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Abstract 

Fatty acid-based bis-cyclic 5-membered carbonates containing amide linkages were prepared from 

methyl 10-undecenoate. The reaction in bulk of these bio-based carbonates with a series of di-amines 

led to poly(hydroxyurethane amide)s with molar masses up to 31 000 g.mol-1. As expected, the so-

formed bio-based thermoplastic poly(hydroxyurethane)s exhibit amorphous to semi-crystalline 

features with respect to the chemical structure of the monomers used.  

 

Introduction 

 

Despite the interest of developing renewable diols (or polyols) 1-4, the use of toxic (poly-) 

isocyanates, manufactured from amine and phosgene, remains a matter to settle in the chemistry of 

polyurethanes.5-8 Therefore, the urge of finding alternative routes for the synthesis of PUs which avoid 

the use of isocyanate is of high importance. Several ways are considered to produce more sustainable 

non isocyanate polyurethanes (NIPU) from vegetable oil derivatives, such as: (i) the ring-opening of 

cyclic carbonates by amines9-11, (ii) the transurethane process12-15 and (iii) the self-condensation 

method based on the Curtius rearrangement in which the AB-type monomer contains both hydroxyl 

and acyl azide groups.16, 17 The reaction of cyclic carbonates with amines has emerged as the most 

promising non-isocyanate route leading to poly(hydroxyurethane)s (PHUs).5, 7, 8 The PHUs present 

specific properties, in comparison to those of classical PUs, notably due to the presence of the 

hydroxyl functions generated along with the polymerization. 

The 5-membered cyclic carbonate can be generated efficiently through functionalization of the 

triglyceride double bonds. The epoxidation/carbonation strategy is a well-known and efficient 

procedure to prepare 5-membered cyclic carbonates from olefins. Research groups have intensely 

investigated poly(hydroxyurethane) networks from carbonated vegetable oils. Only one example of 
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fatty acid-based thermoplastic poly(hydroxyurethane) has been reported so far in the literature.18 

Besides, the vegetable oil-based cyclic carbonates are usually bearing ester groups due to the inherent 

structure of the triglycerides. However, the occurrence of amidation side reactions has been 

demonstrated in some cases.7, 19-21 For instance, Javni et al. clearly demonstrated that during the curing 

of the poly(hydroxyurethane) networks, the amine groups can react with the ester functions to form 

amide linkages.21 Hence, cyclic carbonate compounds without ester linkages would be favored.  

This paper is thus dedicated to the design of novel fatty acid-based bis-cyclic carbonates 

bearing mainly amide linkages in their structure with the idea to prepare non-isocyanate and non-

phosgene thermoplastic poly(hydroxyurethane amide)s with high molar masses and glass transition 

temperatures. FTIR-ATR, NMR, SEC and DSC were performed to investigate the PHUs chemical 

structures, molar masses, thermal properties and thermal stabilities.  

 

Monomer synthesis 

 

To synthesize linear PHUs from fatty acid derivatives, five bis-cyclic carbonates were 

prepared starting from methyl undecenoate by (i) transesterification and/or amidation followed by (ii) 

epoxidation and (iii) carbonation reaction. The Figure 1 illustrates the chemical structures of the 

synthesized bis-cyclic carbonates. The spacers of the cyclic carbonate dimers were of different nature 

so as to design PHUs with different thermal properties. One cyclic carbonate dimer presents two ester 

groups (UndPdE-b5CC) and the others have two amide linkages. Amide functions were introduced 

into the cyclic carbonates owing to their ability to form strong hydrogen bonds and also to replace 

ester functions, which can lead to side reactions during polymerization. Among the diamide bis-cyclic 

carbonates, UndBdA-b5CC is issued from butane-1,4-diamine, which allows the formation of 

hydrogen bonds with the CONH group. In order to obtain diamide bis-cyclic carbonates with lower 

melting point, piperazine (UndPipdA-b5CC), N,N'-dimethylpropane-1,3-diamine (UndPMedA-b5CC) 

and N,N’-dihexyldecane-1,10-diamine (UndDHexdA-b5CC) were used as spacers. As it has been 

reported in literature that internal cyclic carbonates were less reactive than terminal ones 18, methyl 

undecenoate was thus preferred as starting material. The chemical structure of the synthesized cyclic 

carbonates dimers and intermediates were evaluated by 1H and 13C NMR and FTIR-ATR 

spectroscopies. 
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Figure 1- Chemical structures of the synthesized cyclic carbonates dimers. Abbreviations used are as 

follows: [Und = from methyl undecenoate]; [P = propyl, B = butyl, Pip= from piperazine, PMe= 

from N,N'-dimethylpropane-1,3-diamine, DHex= from N,N’-dihexyldecane-1,10-diamine]; [d = di-] 

and [E = ester, A = amide, b5CC=bis 5-membered cyclic carbonate]. 

 

The Scheme 1 illustrates the synthesis of UndBdA-b5CC from methyl undecenoate and 

butane-1,4-diamine (see ESI for the synthesis of UndPdE-b5CC). The syntheses of UndPipdA-b5CC, 

UndPMedA-b5CC and UndDHexdA-b5CC have been carried out in the same way with slight 

variations of the catalyst quantity, the solvent, the temperature and the pressure (see ESI).  

In the specific case of UndDHexdA-b5CC, the N,N’-dihexyldecane-1,10-diamine 

(SebHex-diamine) was first prepared by the reduction of the corresponding diamide, itself obtained 

from sebacoyl chloride and hexylamine. Then, the reaction between SebHex-diamine and methyl 

undecenoate was investigated but no conversion was observed probably due to the lower reactivity of 

the SebHex-diamine. This observation led to the use of more reactive undecenyl chloride instead of 

methyl undecenoate.  

In all cases, the amidation reactions were monitored by means of FTIR-ATR and 1H NMR 

spectroscopies (see ESI). IR spectroscopy of UndBdA showed two absorption bands at 1630 cm-1 and 

1540 cm-1, whereas, as expected, UndPipdA, UndPMedA and UndDHexdA FTIR-ATR spectra 

presents only the amide carbonyl stretching vibration in the range 1650 cm-1- 1640 cm-1. The ester 

carbonyl stretching (O=C-O) of the methyl undecenoate at 1720 cm-1 disappeared during all diamide 

syntheses. The UndBdA displayed also a band at 3295 cm-1 characteristic of N-H stretching vibrations 

(see ESI). When necessary, the diamide was purified by flash chromatography to remove the 

unreacted methyl undecenoate and the monoamide formed.   
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Scheme 1- Synthetic strategy to UndBdA-b5CC from methyl undecenoate, butane-1,4-diamine and 

CO2. 

 

As an example, the stacked 1H NMR spectra of the different steps for the synthesis of 

UndPipdA-b5CC are given in Figure 2. The formation of the amide functions was confirmed in 1H 

NMR, by the appearance of a triplet at 2.32 ppm, corresponding to the protons nearby the (C=O)NH 

group. Moreover, the singlet at 3.66 ppm, which is characteristic of the ester moiety of methyl 

undecenoate, has disappeared.  

 

Figure 2- Stacked 1H NMR spectra of (1) UndPipdA, (2) UndPipdA-bisEpoxide and (3) UndPipdA-

b5CC. (Analyses in CDCl3 at room temperature) 
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The epoxidation reactions of the bis-unsaturated precursors were performed with m-CPBA 

(meta-chloroperoxybenzoic acid) according to the previous literature.18 The reaction progress was 

followed by the disappearance of olefinic protons by 1H NMR spectroscopy. The synthesis of the 

epoxide was attested by the formation of the epoxide characteristic peaks, e.g. multiplets at 2.88 ppm, 

2.73 ppm and 2.45 ppm (protons H6 and H7). After completion of the epoxidation, the reaction 

mixture was then successively washed with aqueous sodium sulfite, aqueous sodium bicarbonate and 

water to remove excess of m-CPBA.  

Various reaction conditions have been used for the carbonation of epoxide. After in-situ FTIR 

investigations to monitor the kinetics of the carbonation reaction,22-24 (See ESI) the following 

procedure has been chosen. After 24 hours, full conversion was attained for all fatty acid-based bis 

epoxides using the following reaction conditions: 80°C / 50 Bar for UndPdE-bisEpoxide, UndPMedA-

bisEpoxide bis-epoxide and UndPipdA-b5CC clearly demonstrates the formation of the cyclic 

carbonate. (See protons H6 and UndDHexdA-bisEpoxide, 135°C / 50 Bar for UndPipdA-bisEpoxide 

and 140°C / 60 Bar for UndBdA-bisEpoxide.  

After carbonation reactions, a band in the range 1795 cm-1 - 1775 cm-1, corresponding to the 

carbonyl vibration of the cyclic carbonate was visible for all synthesized 5-membered cyclic 

carbonates. (See ESI) The formation of the cyclic carbonate was also confirmed by 1H NMR (see ESI) 

For instance, the 1H NMR spectra of UndPipdA-b5CC is given in  Figure 2-(3). (see H6 and H7) 

The purity (when possible) and melting points of the monomers, as well as the HSQC 

(Heteronuclear single quantum coherence)-NMR analysis for UndPipdA-b5CC are given in ESI. 

Amide-containing cyclic carbonates showed higher melting points than UndPdE-b5CC. While 

removing the possibility of H-bond formation and bringing flexibility thanks to pendent groups/chains 

to the spacer, lower melting points were observed. The global yields over the three steps were in 

accordance with green chemistry (see Table 1 in ESI) and syntheses on several grams scale were 

achievable.  

 

Poly(hydroxyurethane amide)s 

 

To prepare a wide range of fatty acid-based isocyanate-free PHUs, the synthesized bis-cyclic 

carbonates were used in polyaddition processes with four diamines; butane-1,4-diamine (4DA), 

isophorone diamine (IPDA), the Priamine 1075 (a dimer of fatty acid from CRODA) and Jeffamine 

400 (an amino-telechelic polyether with a molar mass of 400 g.mol-1). The diamines IPDA, Priamine 

1075 and Jeffamine 400 were used to introduce flexibility in the PHUs, by increasing the free volume 

between the polymer chains. The Scheme 2 illustrates the synthesis of PHUs. First, polymerization 

tests were carried out in solvent, but the reactions were really too slow. Polymerizations were then 

performed in bulk, thus avoiding further treatment to recover the solvent. Thus, polyadditions were 

carried out at a temperature depending on the melting point of the bis-cyclic carbonate used; 140°C 

(for UndBdA-b5CC and UndPipdA-b5CC), 120°C (for UndPMedA-b5CC and UndDHexdA-b5CC) 
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and 70°C or 110°C/120°C for UndPdE-b5CC). The potential catalysis of the reaction was also 

investigated (see ESI) and none of them show dramatic improvement as compared to a catalyst-free 

polymerization.  

Even at high temperature, the blends were not fully homogeneous while using UndBdA-b5CC 

or IPDA, due to the hydrogen bonds and cyclo-aliphatic structure of the monomers used. The 

polymerizations were monitored with FTIR-ATR. PHUs were obtained as brown to yellow viscous to 

solid compounds.  
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Table 1 gives the experimental details along with the abbreviations used for the PHUs, as well 

as the polymerizations results.  

 

Scheme 2- Synthesis of fatty acid-based poly(hydroxyurethane)s 

The polymer chemical structures were assessed by FTIR-ATR and 1H NMR spectroscopies. 

The appearance of bands around 1700 cm-1 and 1540 cm-1, corresponding to the vibrations of C=O-NH 

and CN respectively, attested to the formation of urethane linkage. Besides, a large band attributed to 

the NH and OH vibrations were observed in the region 3660 cm-1- 3120 cm-1. The ester and amide 

moieties of the bis-cyclic carbonate precursor were well-preserved even at high temperature. The 

FTIR-ATR spectra of PHU-BdA-1, PHU-PipdA-1, PHU-PMedA-1 and PHU-DHexdA-1 are given in 

ESI. As illustrated in Figure 3, the synthesis of PHU was assessed by 1H NMR by the formation of a 

clearly visible peak at 3.15 ppm. Besides, the peaks corresponding to the cyclic carbonates decreased 

with conversion. The signals corresponding to the hydroxyl urethanes could be attributed that revealed 

the balanced formation (50:50) of primary and secondary alcohols. As an example, for PHU-PipdA-2, 

the ratio between the formation of primary and secondary alcohols was 43.8:56.2 (see Figure 3). 

Concerning the potential side reaction between the amine and the ester or amide functions, 1H NMR of 

PHU-PipdA-2 testified that no transamidification took place during the polymerization. It can be 

noticed from  
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Table 1 that conversions were relatively fast and reached values of 60%-95% after 5 hours. 

The polymerizations with Priamine 1075 were much faster than with IPDA and Jeffamine, probably 

due to the unhindered character of the amine. 

 

 
Figure 3- Stacked 1H NMR spectra of PHU-PipdA-2. (*) TBABr. (Analyses in CDCl3) 

 

SEC data, which are exposed in  
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Table 1, indicate the formation of PHUs with molar masses in the range 11 000 to 31 000 

g.mol-1. However, the molar mass values provided by SEC should not be taken as absolute values as 

the SEC calibration was carried out in DMF using PS standards. (see ESI for SEC analysis of 

PHU-PMedA-2). The molar mass dispersities were in the range of 1.2 to 2.9. The molar masses data 

given in  
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Table 1 correspond to the main peak observable in SEC. However, in almost all analyses, a 

smaller peak around 4 000 g.mol-1 can be detected and could be attributed to the presence of cycles. 
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Table 1- Molar masses and dispersities of the PHUs from 5-membered cyclic carbonate dimers and 

diamines polymerized in bulk. 

Sample Used b5CC Diamine Temperature (°C) Time 
Conversion 

(%)1 

 (g.mol-1)2 Ɖ 2 

PHU-dE-1 UndPdE-b5CC 4DA 70 1d 95.1 25 400 1.6 

    3d 95.6 29 800 1.8 

    7d 96.4 30 400 2.5 

PHU-BdA-1 UndBdA-b5CC IPDA 140 5h 64.1 15 300 1.3 

    13d 97.6 18 900 2.4 

PHU-BdA-2  priamine 140 5h 97.6 14 900 1.5 

PHU-BdA-3  Jeffamine 140 5h 84.3 14 600 1.3 

    6d 98.9 20 900 2.6 

PHU-PipdA-1 UndPipdA-b5CC IPDA 140 5h 76.3 16 500 1.5 

    1d 87.0 18 200 1.5 

PHU-PipdA-2  priamine 140 5h 91.9 19 300 1.7 

    1d 93.2 19 200 1.7 

PHU-PipdA-3  Jeffamine 140 5h 46.7 11 200 1.2 

    3d 91.5 23 300 2.9 

PHU-PMedA-1 UndPMedA-b5CC IPDA 120 5h 53.5 11 000 1.2 

    12d 91.5 31 100 2.2 

PHU-PMedA-2  priamine 120 5h 87.6 mm3 mm3 

    6d 94.4 28 700 1.7 

PHU-PMedA-3  Jeffamine 120 5h 12.4 mm3 mm3 

    6d 84.1 20 700 1.4 

PHU-DHexdA-1 UndDHexdA-

b5CC 

IPDA  120 1d ns ns ns 

PHU-DHexdA-2  priamine 120 1d nd nd nd 

PHU-DHexdA-3  Jeffamine 120 1d nd nd nd 

PHU-DHexdA-4  4DA 120 1d nd nd nd 

(1) Calculated by FTIR-ATR using the equation: , where x, t, HCC and HAd are the conversion, 

the time, the height of the peaks corresponding to the cyclic carbonate and amide (or ester) carbonyls respectively. (2) SEC in 

DMF with 1 wt% LiBr - calibration PS standards. The analyses were performed on the soluble fraction. The given data 

correspond to the main peak in SEC. The results presented here are for the fraction at 5h and for the best molar masses 

fraction or the last soluble fraction observed for each sample. (3) Highly multi modal molar masses. ns=not soluble and 

nd=not determined. 

The fatty acid-based cyclic carbonate dimers demonstrate low reactivity, even at high 

temperatures. Indeed cyclic carbonates are known to be stabilize by the +I inductive effect of the alkyl 

chain. 25, 26 Thus, no full conversions were achieved even after long polymerization times. Moreover, 

after long times at high temperature, side reactions started to occur. In FTIR-ATR, those side reactions 

could be attributed to ester or dialkyl carbonate formation. (see ESI for PHU-PMedA-2) The 

appearance of side reactions are in good agreement with slight decreases of the molar masses and of 

the glass transition temperatures. (see ESI). 
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Thermal properties 

 

The thermal properties of the synthesized PHUs are well correlated with their chemical 

structure. Table 2 summarized the glass transition and melting temperatures of the PHUs. Amorphous 

PHUs were obtained with UndPipdA-b5CC, UndPMedA-b5CC and UndDHexdA-b5CC. The cyclic 

structure of the spacer of UndPipdA-b5CC led to higher Tg. Moreover, the longer the alkyl dangling 

group or chain, the lower the glass transition. (See PHU-PipdA-1, PHU-PMedA-1 and PHU-DHexdA-

1 in Figure 4) The use of a cyclic aliphatic amine induced the formation of a PHU with a glass 

transition temperature of 39.9°C. However, while using Priamine, a lower glass transition temperature 

(2.4°C) was obtained. Indeed, the resulting dangling chains in the polymer backbone, plasticizes the 

so-formed PHU. The PHU-BdA-3 with Jeffamine (400 g.mol-1) as a co-monomer reached an even 

lower glass transition of -21°C, which can be explained by the polyether nature of the Jeffamine. 

 

Table 2- Thermal properties of the synthesized PHUs. 

Sample Time Tg (°C)1 Tm (°C) 1 

PHU-dE-1 1 d -17 - 

PHU-BdA-1 13 d 40 1152 

PHU-BdA-2 6 d 2 115 

PHU-BdA-3 6 d -21 109 

PHU-PipdA-1 6 d 55 - 
 

PHU-PipdA-2 1 d -2 - 

PHU-PipdA-3 6d -15 - 

PHU-PMedA-1 6 d 32 - 

PHU-PMedA-2 1 d -4 - 

PHU-PMedA-3 6 d -17 - 

PHU-DHexdA-1 6 d 3 - 

PHU-DHexdA-2 1 d -18 - 

PHU-DHexdA-3 6 d -29 - 

PHU-DHexdA-4 1 d -13 - 

(1) Determined by DSC at 10°C.min-1. (2) With crystallization upon heating. 
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Figure 4- DSC traces of amorphous PHU-PipdA-1, PHU-PMedA-1 and PHU-DHexdA-1. 

With UndBdA-b5CC as a co-monomer, the PHUs obtained were semi-crystalline in nature. 

The presence of hydrogen bonds from the amide linkages of UndBdA-b5CC favored interactions 

between polymer chains and thus the crystallization of the resulting PHUs. The effect of the chemical 

structure of the diamine can be observed in Figure 5 with UndBdA-b5CC. Figure 5 shows the DSC 

traces of the semi-crystalline PHUs based on UndBdA-b5CC with various diamines. 

 

 

Figure 5- DSC thermograms after second heating of semi-crystalline PHU-BdA-1, PHU-BdA-2 and 

PHU-BdA-3. 

 

Experimental methods 

 

Synthesis and characterizations of cyclicarbonates and their 

polyyhydroxyurethane 

 

1- Transesterification and amidation reactions 

 

Transesterification step. Methyl undecenoate (20 g, 101 mmol), propanediol (3.8 g, 50 mmol), TBD 

(702 mg, 5 mmol) (1: 0.5: 0.05) were stirred under nitrogen flow at 120°C (4h), at 160°C (2h) then 
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under vacuum at 160°C (30 min). The reaction mixture was dissolved in ethyl acetate (200 mL) and 

washed with water (3 x 50 mL). The organic layer was dried over anhydrous sodium sulfate, filtered 

and solvent was removed on rotary evaporator. Yield=73%. UndPdE: 1H NMR (CDCl3, 25°C, 400 

MHz) δ (ppm): 5.78 (m, 2H), 4.93 (m, 4H), 4.12 (t, 4H), 2.27 (t, 4H), 2.02 (m, 4H), 1.93 (m, 2H), 1.59 

(m, 4H), 1.34 (m, 4H), 1.26 (m, 16H). IR (cm-1): 2924, 2853, 1735, 1161, 906. 

 

Amidation step. The diamides were prepared with different method according to the chemical structure 

of the diamine. 

Methyl undecenoate (20 g, 101 mmol), butane-1,4-diamine (4.4 g, 50 mmol) and TBD (702 mg, 5 

mmol) (1: 0.5: 0.05) were stirred under nitrogen flow at 120°C (4h) then at 160°C (2h). The reaction 

flask was cooled down at 90°C and NMP (60 mL) was added to end up with an homogeneous phase. 

The required UnddA was slowly precipitated by reaching room temperature. A filtration and washes 

with methanol were performed. Yield=83%. UndBdA: 1H NMR (CDCl3, 50°C, 400 MHz) δ (ppm): 

5.79 (m, 2H), 4.98 (m, 4H), 3.26 (m, 4H), 2.15 (t, 4H), 1.99 (m, 4H), 1.65 (m, 4H), 1.53 (m, 4H), 1.40 

(m, 4H), 1.32 (m, 16H). IR (cm-1): 3295, 2918, 2847, 1630, 1537. 

For UndPipdA and UndPMedA diamides, the amidation reactions were as followed. Methyl 

undecenoate, diamine and TBD (1: 0.5: 0.05) were stirred in a round-bottom flask equipped with a 

bubbling system under inert atmosphere at 100°C (2h), then under nitrogen flow at 120°C (4h) and at 

160°C (2h). The diamides were purified by column chromatography and obtained as a yellow viscous 

liquid. 

UndPipdA: Methyl undecenoate (20 g, 101 mmol), piperazine (4.3 g, 50 mmol) and TBD (702 mg, 5 

mmol). UndPipdA was purified by column chromatography to eliminate completely the monoamide 

(eluent: cyclohexane / ethyl acetate with increasing percentage of ethyl acetate from 20% to 60%). 

Yield = 68.2%. 1H NMR (CDCl3, 25 °C, 400 MHz) δ (ppm): 5.79 (m, 2H), 4.94 (m, 4H), 3.62 (m, 

4H), 3.44 (m, 4H), 2.32 (t, 4H), 2.03 (m, 4H), 1.63 (m, 4H), 1.35-1.29 (m, 20H). IR (cm-1): 2918, 

2847, 1650, 906. 

UndPMedA: Methyl undecenoate (20 g, 101 mmol), N,N'-dimethylpropane-1,3-diamine (5.2 g, 50 

mmol) and TBD (702 mg, 5 mmol). UndPMedA was purified by column chromatography to eliminate 

completely the monoamide (eluent: heptane / ethyl acetate with increasing percentage of ethyl acetate 

from 20% to 60%). Yield = 79.3%. 1H NMR (CDCl3, 25 °C, 400 MHz) δ (ppm): 5.80 (m, 2H), 4.95 

(m, 4H), 3.35-3.25 (m, 4H), 2.98-2.89 (s, 6H), 2.26 (m, 4H), 2.01 (m, 4H), 1.75 (m, 2H), 1.59 (m, 4H), 

1.34-1.28 (m, 20H). IR (cm-1): 2924, 2850, 1639, 906. 

 

Concerning the preparation of UndDHexdA, the diamine (SebHex-diamine) used as central block was 

synthesized in a first step, and then the amidation was performed. The SebHex-diamine was obtained 

by the reduction of the corresponding diamide issued from sebacoyl chloride and hexylamine. 

Hexylamine (9 g, 86.4 mmol, 2.05 eq.), triethylamine (20.7 mL, 143.3 mmol, 3.41 eq.), then 

chloroform (125 mL) were introduced in a round-bottom flash. Afterwards, the sebacoyl chloride (10 

g, 42 mmol, 1 eq.) was added dropwise. The formation of a white precipitate due to the generation of 
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triethylamine hydrochloride salt revealed the progress of the reaction. After filtration and washes with 

hot water, the organic phase was dried over anhydrous sodium sulfate, filtered and the chloroform was 

removed on rotary evaporator. After drying, the diamide was reduced by LiAlH4 (3 eq. per function) in 

dried THF under reflux overnight. Then, an aqueous solution of potassium sodium tartrate at 1 mol.L-1 

(200mL) was added to the reaction mixture placed into an ice bath. The SebHex-diamine was 

recovered after filtration followed by extraction of the filtrate with ethyl acetate. SebHex-diamine was 

purified by column chromatography (eluent: ethyl ether / methanol with increasing percentage of 

methanol from 0% to 31%). Yield = 84.6%. SebHex-diamine: 1H NMR (CDCl3, 25 °C, 400 MHz) δ 

(ppm): 2.57 (1, 8H), 1.46 (m, 8H), 1.27 (m, 24H), 0.81 (t, 6H). 

To SebHex-diamine (8.4 g, 25 mmol), dried THF (100 mL) and triethylamine (5.5 g, 55 mmol, 1.1 

eq.) were added. Then undecenyl chloride (10 g, 49 mmol) was added dropwise. The reaction mixture 

was then stired at room temperature for 2 hours. UndDHexdA was purified by filtration of the formed 

salt, followed by column chromatography to eliminate completely the monoamide (eluent: heptane / 

ethyl acetate (95/5)). Yield = 91.3%. UndDHexdA: 1H NMR (CDCl3, 50°C, 400 MHz) δ (ppm): 5.80 

(m, 2H), 4.94 (m, 4H), 3.27 (m, 4H), 3.19 (m, 4H), 2.27 (t, 4H), 2.02 (m, 4H), 1.62 (m, 4H), 1.51 (m, 

8H), 1.36-1.28 (m, 40H), 0.88 (m, 6H). IR (cm-1): 2924, 2851, 1642, 906. 

 

2- Epoxidation reaction 

 

The diester or diamide and m-CPBA (3 eq. and 4.5 eq. for UndBdA) were stirred at room temperature 

in DCM (20mL/g of product) or chloroform (for UndBdA). After 1 day, the conversion of the double 

bonds, monitored by 1H NMR spectroscopy, were in the range 84% to 100%. The reaction mixture 

was then thoroughly washed with aqueous Na2SO3 (3 x 50 mL), aqueous NaHCO3 (4 x 50 mL) and 

water (4 x 50 mL) until neutral pH. The organic layer was dried over anhydrous sodium sulfate filtered 

and solvent was remove on rotary evaporator to obtain the bis epoxides. 

UndPdE-bisEpoxide: UndPdE (17 g, 42 mmol) and m-CPBA (21.5 g, 125 mmol, 3 eq.). The purity of 

UndPdE-bisEpoxide (92.8%) was determined by GC-FID. Yield=95.9%. 1H NMR (CDCl3, 25°C, 400 

MHz) δ (ppm): 4.12 (t, 4H), 2.90 (m, 2H), 2.74 (t, 2H), 2.45 (m, 2H), 2.29 (t, 4H), 1.95 (m, 2H), 1.61 

(m, 4H), 1.51 (m, 4H), 1.44 (m, 4H), 1.30 (m, 16H). IR (cm-1): 2927, 2856, 1732, 1161. 

UndBdA-bisEpoxide: UndBdA (12.7 g, 30 mmol) and m-CPBA (23.4 g, 136 mmol, 4.5 eq.). The 

purity of UndBdA-bisEpoxide (80.4%) was determined by GC-FID. Yield=97%. 1H NMR (CDCl3, 

25°C, 400 MHz) δ (ppm): 5.79 (s, 2.NH), 3.26 (m, 4H), 2.89 (m, 2H), 2.74 (t, 2H), 2.46 (m, 2H), 2.16 

(t, 4H), 1.71 (m, 4H), 1.61-1.53 (m, 12H), 1.31 (m, 16H). IR (cm-1): 3292, 2912, 2851, 1631, 1537. 

UndPipdA-bisEpoxide: UndPipdA (13.2 g, 31 mmol) and m-CPBA (16.3 g, 95 mmol, 3 eq.). The 

purity of UndPipdA-bisEpoxide (97.9%) was determined by GC-FID. Yield=84.5%. 1H NMR (CDCl3, 

25 °C, 400 MHz) δ (ppm): 3.61 (m, 4H), 3.45 (m, 4H) ,2.88 (m, 2H), 2.73 (t, 2H), 2.45 (m, 2H), 2.32 

(t, 4H), 1.61 (m, 4H), 1.49-1.44 (m, 8H), 1.34-1.30 (m, 16H). IR (cm-1): 2913, 2848, 1651. 

UndPMedA-bisEpoxide: UndPMedA (20 g, 46 mmol) and m-CPBA (23.8 g, 138 mmol, 3 eq.). The 

purity of UndPMedA-bisEpoxide (93.9%) was determined by GC-FID. Yield=83.9%. 1H NMR 
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(CDCl3, 25 °C, 400 MHz) δ (ppm): 3.37 (m, 4H), 3.00-2.92 (s, 6H), 2.90 (m, 2H), 2.75 (t, 2H), 2.46 

(m, 2H), 2.31 (m, 4H), 1.79 (m, 2H), 1.61 (m, 4H), 1.51 (m, 4H), 1.42 (m, 4H), 1.29 (m, 16H). IR (cm-

1): 2924, 2854, 1639. 

UndDHexdA-bisEpoxide: UndDHexdA (10 g, 15 mmol) and m-CPBA (7.7 g, 44 mmol, 3 eq.). 

Yield=54.4%.  1H NMR (CDCl3, 25 °C, 400 MHz) δ (ppm): 3.28 (m, 4H), 3.19 (m, 4H), 2.89 (m, 2H), 

2.73 (t, 2H), 2.46 (m, 2H), 2.27 (t, 4H), 1.62 (m, 4H), 1.43 (m, 16H), 1.31 (m, 40H), 0.88 (m, 6H). IR 

(cm-1): 2924, 2853, 1637. 

 

3- Synthesis of 5-membered cyclic carbonates 

 

The bis-epoxide was first pre-mixed with TBABr (3 wt%). Then the mixture was placed in a reactor 

and heated up at the selected temperature (80°C for UndPdE-bisEpoxide, UndPMedA-bisEpoxide and 

UndDHexdA-bisEpoxide, 135°C for UndPipdA-bisEpoxide and 140°C for UndBdA-bisEpoxide). 

Once the temperature got stabilized, CO2 was slowly introduced into the reactor until 50 Bar or 60 Bar 

in the case of UndBdA-bisEpoxide. After 24 hours, the reactor was cooled down to room temperature 

and slowly depressurized to the atmospheric pressure. All the 1H NMR of all products revealed  

quantitative conversion by the disappearance of the protons of the epoxide. 

UndPdE-CC: UndPdE-bisEpoxide (3 g, 6.8 mmol) and TBABr (0.09 g, 0.28 mmol, 3 wt%). The 

purity of UndPdE-bisEpoxide (99.1%) was determined by SEC. Yield=97%. 1H NMR (CDCl3, 25°C, 

400 MHz) δ (ppm): 4.68 (m, 2H), 4.50 (t, 2H), 4.11 (t, 4H), 4.04 (t, 2H), 2.27 (t, 4H), 1.94 (m, 2H), 

1.76 (m, 2H), 1.66 (m, 2H), 1.58 (m, 4H), 1.45 (m, 4H), 1.28 (m, 16H). 13C NMR (CDCl3, 25°C, 100 

MHz) δ (ppm): 173.81 (COO), 155.20 (OCOO), 77.21 (CH-OCOO), 69.51 (CH2-OCOO), 60.93 

(CH2-OCO), 34.28 (CH2-COO), 33.95 (CH2-CH-OCOO), 29.21-29.13 (CH2), 28.10 (CH2-CH2-OCO), 

24.94 (CH2-CH2-COO), 24.44 (CH2-CH2-CH-OCOO). IR (cm-1): 2927, 2856, 1792, 1727, 1163. 

UndBdA-b5CC: UndBdA-bisEpoxide (3 g, 6.6 mmol) and TBABr (0.09 g, 0.28 mmol, 4.5 wt%). 

Yield=95%.  1H NMR (CDCl3,, 25°C, 400 MHz) δ (ppm): 5.83 (s, 2.NH), 4.70 (m, 2H), 4.53 (t, 2H), 

4.06 (t, 2H), 3.26 (m, 4H), 2.16 (t, 4H), 1.78 (m, 2H), 1.62 (m, 6H), 1.53 (m, 4H), 1.47 (m, 4H), 1.30 

(m, 16H). 13C NMR (CDCl3, 25°C, 100 MHz) δ (ppm): 173.81 (CONH), 155.27 (OCOO), 77.22 (CH-

OCOO), 69.54 (CH2-OCOO), 39.20 (CH2-NHCO), 36.65 (CH2-CONH), 33.94 (CH2-CH-OCOO), 

29.17 (CH2), 26.91 (CH2-CH2-NHCO), 25.84 (CH2-CH2-CONH), 24.43 (CH2-CH2-CH-OCOO). IR 

(cm-1): 3309, 2918, 2850, 1778, 1637, 1535. 

UndPipdA-b5CC: UndPipdA-bisEpoxide (5 g, 11.1 mmol) and TBABr (0.15 g, 0.46 mmol, 3 wt%). 

Yield=98%. 1H NMR (CDCl3, 25 °C, 400 MHz) δ (ppm): 4.69 (m, 2H), 4.51 (t, 2H), 4.06 (t, 2H), 3.62 

(m, 4H), 3.45 (m, 4H) , 2.32 (t, 4H), 1.76 (m, 2H), 1.70-1.63 (m, 8H), 1.47 (m, 2H), 1.31 (m, 16H). 

13C NMR (CDCl3, 25°C, 100 MHz) δ (ppm): 172.00 (C=O-N), 155.15 (OCOO), 77.12 (CH-OCOO), 

69.47 (CH2-OCOO), 45.41 and 41.61 ((CH2)2-N-C=O), 33.93 (CH2-CH-OCOO), 33.29 (CH2-C=O-N), 

29.25 (CH2), 25.20 (CH2-CH2-C=O-N), 24.42 (CH2-CH2-CH-OCOO). IR (cm-1): 2915, 2847, 1775, 

1628. 
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UndPMedA-b5CC: UndPMedA-bisEpoxide (5 g, 10.7 mmol) and TBABr (0.15 g, 0.46 mmol, 

3 wt%). The purity of UndPMedA-bisEpoxide (88.6%) was determined by GC-FID. Yield=96%. 1H 

NMR (CDCl3, 25 °C, 400 MHz) δ (ppm): 4.69 (m, 2H), 4.51 (t, 2H), 4.05 (t, 2H), 3.34-3.27 (m, 4H), 

2.98-2.89 (s, 6H), 2.27 (m, 4H), 1.79 (m, 6H), 1.61 (m, 6H), 1.47 (m, 2H), 1.30 (m, 16H). 13C NMR 

(CDCl3, 25°C, 100 MHz) δ (ppm): 173.12 (CONCH3), 155.20 (OCOO), 77.16 (CH-OCOO), 69.51 

(CH2-OCOO), 47.76-45.50 (CH2-NCH3CO), 35.51-33.08 (NCH3CO), 33.92 (CH2-CH-OCOO), 33.65-

33.38 (CH2-CONCH3), 29.52-24.46 (CH2), 26.53 (CH2-CH2-NCH3CO). IR (cm-1): 2913, 2847, 1787, 

1631. 

UndDHexdA-b5CC: UndDHexdA-bisEpoxide (3 g, 4.2 mmol) and TBABr (0.09 g, 0.28 mmol, 3 

wt%). Yield=88.7%.  1H NMR (CDCl3, 25 °C, 400 MHz) δ (ppm): 4.67 (m, 2H), 4.50 (t, 2H), 4.04 (t, 

2H), 3.25 (m, 4H), 3.17 (m, 4H), 2.24 (t, 4H), 1.75 (m, 2H), 1.65-1.60 (m, 6H), 1.45 (m, 12H), 1.29 

(m, 40H), 0.87 (m, 6H). 13C NMR (CDCl3, 25°C, 100 MHz) δ (ppm): 173.10 (CONCH3), 155.14 

(OCOO), 76.97 (CH-OCOO), 69.27 (CH2-OCOO), 47.73-45.56 (CH2-NCO), 33.59 (CH2-CH-OCOO), 

32.77 (CH2-CON), 31.27-22.30 (CH2), 13.78 (CH3). IR (cm-1): 2924, 2854, 1795, 1634. 

 

Polymer synthesis and characterizations 

 

The bis 5-membered cyclic carbonates (UndPdE-b5CC, UndBdA-b5CC, UndPipdA-b5CC, 

UndPMedA-b5CC and UndDHexdA-CC) and the diamines (butane-1,4-diamine (4DA), isophorone 

diamine (IPDA), Jeffamine 400 g.mol-1, CRODA diamine) were weighted in a test tube. The 

polymerization reactions were conducted in bulk under static nitrogen. The mixture was stirred at the 

selected temperature: 140°C (for UndBdA-b5CC and UndPipdA-b5CC), 120°C (for UndPMedA-

b5CC and UndDHexdA-b5CC) and 70°C or 110°C/120°C for UndPdE-b5CC. No catalysts were 

added for the polymerization reactions. 

PHU-dE-1 [UndPdE-b5CC+4DA] : 3655-3127, 2924, 2854, 1714-1691, 1528. 

PHU-BdA-1 [UndBdA-b5CC+IPDA] : 3536-3132, 2922, 2852, 1700, 1642, 1539. 

PHU-DHexdA-1 [UndDHexdA-b5CC+IPDA] : 3595-3128, 2922, 2852, 1713, 1626, 1535. 

 

Kinetic experiments monitored by FTIR-ATR of the cyclic carbonate-

amine reaction 

 

The kinetic experiments were performed in bulk at 25°C with a ratio 1:1 between the propylene 

carbonate and hexylamine, using 5 mol% of catalyst. For some experiments, higher temperature 

(80°C) was also investigated. For instance; propylene carbonate (5CC) (0.25 g, 2.4 mmol) and MTBD 

(18.7 mg, 0.12 mmol, 5 mol%) were weighted in a test tube. Then, hexylamine (0.25 g, 2.4 mmol) was 

added to the reaction mixture. The reaction was monitored with FTIR-ATR spectroscopy with the 

disappearance of the carbonyl band of the cyclic carbonate. Two isomers are obtained; one with a 

primary alcohol (isomer OH-I) and one with a secondary alcohol (isomer OH-II). 
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PCC+hexylamine-isomer OH-II: 1H NMR (CDCl3, 25°C, 400 MHz) δ (ppm): 4.97 (NH), 4.05 

(m, 1H), 3.98 (m, 1H), 3.91 (m, 1H), 3.14 (m, 2H), 1.47 (m, 2H), 1.27 (m, 6H), 1.15 (d, 3H), 0.86 (t, 

3H). 13C NMR (CDCl3, 25°C, 100 MHz) δ (ppm): 156.98 (OCONH), 72.69 (CH-OCONH), 66.52 

(CH2-OH), 41.17 (CH2-NHCOO), 29.94 (CH2-CH2-NHCOO), 31.54-22.64 (CH2), 16.70 (CH3-CH-

OCONH), 14.08 (CH2-CH3). IR (cm-1): 3321, 2929, 2856, 1687, 1533. 

PCC+hexylamine-isomer OH-I: 1H NMR (CDCl3, 25°C, 400 MHz) δ (ppm): 4.97 (NH), 4.85 

(m, 1H), 3.63-3.55 (m, 2H), 3.14 (m, 2H), 1.47 (m, 2H), 1.27 (m, 6H), 1.17 (d, 3H), 0.86 (t, 3H). 13C 

NMR (CDCl3, 25°C, 100 MHz) δ (ppm): 156.98 (OCONH), 70.21 (CH2-OCONH), 66.61 (CH-OH), 

41.17 (CH2-NHCOO), 29.94 (CH2-CH2-NHCOO), 31.54-22.64 (CH2), 19.17 (CH3-CH-OH), 14.08 

(CH2-CH3). IR (cm-1): 3321, 2929, 2856, 1687, 1533. 

 

Conclusions 

 

Various fatty acid-based 5-membered cyclic carbonate dimers bearing ester or amide linkages 

have been synthesized following a three-step procedure. The first stage was the transesterification or 

the amidation of methyl undecenoate. Then, the cyclic carbonates were introduced by epoxidation of 

the double bonds and subsequent carbonation with CO2. Amorphous to semi-crystalline 

poly(hydroxyurethane)s with reasonable molar masses (31 000 g.mol-1) have been achieved. The 

tailor-made bio-based thermoplastic poly(hydroxyurethane)s properties are those expected when using 

cyclic carbonate dimers and diamines structures. Indeed, the presence of ester or amide functions, of 

hydrogen bonds through amide linkages and of cyclic structures or pendant groups or alkyl chains 

were found to drastically modify the PHUs properties.  
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1- Materials 

 

Methyl 10-undecenoate (>96.0%), butane-1,4-diamine (4DA, 99%) and 1,3-bis[3,5-

bis(trifluoromethyl)phenyl]thiourea (Schreiner catalyst, >98%) were supplied by TCI, Europe. The 

1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD, 98%), 3-chloroperbenzoic acid (≤77%), 

tetrabutylammonium bromide (TBABr, >98%) and poly(propylene glycol) bis(2-aminopropyl ether) 

(Jeffamine, �̅�n=400 g.mol-1) were obtained from Sigma-Aldrich. The 1,3-propanediol (99%), 

dimethyl, piperazine (Pip, anhydrous, 99%), N,N'-dimethylpropane-1,3-diamine (PMe, 97%), sebacoyl 

chloride (97%) and 1,4-butanediol (99%) were purchased from Alfa Aesar. Isophorone diamine 

(IPDA, >99%) was obtained from Fisher. The dimer fatty acid-based diamine (Priamine 1075) was 

purchased from CRODA. The catalyst 1-methyl-3-methylimidazolium iodide salt (MMII) was 

purchased from Solvionic and the 1,5,7-triaza-bicyclo[4.4.0]dec-5-enium bromide (TBD.HBr) was 

synthesized by our partners from the research group of Landais and coll. (S. Foltran, J. Alsarraf, F. 

Robert, Y. Landais, E. Cloutet, H. Cramail and T. Tassaing, Catalysis Science & Technology, 2013, 3, 

1046-1055.) All products and solvents (reagent grade) were used as received except otherwise 

mentioned. The solvents were of reagent grade quality and were purified wherever necessary 

according to the methods reported in the literature. 

 

2- Measurements 

 

2.1- Nuclear Magnetic Resonance (NMR) analysis 

1H and 13C-NMR spectra were recorded on Bruker Avance 400 spectrometer (400.20 MHz or 400.33 

MHz and 100.63 MHz for 1H and 13C, respectively) by using CDCl3 as a solvent at room temperature, 

except otherwise mentionned. Two-dimensional analyses such as 1H-1H COSY (Homonuclear 

correlation Spectroscopy) and 1H-13C HSQC (Heteronuclear single quantum coherence) were also 

performed on the monomers.  

 

2.2- Fourier Transformed Infra-Red-Attenuated Total Reflection (FTIR-ATR) 

Infrared spectra (FTIR-ATR) were obtained on a Bruker-Tensor 27 spectrometer, equipped with a 

diamond crystal, using the attenuated total reflection mode. The spectra were acquired using 16 scans 

at a resolution of 4 wavenumbers. 



 

  3 

 

2.3- Kinetic experiments monitored by in-situ FTIR of the carbonation reaction (ISM) 

 

The in situ infrared absorption measurements were performed at the Institut des Sciences moléculaires 

(ISM) on a Biorad interferometer (type FTS-60A) equipped with a globar as the infrared source, a 

KBr/Ge beam splitter and a DTGS (deuterated triglycine sulfate) detector in order to investigate the 

spectral range 400–6000 cm-1. Single beam spectra recorded with a 2 cm-1 resolution were obtained 

after the Fourier transformation of 50 accumulated interferograms. The kinetic studies of the 

carbonation reaction were performed using the ISM home-made stainless steel cell equipped with two 

cylindrical germanium windows with a path length of 100 µm in order to measure the infrared spectra 

in the wavenumber range extending from 700 to 5000 cm-1. Heating was achieved by using four 

cartridge heaters distributed throughout the body of the cell. Two thermocouples were used, the first 

one located close to a cartridge heater for the temperature regulation and the second one close to the 

sample area to measure the temperature of the sample with an accuracy of about 2°C.  The cell was 

connected via a stainless steel capillary to a hydraulic pressurizing system which allows the pressure 

to be raised up to 50 MPa with an absolute uncertainty of ± 0.1 MPa and a relative error of ±0.3%. 

 

2.4- Size exclusion chromatography (SEC) 

SEC analyses of PUs were performed in DMF (80°C) on a PL-GPC 50 plus Integrated GPC from Polymer 

laboratories-Varian with a series of three columns from Polymer Laboratories (PLgel: PLgel 5µm 

Guard (guard column 7.5 mm ID x 5.0 cm L); PLgel 5µm MIXED-D (7.5 mm ID x 30.0 cm L) and PLgel 

5µm MIXED-D (7.5 mm ID x 30.0 cm L)). The elution times of the filtered samples were monitored 

using RI detectors. 

 

2.5- Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry (DSC) thermograms were measured using a DSC Q100 apparatus 

from TA instruments. For each sample, two cycles from -50 to 160 °C (or 200 °C for higher melting 

point polyurethanes) at 10 °C.min-1 were performed and then the glass transition and crystallization 

temperatures were calculated from the second heating run.  
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3- Graphical data 

 

 

 

ESI Scheme 1- Synthetic pathway to UndPdE-b5CC from methyl undecenoate, 1,3-propanediol and 

CO2. 

 

 

 
ESI Figure 1- Stacked FTIR-ATR spectra of (1) Methyl undecenoate, (2) UndBdA, (3) UndBdA-

bisEpoxide and (4) UndBdA-b5CC. 
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ESI Figure 1- Stacked FTIR-ATR spectra of (1) Methyl undecenoate, (2) UndPipdA, (3) UndPipdA-

bisEpoxide and (4) UndPipdA-b5CC. 

 

 

 

ESI Figure 3- Stacked FTIR spectra of the carbonation reaction of UndPdE-bisEpoxide at 80°C with 

50 Bar of CO2 and 3 wt% TBABr (1) at 10 min and 48 hours and (2) at different reaction times with a 

focus between 900 cm-1 and 700 cm-1. 

  

(2) (1) 
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ESI Figure 2- Evolution of the absorbance of the band at 775 cm-1 during the carbonation reaction of 

UndPdE-bisEpoxide at 80°C with 50 Bar of CO2 and 3 wt% catalyst. 

 

 

 

ESI Figure 5- Stacked FTIR-ATR spectra of (1) UndPdE-b5CC, (2) UndBdA-b5CC, (3) UndPipdA-

b5CC, (4) UndPMedA-b5CC and (5) UndDHexdA-b5CC. 
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ESI Figure 6- Stacked 1H NMR spectra of (1) UndPdE-b5CC, (2) UndBdA-b5CC and (3) UndPipdA-

b5CC, (4) UndPMedA-b5CC and (5) UndDHexdA-b5CC. (*) TBABr. (Analyses in CDCl3) 
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ESI Figure 7- 1H NMR of UndPMedA-b5CC at 25°C (in CDCl3), 60°C, 80°C and 90°C. (in DMSO-

d6) 

 

 

ESI Table 1- Characterizations of the synthesized bis cyclic carbonates.  

Synthesized b5CC Total yield (%) %purity  Tm (°C) 3 

UndPdE-b5CC 68 99.11 L 

UndBdA-b5CC 76 nd 137.4 

UndPipdA-b5CC 56 nd 132.6 

UndPMedA-b5CC 64 88.6 2 102.54 

UndDHexdA-b5CC 44 nd L 

(1) Determined by SEC, (2) Determined by GC-FID and (3) Determined  by DSC 10°C/min under N2, (4) Crystallization 

while heating, nd=not determined, L=liquid at room temperature. 
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ESI Figure 8- 1H-13C HSQC-NMR of UndPipdA-b5CC. (Analysis in CDCl3) 

 

 

ESI Figure 9- Stacked FTIR-ATR spectra of PHU-BdA-1, PHU-PipdA-1, PHU-PMedA-1 and PHU-

DHexdA-1. 

 

 
ESI Figure 10- SEC analysis of PHU-PMedA-2 (SEC in DMF with 1 wt% LiBr - calibration PS 

standards). 
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ESI Figure 11- FTIR-ATR evidence of the presence of side reactions during the polymerization in bulk 

at high temperature of PU-PMedA-2. 

 

ESI Table 2- Decrease of the molar mass and of the glass transition temperature during the 

polymerization in bulk at high temperature of PU-PMedA-2. 

Time (d) �̅�n (g.mol-1) �̅�w (g.mol-1) Ɖ Tg (°C) 

1d 28 100 41 400 1.47 -4.5 

6d 28 700 47 500 1.66 nd 

15d 17 200 27 800 1.61 -11.5 

SEC in DMF with 1 wt% LiBr - calibration PS standards. 

 

 

ESI Scheme 2- Model reaction of propylene carbonate and hexylamine as well as the various catalysts 

used. 
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ESI Figure 12- 1H NMR of the reaction between propylene carbonate and hexylamine without catalyst 

at RT after 11 days. (Analysis in CDCl3) 

 

 

ESI Figure 13- Kinetic data of the model reaction with various catalysts at 25°C in bulk. 
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ESI Figure 14- Kinetic data of the model reaction with Schreiner catalyst at 25°C and 80°C in bulk. 

 

 

ESI Table 3- Analyses of the reactions between 5CCMe and hexylamine with different catalysts in bulk 

at RT. 

Catalyst used Catalyst quantity (mol%) Ratio OH I : OH 

II1 No / 58:42 

DMAP  5 57 :43 

MTBD 5 58 :42 

ZnAc 5 60 :40 

DBU  5 53 :47 

LiCl 5 58 :42 

Schreiner catalyst 5 59 :41 

Schreiner catalyst + MTBD 5+5 57 :43 

Schreiner catalyst + DBU 5+5 50 :50 

(1) Calculated by 1H NMR using the equation: % 𝑂𝐻 𝐼 =
𝐼𝑂𝐻 𝐼

𝐼𝑂𝐻 𝐼+ 𝐼𝑂𝐻 𝐼𝐼
∗ 100, where % OH I, IOH I and IOH II are the % of the 

product with primary hydroxyl and the integrations of the peaks corresponding to the product with primary and secondary 

hydroxyl respectively. 

 


