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ABSTRACT

Let P and Q be two polynomials in K[x, y] with degree at
most d, where K is a field. Denoting by R ∈ K[x] the resul-
tant of P and Q with respect to y, we present an algorithm
to compute R mod xk in O (̃kd) arithmetic operations in K,
where the O˜ notation indicates that we omit polylogarith-
mic factors. This is an improvement over state-of-the-art
algorithms that require to compute R in O (̃d3) operations
before computing its first k coefficients.

1. INTRODUCTION
Computing the resultant of two polynomials is an ubiqui-

tous question in symbolic computation, with applications to
polynomial system solving [17], computational topology [18,
2, 12, 7, 8, 5, 22, 6], Galois theory [28, 24, 1, 23], computa-
tions with algebraic numbers [4], etc.

From the complexity viewpoint, this question admits a
satisfactory answer in the simplest case of polynomials P, Q
with coefficients in a field K. Euclid’s algorithm can be
adapted to compute the resultant R of P and Q in time
O(d2), assuming arithmetic operations in K are counted
at unit cost (a thorough discussion of resultant algorithms
based on Euclid’s algorithm is in [14]). Using fast polyno-
mial multiplication and divide-and-conquer techniques, the
Knuth-Schönhage half-gcd algorithm [21, 27] allows one to
compute R in time O (̃d). This is optimal, up to logarithmic
factors, since the input has size Θ(d).

However, no such quasi-linear result is known in the im-
portant case of bivariate polynomials over K, or in the very
similar case of univariate polynomial with integer coefficients
(in which case one would be interested in bit complexity es-
timates). In the former situation, suppose we consider two
polynomials P and Q in K[x, y], with degree at most d, and
we want to compute their resultant R with respect to y, so
that R is in K[x]. The polynomial R has degree at most d2,
so both input and output can be represented using Θ(d2)
elements in K. However, the best known algorithms to com-
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pute R take O (̃d3) operations in K, either by means of eval-
uation / interpolation techniques, or in a direct manner [26].

In this paper, we are interested in the computation of
the resultant R of such bivariate polynomials truncated at

order k, that is of R mod xk for some given parameter k.
This kind of question appears for instance in the algorithms
of [17, 23], where we want two terms in the expansion, so
that k = 2. A related example, in a slightly more involved
setting, involves the evaluation of the second derivative of
some subresultants, for input polynomials in K[x, y, z] [19].

Of course, one could simply compute R itself and trun-
cate it afterwards; however, it seems wasteful to compute
all d2 terms of R, incurring a cost of O (̃d3), before dis-
carding many of them. Now, for all but finitely many val-
ues a in K, it is possible to compute R mod (x − a)k us-
ing O (̃dk) operations in K: indeed, as soon as the non-
zero subresultants of P and Q do not vanish at a, we can
run the Knuth-Schönhage algorithm with coefficients trun-
cated modulo (x− a)k, without attempting to invert an el-
ement that would vanish at a. The running time claimed
above then follows from the fact that arithmetic operations
in K[x]/(x − a)k can be done using O (̃k) operations in K
(for such standard complexity results, our reference is [13]).

If however we cannot choose the expansion point, as is
the case here, there is no guarantee that all divisions remain
feasible in K[x]/〈xk〉; attempting to divide by an element of
positive valuation would entail a loss of x-adic precision.

An obvious solution is to use a division-free algorithm over
K[x]/〈xk〉 (by contrast, so-called fraction-free algorithms of-
ten require the base ring to be a domain). The best result
we are aware of is due to Kaltofen and Villard [20], with
a cost of O(d2.698) ring operations to compute the determi-
nant of a matrix of size d over any ring, and thus O (̃d2.698k)
operations in K to solve our problem.

In [10], Caruso studies the phenomenon of loss of preci-
sion in the iterative version of the subresultant algorithm.
He shows that on average, if the base field is finite, this loss
of precision grows linearly with the degree of the inputs. In
that same reference, he also shows how to modify this al-
gorithm to reduce the loss of precision, resulting in a cost
of O (̃d2(k + δ)) operations in K, where δ is the maximum
of the x-adic valuations of the non-zero leading subresul-
tants of the input polynomials (under the assumption that
these leading subresultants all have valuation less than k/2).
WhenK is finite, the expected value of δ isO(log(d)), so that
the average running time becomes O (̃d2k).

Our main result is a complexity estimate for the compu-
tation of R mod xk, using the Knuth-Schönhage divide-and-
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conquer algorithm. We show that we can compute R mod xk

using O (̃dk) base field operations, when K has characteris-
tic zero, or at least k.

We proceed in three steps. First, we compute cofactors
U, V and an integer t such that UV + P Q = xt mod xt+1

holds in Rk = K[x, y]/〈xk〉; this is done in Section 3 by
a suitable adaptation of the half-gcd algorithm. From this
equality, we will able to deduce a first-order linear differen-
tial equation satisfied by the resultant R (Section 5). Solving
this differential equation is straightforward, once an initial
condition is known; Section 4 shows how to compute the
first non-zero term in the resultant.

2. PRELIMINARIES
To a polynomial P of Rk, we associate a valuation υ(P )

defined as the smallest exponent on x in the monomials of P
for P non-zero; by convention, υ(0) = k. By Gauss’ Lemma,
for any polynomials P and Q in Rk, we have υ(P Q) =
υ(P ) + υ(Q) if the sum is less than k (otherwise, P Q = 0).
In all the algorithms of the paper, a polynomial P of Rk

is represented by the monomial xυ(P ) and the polynomial
P/xυ(P ) of valuation 0. We do not take into account the
boolean cost of exponent manipulations, in the sense that
we assume that we can add two valuations in constant time.
We define the valuation υ(P, Q) of a pair of polynomials
(P, Q) ∈ R2

k as the minimum of the valuations of P and Q.
We let Sk ⊂ R

2
k be the set of all pairs of polynomials (P, Q)

with υ(P ) < υ(Q), to which we adjoin (0, 0).
For n ∈ N, we define Πn as the function from Rk to itself,

and by extension from Sk to itself, such that:

Πn(P ) = P remx xυ(P )+n

Πn(P, Q) = (P remx xυ(P,Q)+n, Q remx xυ(P,Q)+n);

if υ(P ) + n ≥ k in this definition, we simply replace it by k.
We denote by U(Rk) the set of invertible elements of Rk;
they are exactly the polynomials P such that υ(P ) = 0 and
Π1(P ) ∈ K.

We call degree of an element of K[x]/〈xk〉 the degree of
its canonical lift to K[x]. We will often write expressions of

the form Q = P/xυ(P ), for some P in Rk. Such a quotient
is not unique; we remove ambiguities by requiring that all
coefficients of Q have degree in x less than k − υ(P ).

If P is a polynomial in Rk, then [xi]P ∈ K[y] is the
coefficient of xi in it. Then, we say that P is normal if
degy([xυ(P )]P ) > degy([xi]P ) for all i > υ(P ). Equiva-
lently, this is the case if the leading coefficient of P has the
form cxυ(P ), for some non-zero c in K.

Being normal is a useful property. For instance, it al-
lows us to define quotient and remainder in a Euclidean
division in many cases: if P ∈ Rk is normal and Q ∈ Rk

has valuation at least υ(P ), there exist U and R in Rk with
deg(R) < deg(P ), and such that Q = UP +R; U is uniquely

defined modulo xk−υ(P ), whereas R is unique. We will write
Q divy P for the unique quotient U with degree in x less
than k − υ(P ), and R = Q remy P .

The following normalization property will be essential for
our algorithms. Below, M(n) is a bound on the number of
arithmetic operations in K for computing the product of two
polynomials f , g in K[x] of degree at most n; we assume that
M satisfies the super-linearity conditions of [13, Chapter 8].
Using the Cantor-Kaltofen algorithm [9], we can take M(n)
in O(n log(n) log log(n)). Using Kronecker’s substitution as

in [15], multiplication or Euclidean division in degree d in
Rk can then be done in O(M(kd)) operations in K.

Lemma 1 (Normalization). For P non-zero in Rk,

there exist polynomials U and T in Rk such that T is nor-

mal, U is a unit, with Π1(U) = 1, and P = UT .

The polynomial T is unique, whereas U is uniquely de-

fined modulo xk−υ(P ). Moreover, if P has degree d, for

n ≤ k− υ(P ), given Πn(P ), Πn(U) and Πn(T ) can be com-

puted using O(M(dn)) operations in K.

Proof. Up to dividing P by xυ(P ), we may assume that
P has valuation 0. Then, uniqueness and the correspond-
ing algorithm are from Algorithm Q in [25]; the cost anal-
ysis is a straightforward extension of that given for Hensel
step in [13, Chapter 15] using Kronecker substitution for the

arithmetic operations. Once the result is known for P/xυ(P ),

we recover our claim by multiplying T by xυ(P ).

Given P inRk, we denote by respectively Lc(P ) and N(P )
the unique U and T that satisfy the above conditions, with U
having degree in x less than k−υ(P ); these two polynomials
have degree in y at most d, and υ(N(P )) = υ(P ). We also
define Lcn(P ) = Πn(Lc(P )) and Nn(P ) = Πn(N(P )); by
the previous lemma, if P has degree d, for any n, Lcn(P )
and Nn(P ) can be computed in time O(M(dn)).

Using this result, we can reduce the problem of computing
the resultant of two polynomials in Rk to the problem of
computing the resultant of two normal polynomials.

Lemma 2. Let P and Q be in Rk of degrees in y at most

d. Then there exist four monic polynomials A, B, C, D in

Rk, with degrees at most d, and u in K[x]/〈xk〉 such that

Res (P, Q) = u Res (A, B) Res (C, D). Moreover, A, B, C, D, u
can be computed in time O(M(dk)).

Proof. By the multiplicative property of the resultant,
Res (P, Q) = Res (Lc(P ), Q) Res (N(P ), Q). Let dc, dn, dQ

be the degrees in y of Lc(P ), N(P ) and Q respectively.
Taking the reciprocal polynomial of Lc(P ) and Q changes

at most the sign of their resultant. Let us thus define P̃ =
ydcLc(P )(1/y) and Q̃ = ydQQ(1/y) and let c0 ∈ K[x]/〈xk〉
be the leading coefficient of P̃ . By construction, c0 is a unit,
so we can define A = P̃ /c0 ∈ Rk, and we have Res (Lc(P ), Q) =
(−1)dcdQc0

dQ Res (A, Q̃), where A is monic in y. Let R be
the remainder of the Euclidean division of Q̃ by A and let
B = R + A; since A is monic, Res (A, Q̃) = Res (A, B).

Similarly, because N(P ) is normal, we can write it as
N(P ) = n0C, where n0 ∈ K[x]/〈xk〉 is its leading coeffi-
cient and C is monic in y; then, we have Res (N(P ), Q) =
n0

dQ Res (C, Q). Defining as above D = (Q remy C) + C,
we deduce Res (N(P ), Q) = n0

dQ Res (C, D), and finally

Res (P, Q) = (−1)dcdQ(c0n0)dQ Res (A, B) Res (C, D).

A is monic of degree at most d, since Lc(P ), has degree at
most d. The remainder R has degree less than the degree
of A, so that B = R + A is monic of the same degree as A.
The same holds for C and D.

In terms of complexity, after computing Lc(P ) and N(P ),
all other operations are O(d) inversions or multiplications of
power series in K[x]/〈xk〉, and O(1) Euclidean divisions by
monic polynomials of degree at most d in Rk. Their total
cost is O(M(dk)) operations in K.



3. COMPUTING PSEUDO INVERSES
In this section, we show that given two polynomials P, Q

in Rk, we can compute a matrix M = ( U V
X Y ) ∈ M2(Rk)

such that UP + V Q is of the form xt mod xt+1, for some
integer t; we call U and V pseudo-inverses of P and Q.

To simplify notation, for s = (P, Q) and M as above, we

simply write M · s for the matrix-vector product M
(

P
Q

)

.

3.1 The pseudo-division operator Q
In this subsection, we define an operator Q : Sk → Sk and

study its properties. For s = (0, 0), we define Q(s) = Id;
otherwise, the construction involves three stages.

For a non-zero pair of polynomials s = (P, Q) in Sk, define

η(s) := υ(Q remy N(P ))− υ(P ).

This is well-defined, as N(P ) has the same valuation as P .

Lemma 3. For an integer n and s in Sk, given Πn(s), we

can compute min(η(s), n) using O(M(dn)) operations in K.

Proof. We start by dividing both P and Q by xυ(P );
this does not involve any arithmetic operation. We can
then compute the normalization Nn(P )/xυ(P ), and do the

Euclidean division of Q/xυ(P ) by this polynomial, using co-
efficients taken modulo xn, both in time O(M(dn)). The
valuation of the remainder is precisely min(η(s), n).

The next lemma shows a more intrinsic characterization of η.
We denote by σ0 : Rk → K[y] the evaluation morphism that
sends x to 0.

Lemma 4. For any integer t ≥ 0, with Jt(s) = 〈P, Q〉 :

xυ(s)+t and It(s) = σ0 (Jt(s)), we have
{

It(s) = I0(s) if 0 ≤ t < η(s)

It(s) ! I0(s) if t ≥ η(s).

Proof. For t ≥ υ(s), we have I0(s) ⊂ It(s). Then, let
Q′ = Q remy N(P ). If 0 ≤ t < η(s) let W be such that

xυ(s)+tW = UP + V Q′ ∈ 〈P, Q〉. Since xυ(s)+η(s) divides Q′

and t + 1 ≤ η(s) we have xυ(s)+tW = UP mod xυ(s)+t+1,

so xt divides U and xυ(s)W = U ′P mod xυ(s)+1. Thus
It(s) ⊂ I0(s) and It(s) = I0(s). If t ≥ η(s), It(s) con-

tains the residue class of the remainder of Π1(Q)/xυ(Q) by

Π1(P )/xυ(P ), that is a non-zero polynomial of degree less
than degy(Π1(P )), and is not included in I0(s).

For s = (P, Q) as above, perform a Euclidean division of
Q by the normal polynomial Nη(s)(P ), and define the matrix

Ds :=

(

xη(s) 0

−
(

Q divy Nη(s)(P )
)

remx xη(s) Lcη(s)(P )

)

.

Then, the polynomial Q̃ defined by

Ds ·

(

P
Q

)

=

(

xη(s)P
Q̃

)

has valuation υ(P ) + η(s) and we have the inequality
degy(Π1(Q̃)) < degy(Π1(P )).

Given P, Q ∈ K[y] of degree at most d, and denoting by
G their monic gcd, there exists an invertible matrix G(P,Q)

with entries in K[y] of degree less than d such that

G(P,Q) ·

(

P
Q

)

=

(

G
0

)

.

If Q = 0 then G(P,Q) is the identity matrix. By exten-

sion, for s = (P, Q) ∈ R2
k with υ(P ) = υ(Q), we define Gs

as G(Π1(P )/xυ(P ),Π1(Q)/xυ(Q)). By construction, the entries

(P̃ , Q̃) of Gs ·s satisfy υ(P̃ ) < υ(Q̃), or P̃ = Q̃ = 0; in other
words, the pair Gs · s belongs to Sk.

For a pair s = (P, Q) in Sk with P 6= 0 we define Ns by

Ns =

(

Lc(P )−1 0
−Lc(P )−1(Q divy N(P )) 1

)

.

If P = 0, set Ns = Id. Else, v(Q) > v(P ) and there exists a
matrix R such that Ns = Id + xR; then, Ns is invertible.

Lemma 5. For s = (P, Q) ∈ S2
k, define

Q(s) := NGDs·s·Ds·s ·GDs·s ·Ds.

Then,

1. Q(s) · s is in Sk;

2. the following equality between ideals holds:

〈Q(s) · s〉 = 〈s〉 ∩
〈

xυ(s)+η(s)
〉

;

3. Π1(Q(s) · s) =
(

xv(s)+η(s)G
0

)

, where G is the gcd of

Π1(P )/xv(s) and Π1(Q̃)/xv(s)+η(s);

4. Q(s) · s and Q(s′) · s′ generate the same ideal, for any

pair s′ that generates the same ideal as s;

5. the entries of Q(s) · s have degree less than

degy(Π1(P )).

For s = (P, Q) ∈ Sk, where P and Q have degree at most

d, given Πn(s) for some n ≥ η(s), Πn−η(s)(Q(s) · s) can be

computed using O(M(dn) + M(d) log(d)) operations in K.

Proof. We saw just above the lemma that GDs·s ·(Ds ·s)
belongs to Sk. Since applying the matrix NGDs·s·Ds·s to
this vector does not change the valuations of its entries, we
deduce that Q(s) · s is in Sk.

In order to prove the relation 〈Q(s)·s〉 = 〈s〉∩〈xυ(s)+η(s)〉,

it is sufficient to prove that 〈Ds ·s〉 = 〈s〉∩〈xυ(s)+η(s)〉, since
the matrices NGDs·s·Ds·s and GDs·s are invertible over Rk.

The two polynomials in the vector Ds · s = (xη(s)P, Q̃) are

divisible by xυ(P )+η(s), thus 〈Ds · s〉 ⊂ 〈s〉 ∩ 〈x
υ(P )+η(s)〉.

For the other inclusion, let W be a polynomial in 〈s〉 ∩

〈xυ(P )+η(s)〉. Since we have s = 〈P, Q〉 = 〈P, Q̃〉, we can
write W = UP + V Q̃, for some U, V in Rk. On the other
hand, we know that xυ(P )+η(s) divides W , and since it also
divides Q̃, it divides UP . This implies that xη(s) divides
U , which means that W is in 〈Ds · s〉. This allows us to
conclude for the equality of ideals, noting that υ(s) = υ(P ).

The third point comes from the fact that the matrix
NGDs·s·Ds·s can be written Id + xR, so that Π1(Q(s) · s) =

Π1(GDs·s ·Ds · s) =
(

xv(s)+η(s)G
0

)

.

If s and s′ generate the same ideal, η(s) = η(s′)
(Lemma 4); using the second item, this proves point 4.

The degree property follows from the fact that in the
pair (A, B) = Q(s) · s, A is normal of degree degy(G) <
degy(Π1(P )), and B is a remainder modulo N(A).

Computing Ds can be done in time O(M(dη(s))) us-
ing Lemma 1 to compute Nη(s)(P ) and Lcη(s)(P ) in time

O(M(dη(s))). The matrix-vector product that gives Q̃ is
done in degree n in x and d in y, in time O(M(dn)). Then,



we saw that Π1(Q̃) has degree less than d, so computing
GDs·s is an extended gcd calculation in K[y] that can be
done in time O(M(d) log(d). Applying GDs·s to Ds · s takes
O(nM(d)), and results in a matrix of degree O(d) in y. Fi-
nally, applying NGDs·s·Ds·s to GDs·s ·Ds · s is again a nor-
malization at precision n along with arithmetic operations
that can all be done in time O(M(dn)).

3.2 An extension of the half-gcd
Our goal is now to iterate the pseudo-division Q(s) until

we reach an integer t such that 〈s〉 ∩ 〈xt〉 = 〈xt〉. We use a
divide-and-conquer algorithm, inspired by the half-gcd algo-
rithm. If we applied this idea directly, the increase in degree
in y of the transition matrices would prevent us from getting
a softly linear bound in the degree of the input; we will thus
work modulo an equivalence relation, to control the size of
the intermediate polynomials.

Consider the following equivalence relation on Sk: for any
two pairs (P, Q) and (P ′, Q′) in Sk, we say that (P, Q) ∼
(P ′, Q′) if and only if the ideals they generate are the same.
In particular, this implies that υ(P, Q) = υ(P ′, Q′) and that
Π1(P ) and Π1(P ′) are equal up to a constant.

Let further H,H′ be two functions from Sk to M2(Rk).
Extending the equivalence property to the set of functions,
we say that H and H′ are equivalent if for all s ∈ Sk we
have H(s) · s ∼ H′(s) · s. We still write in this case H ∼ H′.

Definition 1 (Euclidean function). We say that

H : Sk →M2(Rk) is Euclidean if:

• for all s, s′ ∈ Sk, if s ∼ s′, then H(s) · s ∼ H(s′) · s′

• for all s ∈ Sk, if s is non-zero, υ(H(s) · s) > υ(s).

We denote υ(H(s).s)− υ(s) by ηH(s), and we say that H is

online if for all s ∈ Sk:

• ηH(Πi(s)) ≥ i for all i ≤ ηH(s)

• H(s) · s ∼ H(Πi(s)) · s for all i ≥ ηH(s) + 1.

Lemma 6. The function Q introduced in Lemma 5 is an

online Euclidean function.

Proof. The first point was proved in Lemma 5. Now, let
s = (P, Q) be a non-zero element of Sk. By construction,
we have υ(Q(s) · s) = υ(s) + η(s). In particular, η(s) =
υ(Q remy N(P )) − υ(P ) ≥ υ(Q)− υ(P ) > 0. Thus, Q is a
Euclidean function.

To prove that Q is online, notice that
Q(s remx xυ(s)+i) remx xi = Q(s) remx xi. In par-
ticular for i ≤ ηQ(s), Q(Πi(s)) ·Πi(s) is given by

(

Q(s) remx xi
)

·
(

s remx xυ(s)+i
)

mod xυ(s)+i

= Q(s) · s mod xυ(s)+i = (0, 0) mod xυ(s)+i,

so that ηQ(Πi(s)) ≥ i.
If i > η(s), we prove that there exists a matrix R such that
Q(Πi(s)) = (Id+xR) ·Q(s). Indeed, if that holds, (Id+xR)
is an invertible matrix over Rk, so that 〈Q(Πi(s)) · s〉 =
〈Q(s) · s〉. Moreover Π1(Q(Πi(s)) · s) = Π1(Q(s) · s), which
will be sufficient to conclude. Let M = GDs·s · Ds. If
i > η(s), we note by construction that M remx xi = M.
Moreover there exists a matrix R such that NM·s remx xi =
(Id + xR) ·NM·s, so that Q(Πi(s)) = (Id + xR) · Q(s).

Let s be an element of Sk and define by recurrence the fol-
lowing sequence of elements of M2(Rk):

{

Q0 = Id

Qn+1 = Q(Qn · s) ·Qn.
(1)

For s in Sk, the sequence (υ(Qi · s))i∈N is increasing, until
it reaches υ(Qi · s) = k. Thus given an integer n, we can
define the function Qn from Sk to M2(Rk) by

Qn : Sk →M2(Rk)

s 7→ Qi0 , i0 = max{i ∈ N | υ(Qi · s)− υ(s) ≤ n}

for s non-zero; for s = (0, 0), we set Qn(s) = Id. In
particular, for any s, Q0(s) = Id (since for s non-zero,
Q1 · s = Q(s) · s has valuation greater than that of s).

Lemma 7. For n ≥ 0, if s ∼ s′ in Sk then Qn(s) · s ∼
Qn(s′) · s′. Moreover, let j be the minimal integer such that

Ij(s) = In(s); then, 〈Qn(s) · s〉 = 〈s〉 ∩ 〈xυ(s)+j〉.

Proof. We use a recurrence on n. For n = 0, it is clear
that Q0 satisfies the desired properties. Then, given n ≥ 1
and s ∼ s′ two equivalent elements of Sk we know by recur-
rence assumption that t := Qn−1(s) · s ∼ t′ := Qn−1(s′) · s′.

If υ(Q(t) · t) > υ(s) + n, then υ(Q(t′) · t′) > υ(s′) + n and
Qn(s) = Qn−1(s) andQn(s′) = Qn−1(s′), so thatQn(s)·s ∼
Qn(s′) · s′. Moreover, in this case, let j be the minimal
integer such that Ij(s) = In−1(s). For all ℓ < η(t) we have
Iℓ(t) = I0(t). In particular, ℓ := n − (υ(t) − υ(s)) < η(t),
and Iℓ(t) = In(s) and I0(t) = In−1(s). Hence, 〈Qn(s) ·

s〉 = 〈s〉 ∩ 〈xυ(s)+j〉 and j is the smallest integer such that
In(s) = In−1(s) = Ij(s).

Otherwise, υ(s) + n− 1 < υ(Q(t) · t) ≤ υ(s) + n, so that
υ(Q(t) · t) = υ(s) + n. Then υ(Q(t′) · t′) = υ(s′) + n. Thus
Qn(s) = Q(t)·Qn−1(s) and Qn(s′) = Q(t′)·Qn−1(s′). Since
Q is a Euclidean function, Q(t)·t ∼ Q(t′)·t′ and this leads to
Qn(s)·s ∼ Qn(s′)·s′. Moreover, let ℓ be the smallest integer

such that Iℓ(t) 6= I0(t). We have 〈Q(t) · t〉 = 〈t〉 ∩ 〈xυ(t)+ℓ〉.
According to Lemma 4 we have ℓ = η(t) = υ(s) + n− υ(t).
In particular n = υ(t) + ℓ− υ(s), and we have In(s) = Iℓ(t)
and for all i < n we have Ii(s) 6= In(s). Thus, n is the
smallest integer j such that Ij(s) = In(s) and 〈Qn(s) ·s)〉 =

〈Q(t) · t〉 = 〈t〉 ∩ 〈xυ(t)+η(t)〉. Since 〈t〉 = 〈Qn−1(s) · s〉 =

〈s〉∩〈xυ(s)+i〉 for some i ≤ n−1, this leads to 〈Qn(s) ·s)〉 =

〈s〉 ∩ 〈xυ(s)+n〉.

Our goal is to compute efficiently a mapping equivalent
to Qn. To this effect, we introduce in Algorithm 1 a general-
ized version of the half-gcd algorithm [13, p. 320]. In order
to control the degree in y of the intermediate elements in
Algorithm 1, we use a function ϕs,n : M2(Rk) → M2(Rk),
that depends on an element s ∈ Sk and an integer n.

Let s = (P, Q) be a pair of polynomials in Sk, n be an
integer, and let M = ( A B

C D ) be a matrix of M2(Rk). If Q =
0 or υ(M · s) = υ(s) then we let ϕs,n(M) = Id. Otherwise,
neither P nor Q are zero and we define ϕs,n(M) as the
remainder of

(

LQ(LP A remy Nu(Q)) LP (LQB remy Nu(P ))
LQ(LP C remy Nu(Q)) LP (LQD remy Nu(P ))

)

by xn+1, where LP , LQ are Lc(P ), Lc(Q) and Nu(P ), Nu(Q)
are two polynomials with constant leading coefficients such
that N(P ) = xυ(P )Nu(P ) and N(Q) = xυ(Q)Nu(Q).



Lemma 8 (Size control). Let s ∈ Sk and assume M·
s is also in Sk. If M · s ∼ Qn(s) · s, let j = υ(M · s)− υ(s).
Then ϕs,j(M) · s ∈ Sk and ϕs,j(M) · s ∼M · s.

Moreover the degree in y of the entries in ϕs,j(M) are

bounded by dQ − 1 for the first column and dP − 1 for the

second one, with dP = degy(P ) and dQ = degy(Q).

Proof. The degree bound follows from deg(LP ) +
deg(Nu(P )) = dP , and similarly for Q. If Q = 0 or
υ(M · s) = υ(s) then Qn(s) = Id for all 0 ≤ n < k, and
ϕs,j(M) = Id = Qn(s).

Now let s = (P, Q) a pair in Sk with Q 6= 0 and υ(M ·s) >

υ(s) and let ( G
H ) = M ·

(

P
Q

)

. By assumption, 〈G, H〉 =

〈P, Q〉 ∩ 〈xυ(s)+j〉. Moreover, Π1(G, H) = (Π1(G), 0) and
Lemma 5 shows that degy(Π1(G)) < dP .

Assume first that P and Q are normal. In this case, LP =
LQ = 1 and we have

ϕs,j(M) ·

(

P
Q

)

=

(

G + KNu(P )Nu(Q) + Lxj+1

H + MNu(P )Nu(Q) + Nxj+1

)

,

where K, M are polynomials of Rk and L, N are in 〈P, Q〉,
so that υ(L) ≥ υ(s) and υ(N) ≥ υ(s). In this case we also
know that the degrees of G + KNu(P )Nu(Q) + Lxj+1 and
H +MNu(P )Nu(Q)+Nxj+1 are lower than dP +dQ. On the

other hand, G remx xυ(s)+j+1 has a degree in y less than dP

and H remx xυ(s)+j+1 = 0. Also, Lxj+1 remx xυ(s)+j+1 =
Nxj+1 remx xυ(s)+j+1 = 0. Hence, K and M have a valua-
tion greater than or equal to υ(s)+j+1 and KNu(P )Nu(Q)
and MNu(P )Nu(Q) are in 〈xj+1P 〉.

Thus ϕs,j(M) ·
(

P
Q

)

=
(

G+G′

H+H′

)

, where G′ and H ′ are

two polynomials of 〈xj+1P, xj+1Q〉. In particular, by as-
sumption this implies that G′ and H ′ belongs to the ideal
〈xG, xH〉. Thus there is an invertible matrix that sends

( G
H ) to

(

G+G′

H+H′

)

and 〈G, H〉 = 〈G + G′, H + H ′〉 and

Π1(G+G′, H +H ′) = Π1(G, H). In particular ϕs,j(M) ·s ∈
Sk.

If P and Q are not normal, let L be the matrix
(

LP 0
0 LQ

)

.

In this case, M · s = M · L ·
(

N(P )
N(Q)

)

. Hence, using the first

part of the proof on N(s) = (N(P ), N(Q)), we have

ϕN(s),j(M · L) · L−1 · s = ϕN(s),j(M · L) ·
(

N(P )
N(Q)

)

∼M · L ·
(

N(P )
N(Q)

)

∼M · s.

Then, ϕs,j(M) = ϕN(s),j(M · L) ·
(

det(L)L−1
)

mod xj+1.
In particular, using the same argument as above, this im-
plies that ϕs,j(M) · s = ϕN(s),j(M · L) ·

(

det(L)L−1
)

· s

mod 〈xG, xH〉. Finally, we can factor out det(L) and since
it is invertible, this implies that det(L)ϕN(s),j(M ·L) ·L−1 ·s
generates the ideal 〈G, H〉. Finaly, using tthe same argu-
ment as above, this leads to ϕs,j(M) · s ∼M · s.

Lemma 9 (Generalized half-gcd). For n ∈ N, de-

note by H(n, .) : s 7→ H(n, s) the function computed by Al-

gorithm 1. Then, H(n, .) ∼ Qn.

Proof. We prove by recurrence on n that H(n, .) ∼ Qn.
For n = 0, and for any s ∈ Sk, we have by construction
H(0, s) = Id. On the other hand, we saw that for all s,
Q0(s) = Id, so our claim holds. Now assume that H(i, .) ∼
Qi for 0 ≤ i < n; we prove that the equivalence holds for n.
Let n0 = ⌊n

2
⌋, n1 = n−

(

υ(t̃)− υ(s̃)
)

.

Algorithm 1 Generalized version of the half-gcd

function GenericHalfGcd(n, s)
s̃← Πn+1(s)
if n = 0 or s̃ = (0, 0) then

return Id
end if

R← GenericHalfGcd (⌊n
2
⌋, s̃)

n′ ← n− (υ(R · s̃)− υ(s̃))
ũ← Πn′+1(R · s̃)
η ← min(η(ũ), n′ + 1)
if η > n′ then

return R

end if

t̃← Πn′−η+1(Q(ũ) · ũ)

S← GenericHalfGcd (n−
(

υ(t̃)− υ(s̃)
)

, t̃)

M← ϕs̃,υ(S·t̃)−υ(s̃)(S · Q(ũ) ·R)
return M

end function

For any s, s′, if Πn+1(s) = Πn+1(s′), then H(n, s) =
H(n, s′), since then s̃ = s̃′. In particular, with the nota-
tion of the algorithm, Πn0+1(s) = Πn0+1(s̃), which implies
that H(n0, s̃) = H(n0, s). Hence, by recurrence assumption,
we get that R · s = H(n0, s) · s ∼ Qn0 (s) · s.

The definition of Qn0 implies that υ(Qn0(s) · s)− υ(s) ≤
⌊n/2⌋, and by the claim above, we get that υ(R ·s)−υ(s) ≤
⌊n/2⌋. This implies that υ(R ·s) = υ(R · s̃), and, since n′ =
n− (υ(R · s̃)− υ(s̃)), that Πn′+1(R · s) = Πn′+1(R · s̃) = ũ.

To continue, we distinguish two cases. If η(R · s) ≥ n′ + 1
then the first part of Q being online shows that η(Πn′+1(R ·
s)) = η(ũ) ≥ n′ + 1. Hence, in this case, the algorithm
returns R. On the other hand, we will prove that in this
case, Qn(s) = Qn0(s); one this is established, this implies
that Qn(s) · s ∼ R · s, so our correctness claim holds in
this case. Indeed, η(R · s) = η(Qn0(s) · s) (in view of the
equivalence written above, and of Lemma 4), which can be
rewritten as υ(Q(Qn0(s) · s) · Qn0 (s) · s) − υ(Qn0(s) · s).
On the other hand, n′ = n − (υ(R · s̃) − υ(s̃)) gives n′ =
n−υ(Qn0(s) ·s) + υ(s). Hence, η(R ·s) ≥ n′ + 1 means that

υ(Q(Qn0(s) · s) · Qn0 (s) · s)− υ(s) ≥ n + 1,

which precisely implies that Qn0 (s) = Qn(s).
If n′ +1 > η(R ·s), Q being online leads to the equivalence
Q(ũ) ·R · s ∼ Q(R · s) ·R · s. We claim that the right-hand
side has valuation υ(t̃) = υ(Q(ũ) · ũ). Indeed, the proof of
Lemma 6 establishes the existence of a matrix K such that
Q(ũ) = (Id + K)Q(R · s); this implies that υ(Q(ũ) · ũ) =
υ(Q(R · s) · ũ). On the other hand, the inequality n′ + 1 >
η(R ·s) also implies that υ(Q(R ·s) · ũ) and υ(Q(R ·s) ·R ·s)
are the same, which proves our claim.

Using R · s ∼ Qn0 (s) · s, and Q being Euclidean, we get
Q(R ·s) ·R ·s ∼ Q(Qn0 (s) ·s) ·Qn0(s) ·s. We claim that the
right-hand side is equivalent to Qn−n1 (s), which will prove
Q(ũ) ·R · s ∼ Qn−n1 (s) · s. Indeed, by definition, Qn−n1 (s)
is the last element in the sequence (Qi · s) from (1) having
valuation at most υ(t̃). On the other hand, the previous
paragraph proves thatQ(Qn0 (s)·s)·Qn0(s)·s, which belongs
to the sequence (Qi · s), has valuation υ(t̃); this is enough
to conclude, since the valuations v(Qi · s) increase.

Then S = H(n1, t̃); by recurrence assumption, H(n1, .) ∼
Qn1 . Moreover, t̃ = Πn1+1(Q(ũ) · ũ) = Πn1+1(Q(ũ) ·R · s),



and by construction H(n1, t̃) = H(n1,Q(ũ) ·R · s), so that

S · Q(ũ) ·R · s ∼ Qn1 (Q(ũ) ·R · s) · Q(ũ) ·R · s

∼ Qn1 (Qn−n1(s)) · Qn−n1 (s) · s.

The definition of the sequence (Qn) implies that the latter
expression is equivalent to Qn(s) · s.

Finally, since the function ϕs,n satisfies ϕs,n(S ·Q(ũ) ·R) ·
s ∼ S · Q(ũ) ·R · s, we conclude that H(n, .) ∼ Qn.

Lemma 10. Let s = (P, Q) be in Sk, of degrees at most

d. For n > 0, Algorithm 1 computes H(n, s) in time

O(M(dn) log(n) + M(d)n log(d)).

Proof. For n = 0, for any s, computing H(0, s) takes
constant time. For a higher value of n, remark that the
recursive calls are made with arguments n0, n1 that are at
most ⌊n

2
⌋: this is clear for n0; for n1 = n−(υ(t̃)−υ(s̃)), this

is because υ(t̃)− υ(s̃) = υ(Q(ũ) · u) − υ(s̃) must be greater
than ⌊n/2⌋, by definition of Qn0 .

The matrix R has entries of degree at most d (because s̃
does), so computing ũ takes time O(M(dn)), and its entries
have degree O(d). More precisely, we saw in the proof of
the previous lemma that R · s ∼ Qn0(s) · s. Because Qn0

is obtained by iterating Q, the last item in Lemma 5 shows
that the first entry of Qn0 (s) · s has degree less than d; as
pointed out before, this implies the same property for R · s,
and thus for ũ (which is a truncation of it).

Computing η takes time O(M(dn)) by Lemma 3, and
the same holds for t̃ by Lemma 5, up to an extra term
O(M(d) log(d)). In addition, that lemma shows that the
entries of t̃ have degree less than that of the first entry of ũ,
and thus less than d.

After the last recursive call, it remains to compute M. We
first compute Q1 = Q(ũ) mod (Nu(P ), xℓ) and Q2 = Q(ũ)
mod (Nu(Q), xℓ), where ℓ = υ(S · t̃)−υ(s̃) ≤ n. This can be
done in time O(M(dn)): Q(ũ) is a product of three matrices,
called G, D, N in Subsection 3.1. The first two have poly-
nomial entries of degree at most d, and can be computed in
time O(M(dn)); the last one involves a denominator of the
form Lc(U)−1, for some polynomial U of degree at most d.
The inverse of Lc(U) may have degree Ω(dk), but one can
directly compute it modulo Nu(P ) or Nu(Q) using Newton
iteration on x in time O(M(dn)).

Then we compute M1 = ϕs̃,ℓ(S · Q1 · R) and M2 =
ϕs̃,ℓ(S ·Q2 ·R) and we let M be the concatenation of the
first column of M2 and the second column of M1. Thus M

can be computed in time O(M(dn)).
Overall, the time spent on input (n, s) is O(M(dn) +

M(d) log(d)), plus two recursive calls with parameter at
most ⌊n/2⌋, in degree at most d. The total is thus
O(M(dn) log(n) + M(d)n log(d)).

3.3 Computing pseudo-inverses
Given two polynomials P and Q in Rk, we will use Al-

gorithm 1 to compute U and V such that UP + V Q =
xt mod xt+1, where t is the smallest integer such that
〈P, Q〉 ∩ 〈xt〉 = 〈xt〉. In particular, the valuation of the
resultant of P and Q is greater than or equal to t.

Corollary 1. Assume that P, Q ∈ Rk have degree

at most d, and let t be the minimal integer such that

〈P, Q〉 ∩ 〈xt〉 = 〈xt〉. It is possible to compute in time

O(M(dt) log(t) + M(d)t log(d)) two polynomials U, V ∈ Rk

such that UP +V Q = xt mod xt+1, with degy(U) < degy(Q)
and degy(V ) < degy(P ).

Proof. Without loss of generality, assume that υ(P ) ≤
υ(Q). Suppose first that we actually have υ(P ) < υ(Q), and
define s = (P, Q) ∈ Sk. In the following we let t′ = t− υ(s).

In particular we have It′(s) = 〈1〉 and since for all i < t′,
Ii(s)  It′(s), the properties of Qt′ given in Lemma 7 ensure
that Qt′(s) · s = 〈s〉∩ 〈xt〉 = 〈xt〉. Moreover, for any integer
i ≥ t′, we have Qi(s) = Qt′(s). Thus, by the equivalence
property of H given in Lemma 9, we have for any i ≥ t′:

H(i, s) · s =
(

xt(a+xW )

xt+1H

)

,

where s = (P, Q) and W, H are in Rk and a is a non-zero
constant. Thus it is enough to compute H(i, s) for any i ≥ t′

to recover U and V from the first row of the matrix H(i, s).
On the other hand for any i < t′, the first coordinate of
Π1(H(i, s) · s) has a degree greater or equal to 1. Thus we
can apply Algorithm 1 to the input (2i, s), for i from 1 to
⌈log k⌉ until the first polynomial of Π1(H(2i, s)·s) has degree
0 in y. We will find 2i0 ≥ t′ while calling H at most ⌈log t′⌉
times, and this will allow us to conclude.

Suppose now that υ(P ) = υ(Q), let s = (P, Q) and s′ =
Gs · s, where G is the gcd matrix defined in Subsection 3.1.
Then s′ satisfies the assumptions of the previous paragraph,
we can compute polynomials U ′, V ′ such that U ′P ′+V ′Q′ =
xt mod xt+1, with s′ = (P ′, Q′). Remark that the value of
t is indeed the minimal possible one for s as well, since G

is a unit; note also that the degrees of P ′, Q′ are O(d), and
thus so are those of U ′ and V ′.

Multiplying U ′, V ′ by G, we obtain polynomials U ′′, V ′′

of degree O(d) such that U ′′P +V ′′Q = xt mod xt+1. Then,
define U = LQ(LP U ′′ mod Nu(Q)) and V = LP (LQV ′′ mod
Nu(P )), with LP , LQ, Nu(P ), Nu(Q) defined as in Lemma 8.
These polynomials have prescribed degrees, can be com-
puted modulo xt+1 in time O(M(dt)), and the same proof
as in Lemma 8 shows that UP + V Q = xt mod xt+1.

4. THE FIRST NON-ZERO COEFFICIENT
Before computing the first k coefficients of the resultant

R(x) ∈ K[x]/〈xk〉 of two polynomials P, Q ∈ Rk, we focus on
computing the first non-zero coefficient of R. The following
lemma will allow us to compute it by recurrence.

Lemma 11. Let M, N ∈ Rk and U ∈ U(Rk) and an in-

teger t ≤ k be such that MP + NQ = xtU with degy(N) <
degy(P ), and such that P and N are normal and Π1(U) = 1.

Furthermore, assume that υ(P ) = υ(N) = 0.

Denote by dP , dQ, dM , dN the degrees in y of P, Q, M, N
respectively, by p0 ∈ K the coefficient of ydP in P , and by

n0 ∈ K the coefficient of ydN in N . Then, there exists V
unit in K[x]/〈xk〉, with Π1(V ) = 1, such that:

Res (P, Q) = xt(dP −dN )(−1)dN dP
p

dN +dQ

0

ndM +dP
0

V Res (N, M).

Proof. By the multiplication rules of the resultant,

Res (P, N) Res (P, Q) = Res (P, NQ)

Res (N, P ) Res (N, M) = Res (N, MP )

Replacing in the first equality NQ by NQ + MP = xtU , we

get Res (P, NQ) = p
dN +dQ−dU

0 Res (P, xtU) (see for exam-
ple [16, 11]). Finally, Res (P, xtU) = xtdP Res (P, U). Then
since P is normal of valuation zero and Π1(U) = 1, there ex-

ists W = 1+xW̃ ∈ K[x]/〈xk〉 such that Res (P, U) = pdU
0 W .



Applying these arguments to Res (N, MP ), we conclude:

Res (P, N) Res (P, Q) = p
dN +dQ

0 xtdP W

Res (N, P ) Res (N, M) = ndM +dP
0 xtdN W ′

Note that the symmetry formula for the resultant implies
that Res (P, N) = (−1)dP dN Res (N, P ). Then dividing the
two equalities, we recover the desired result.

Lemma 12 (First non-zero coefficient). Let d be

a bound on the degrees in y of P and Q. One can deter-

mine whether R = Res (P, Q) vanishes in K[x]/〈xk〉, and if

not compute its first non-zero coefficient and its valuation

in O(M(dk) log(k) + M(d)k log(d)) arithmetic operations.

Proof. Lemma 2 allows us to reduce to the case where
P and Q are normal polynomials; the cost of this reduction
is O(M(dk)). Starting from normal P and Q, we prove the
result by induction; the proof actually only uses the fact
that one polynomial, say P , is normal. We use an integer
argument τ , which gives us a (strict) upper bound on the
valuation of the resultant; initially, it is set to k.

Dividing by powers of x, we can assume that υ(P ) =
υ(Q) = 0; the upper bound τ remains valid. We then
compute the resultant of Π1(P ) and Π1(Q) in K[y], in time
O(M(d) log(d)). If it is non-zero, we are done.

Else, let t be the smallest integer such that 〈P, Q〉∩〈xt〉 =
〈xt〉; hence, t ≤ τ , but we also have t > 0. Define function
F (d, n) = M(dn) log(n) + M(d)n log(d). Using Corollary 1,
we see that there exists a universal constant c1 such that we
can compute in c1F (d, t) operations two polynomials U and
V in Rk of degree less than d such that UP + V Q = xtW
with W ∈ U(Rk), with more precisely degy(U) < degy(P ).
Since t is minimal, this implies υ(U, V ) = 0 and since υ(P ) =
0, this implies that υ(V ) = 0.

If t = τ , we are done. Else, let A = Πt+1(Lc(V )),
N = Πt+1(Nu(V )) and M = Πt+1 (U/A remy Nu(Q)) .
Since A is a unit, these definitions imply the equality
MP + NQ = xt(1 + xY ) + ZNu(Q)P , for some polyno-
mials Y and Z. The degree of the left-hand side is less
than degy(P ) + degy(Q), whereas Nu(Q)P is monic of de-
gree degy(P )+degy(Q). Hence, the previous equality shows

that ZNu(Q)P vanishes modulo xt+1. The assumptions of
Lemma 11 are satisfied; we can thus do a recursive call on N
and M , with upper bound τ − t, from which we can recover
our output using the formula in that lemma.

In terms of complexity, all calculations giving A, N, M can
be done in c2M(dt) operations (the only non-trivial point
is the computation of 1/A remy Nu(Q), which is done by
Newton iteration on x). Hence, the runtime G(d, τ ) satisfies
G(d, τ ) ≤ c0M(d) log(d)+c1F (d, t)+c2M(dt)+G(d, τ−t). Us-
ing the super-linearity of F in t and of M, and the definition
of F , we deduce the overall cost G(d, k) = O(F (d, k)).

5. A DIFFERENTIAL EQUATION
Let P and Q be in K[x, y], and let R ∈ K[x] be their

resultant with respect to y. We now prove our main result:

Theorem 1. If P and Q have degree at most d and K has

characteristic zero, or at least k, one can compute R remx xk

using O(M(dk) log(k) + M(d)k log(d)) operations in K.

First reduction: If the degree in x of P or Q is greater than
or equal to k, let Pk = P remx xk and Qk remx xk and let

dP , dQ be the degrees in y of P and Q respectively. Then,

Res dP ,dQ
(Pk, Qk) = Res (P, Q) mod xk,

where ResdP ,dQ
denotes the determinant of the Sylvester

matrix associated to the degrees (dP , dQ). If both lead-
ing coefficients of P and Q have a valuation less than k,
then ResdP ,dQ

(Pk, Qk) = Res(Pk, Qk). If both leading co-
efficients have a valuation greater than or equal to k then
Res(P, Q) = 0 mod xk. Finally, if only the leading coeffi-
cient of say Q has a valuation greater or equal to k, then we

have Res dP ,dQ
(Pk, Qk) = p

dQ−degy(Qk)

0 Res (Pk, Qk), where
p0 is the leading coefficient of P in y. Thus, in any case, we
can recover the resultant of P and Q modulo xk from that
of Pk and Qk, in a time that fits in our runtime bound.

Second reduction: Assume that P and Q have degree at
most d in y, with coefficients of degree less than k. Using
Lemma 2, in time O(M(dk)), we can reduce the problem
of computing Res (P, Q) remx xk to a similar problem with
P and Q both monic in y, reduced modulo xk, and with
no degree increase in y (that lemma proves the existence of
suitable polynomials in Rk, so we take their canonical lifts
to K[x, y]). Hence, below, we suppose we are in this case.

With the results of the previous section, we can test if R =
Res (P, Q) vanishes modulo xk, and if not, find its valuation
µ ≤ k and the coefficient c of xµ, in time O(M(dk) log k +
M(d)k log d). We thus assume that R remx xk is non-zero,
as otherwise we are done. The key to our algorithm is the
following differential equation satisfied by R over K(x)[y];
below, we write dP = degy(P ) and dQ = degy(Q).

Lemma 13. The following equality holds:

dR

dx
= R

(

coeff

(

1

P

dP

dx

dQ

dy
remy Q, ydQ−1

)

+ coeff

(

1

Q

dQ

dx

dP

dy
remy P, ydP −1

))

.

Proof. Let A be the Sylvester matrix of P and Q with
respect to the variable y, so that R = det(A). Since
R remx xk is non-zero, A is a unit over K(x).

Differentiating this equality with respect to x, we ob-
tain dR

dx
= R trace

(

A−1 dA

dx

)

. Since A is the matrix of the

mapping (F, G) 7→ F P + GQ (in the canonical monomial
bases), dA

dx
represents (F, G) 7→ F dP

dx
+ G dQ

dx
, in the same

bases. Similarly, the inverse A−1 represents the mapping
S 7→ (S/P remy Q, S/Q remy P ). Due to the block struc-
ture of the matrix A−1 dA

dx
, its trace is the trace of the block-

diagonal operator

(F, G) 7→

(

F
1

P

dP

dx
remy Q, G

1

Q

dQ

dx
remy P

)

.

This mapping being block-diagonal, its trace is the sum
of the traces of its two components, F 7→ F 1

P
dP
dx

remy Q

and G 7→ G 1
Q

dQ
dx

remy P . To conclude, remark that these

traces are respectively coeff
(

1
P

dP
dx

dQ
dy

remy Q, ydQ−1
)

and

coeff
(

1
Q

dQ
dx

dP
dy

remy P, ydP −1
)

.

Using Corollary 1, we can compute in time
O(M(dk) log(k) + M(d)k log(d)) we know two cofac-
tors U and V in K[x, y], of degree less than k in
x such that deg(U, y) < dQ, deg(V, y) < dP and



UP + V Q = xt mod xt+1, with t chosen minimal, so
that t ≤ µ. Then, t ≤ k, since otherwise R = 0 mod xk.

From this, we deduce U ′, V ′ with the same degree con-
straints on y and degree less than 2t + k− 1 in x, such that

U ′P + V ′Q = xt mod x2t+k−1 :

compute W such that UP +V Q = xt(1+xW ) mod x2t+k−1,
then the inverses A (resp. B) of 1+xW modulo 〈Q, x2t+k−1〉
(resp. modulo 〈P, x2t+k−1〉), and let U ′ = UA remy Q and
V ′ = V B remy P . The only non-trivial point is the inver-
sions, which are done by Newton iteration with respect to
x; overall, the cost of this step is O(M(dk)).

The defining equality for U ′ and V ′ can be rewritten as

U ′P + V ′Q = xt(1 + xt+k−1S),

for some S in K[x, y]. Their degree constraints then
show that the inverse of P modulo Q is U ′/(xt(1 +
xt+k−1S)) remy Q; similarly, the inverse of Q modulo P
is V ′/(xt(1 + xt+k−1S)) remy P . This further implies that
xt dR

dx
is equal to

R

(

coeff

(

U ′

1 + xt+k−1S

dP

dx

dQ

dy
remy Q, ydQ−1

)

+ coeff

(

V ′

1 + xt+k−1S

dQ

dx

dP

dy
remy P, ydP −1

))

.

Taking this equality modulo xt+k−1, we obtain a relation of
the form xt dR

dx
= RF mod xt+k−1, with

F = coeff

(

U ′ dP

dx

dQ

dy
remy Q, ydQ−1

)

+ coeff

(

V ′ dQ

dx

dP

dy
remy P, ydP −1

)

mod xt+k−1.

Because P and Q are both monic in y, once U ′ and V ′ are
known, we can compute F using O(M((t + k)d)) operations
in K, which is O(M(kd)).

Recall that R is has the form cxµ + · · ·, for some µ < k, so
that dR

dx
has the form µcxµ−1 + · · ·. Thus, the Laurent series

1
R

dR
dx

has valuation at least −1, so that F has valuation

at least t − 1. Dividing by xt−1 on both sides, we obtain
x dR

dx
= RF̃ mod xk, with F̃ = F/xt−1. From now on, let us

assume that the characteristic p of the base field is at least
equal to k, or zero. Then, this relation determines R mod xk

up to a constant factor, and knowing the initial condition
c allows us to deduce R mod xk unambiguously. Given F̃ ,
this is done by means of [3, Theorem 2], which allows us to
compute R mod xk in O(M(k)) operations in K. Summing
all the costs seen so far concludes the proof of our theorem.
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