure consists of few branches, a delocalized state is to
follow these branches for ξ steps, then to make connections to K branches, then follow the K branches for ξ steps
that perform each K connections, etc. One thus sees that the number of critical structures constituting a delocalized
state is Vg(dN/ξ) where Vg(X) is the volume of a graph of size X . Therefore, the asymptotic behavior of Pq in the

delocalized regime should be: 〈Pq〉 ∼ ξ−τq/Vg(dN/ξ)
q−1

where the number Vg(dN/ξ) appears on the denominator due
to normalization. Because the volume Vg(X) of graphs of infinite dimensionality scales exponentially with the linear
size X , and using Vg(dN ) = N ,

〈Pq〉 ≈ ξ−τqN−(q−1)/ξ (S7)

in the delocalized phase, dN ≫ ξ. This behavior corresponds to the following asymptotic dependence of the scaling
function Flin (see (2)):

Flin(X) ∼
Xτq

[Vg(X)]q−1
, for X → ∞,W < Wc . (S8)

In the volumic scaling hypothesis (3), the scaling parameter Λ(W ) plays the role of the correlation volume, and the
scaling function is expressed as the ratio of the two characteristic volumes instead of the ratio of the characteristic
linear sizes. In this case, a critical structure is an hypercube, and the number of such structures in a delocalized state
is N/Λ. Therefore, the leading asymptotic behavior of Pq when N ≫ Λ is

〈Pq〉 ≈

(

Λ

N

)q−1

. (S9)

In order to compensate the term dN
−τq in (3), the scaling function Fvol should have the following asymptotic behavior:

Fvol(X) ∼

[

Vg
−1(X)

]τq

Xq−1
, for X → ∞,W < Wc . (S10)
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FIG. S3. Scaling of the moment 〈P2〉 for the graph model with N for two values of p. (Left panel) p = 0.01, W ∈ [0.25, 1.6]. At
W = 0.6 ≈ Wc, the behavior of 〈P2〉 is well fitted by 〈P2〉 = A0(log2 N)−τ2 with A0 a constant and τ2 = 0.69 (upper inset). In
the main panel, the value τ2 = 0.8 was considered because it provides the best global scaling. In the localized regime, a linear
scaling (2) as a function of (log2 N)/ξ gives a very good collapse of all the curves for different disorder strengths W > Wc. In
the delocalized regime, the rescaling of the volume N by the correlation volume Λ (3) puts all the data onto each other. Lower
inset: correlation volume Λ (circles) and localization length ξ (squares) on both sides of the transition. Solid lines are the fits:
log2 Λ = A1 + A2(Wc − W )−κ and ξ = A3(W − Wc)

−νl , with Wc = 0.6 (assigned value), yielding κ = 0.48 and νl = 0.96.
(Right Panel) p = 0.49, W ∈ [3, 12]. At W = 6 ≈ Wc, 〈P2〉 ∼ (log2 N)−τ2 with τ2 ≈ 0.306 (upper inset). In the main panel
the value τ2 = 0.3 gives the best global scaling. The same scaling procedure as for p = 0.01 and 0.06 has been followed here.
Lower inset: Solid lines are the fits: log2 Λ = A4+A5(Wc−W )−κ and ξ = A6(W −Wc)

−νl , with Wc = 6 and κ = 0.5 (assigned
values), yielding νl = 1.0.

This leads to the following more precise asymptotic behavior:

〈Pq〉 ≈

(

Λ

N

)q−1 (

1− τq
ξ

dN

)

. (S11)

This is precisely what is predicted by the analytical theory [S8]: P2 ≈ C/N with lnC ∝ (Wc −W )−κ close to the
threshold, and κ the critical exponent in the delocalized phase. The corrections in the parenthesis are negligible in
the limit dN ≫ ξ.
Finally, the volumic scaling hypothesis for the non-ergodicity volume λ(N,W )

λ

N/dN
= Gvol

(

N

Λ

)

, (S12)

with dN ∼ log2N , implies the following asymptotic behavior:

Gvol(X) ∼

[

Vg
−1(X)

]

X
, for X → ∞,W < Wc . (S13)

Because Vg
−1(N/Λ) = dN − ξ, in the limit of large system volume N ≫ Λ:

λ ≈
N

dN

Λ

N
(dN − ξ) = Λ

(

1−
ξ

dN

)

. (S14)

Therefore, in the delocalized phase, the non-ergodicity volume λ saturates to the correlation volume in the thermo-
dynamic limit.

Universality versus a change of the graph parameter p

Here we present the results of the same scaling analysis represented in Fig. 2 for two distinct values of the graph
parameter, p = 0.01 and p = 0.49. The same critical scalings and critical exponents are observed in Fig. S3: the linear
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scaling law (2) where the linear system size dN ∼ log2N is rescaled by the scaling parameter ξ describes the data in
the localized regime W > Wc while a volumic scaling law (3) as a function of the ratio of the system volume N and
the correlation volume Λ holds in the delocalized regime. As in the case p = 0.06 shown in the paper (see Fig. 2), the
scaling parameter ξ ∼ ξl (localization length) diverges at the transition point as ξ ∼ (W −Wc)

−νl with νl ≈ 1, while
the correlation volume Λ diverges exponentially as lnΛ ∼ (Wc −W )−κ with the critical exponent κ ≈ 0.5.
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