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ABSTRACT Based on a general symmetry analysis, this paper presents an empirical tight-

binding (TB) model for the reference Pm-3m perovskite cubic phase of halide perovskites of 

general formula ABX3. The TB electronic band diagram, with and without spin orbit coupling 

effect of MAPbI3 has been determined based on state of the art density functional theory results 

including many body correction (DFT+GW). It affords access to various properties, including 

distorted structures, at a significantly reduced computational cost. This is illustrated with the 

calculation of the band-to-band absorption spectrum, the variation of the band gap under 

volumetric strain, as well as the Rashba effect for a uniaxial symmetry breaking. Compared to 

DFT approaches, this empirical model will help to tackle larger issues, such as the electronic 

band structure of large nanostructures, including many-body effects, or heterostructures relevant 

to perovskite device modeling suited to the description of atomic-scale features.  
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The potential of 3D Hybrid halide Organic Perovskites (HOP) for photovoltaics has been 

revealed four years ago.1–4 Huge progresses have been made to improve the crystalline quality of 

thin films in solar cell devices, as well as the growth of monocrystalline samples for fundamental 

studies.5,6 Many other possible applications of 3D HOP have recently emerged, and layered HOP 

have gained renewed interest for light emission and are also promising for photovoltaics.7 3D 

HOP can be considered as a new class of semiconductors, with specific optoelectronic 

properties. To facilitate the analysis and understanding of their properties, some of us have 

recently proposed to consider the high temperature 3D HOP cubic perovskite phase as a platform 

to develop a solid-state physics approach.8–11 It can be exploited within the framework of 

Density functional theory (DFT), which has now been used extensively for 3D HOP,9,12–16 but 

we know from the field of classical IV, III-V or II-VI semiconductors that developing symmetry 

analyses and empirical Hamiltonians has many advantages. For instance, the one-band or 

multiband (k.p) effective mass approaches close to the band edge,17,18 have already been used in 

3D HOP to investigate various perturbations among which the effect of lattice distortions,17 the 

Rashba-Dresselhaus effect,17,19 the Bethe-Salpeter equation for the simulation of the exciton,8,11 

the radiative lifetime,20 the selection rules for electron-phonon interactions,21 and the influence of 

band gap renormalization, plasma screening and phase space filling on the exciton absorption.11 

These models are close to the free-electron model and built upon the assumption that electrons 

propagate almost freely with wave functions close to plane waves.  

An alternative starting point is to use localized atomic orbitals as a basis set to perform band-

structure calculations; this is the tight binding (TB) model also known as the linear combination 

of atomic orbitals (LCAO) approach. It is closer to chemical intuition. This method has been 

introduced for periodic crystals by Slater and Koster22 and was extensively used in a wide range 
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of materials from transition metals to semiconductor crystals.23 The first description of 

perovskite crystals using LCAO approach concerns metal oxides24,25 in the 60’s. A detailed 

description of the LCAO parameterization of perovskite structures was given by Granovskii26 

and takes into account s, p and d type orbitals based on the symmetry analysis by Egorov.27 

Noteworthy, the TB approach is a semi-empirical method that preserves all the symmetry 

properties of the crystal. However, it is not designed to yield the crystal structure by minimizing 

the total energy, and an additional (semi-)empirical or DFT-based approach must be used to 

yield the atomic positions.28  

Recently, some of us have demonstrated that TB provides an efficient tool for fundamental 

studies of buried III-V nanostructures with millions atoms,28 colloidal nanostructures including 

image charge effects,29 many-body interactions in semiconductors,30 and optoelectronic 

properties of nanostructures including either with direct or indirect band gaps.31 Besides, state-

of-the-art simulations of semiconductor devices, including atomistic effects at the TB level, have 

also been developed for both inorganic32–34 and organic semiconductors.35  

For HOP, Kim and co-workers already proposed a local TB Hamiltonian, developed on an 

eight functions basis with spin-orbit coupling (SOC).36 It was designed to model the Rashba 

effect close to the R-point of the perovskite reciprocal lattice and provides clear evidence of 

sizeable Rashba effect, thus confirming the initial DFT results addressing the importance of 

spatial and time reversal symmetries in this new family of semiconductors.17 Unfortunately, the 

chosen reduced TB scheme was not designed to afford the entire band structure across the whole 

Brillouin zone (BZ). Knudson and coworkers also used an extended Huckel TB model to analyze 

the effects of band folding in tin-based 2D HOP.37 Given this background and our preliminary 
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results,11 we are convinced that the present work will open up new avenues for understanding 

HOP devices.  

The aim of this article is to build a simple but general TB model for 3D HOP, starting from the 

symmetry properties of the cubic reference structure of the halide perovskite lattice (Fig. 1a,b), 

and incorporating their unusual physical properties, like the giant SOC of lead-based HOP. The 

design of this novel TB model for 3D HOP allows us to illustrate how it can accurately model 

their properties, using the prototype MAPbI3 compound. Despite the simplicity of the chosen sp3 

model (Fig. 1c), experimental data like effective masses and band gaps are accurately reproduced 

within this scheme. We further show that absorption coefficient and oscillator strengths can also 

be deduced from this TB model. Finally, in order to demonstrate the versatility of this approach, 

we extend the basic cubic perovskite TB model to study the impact of strain, and the Rashba 

effect related to the loss of inversion symmetry.   

 

Figure 1. Schematic representation of (a) a single BX6 octahedron, (b) the BX3 cubic lattice and 

(c) s and p orbitals with the main transfer matrix elements for the sp3 TB model. 
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We start by considering the reference cubic structures of the 3D ABX3 family (Fig. 1b), where 

A is an organic or inorganic cation located at the center of the unit cell, B is a metal atom (Pb, 

Sn, …) and X are halogen atoms (X=I, Br, Cl). Obviously, the interpretation of experiments 

dedicated to electronic and optical properties of HOP as well as their efficient simulation may 

greatly benefit from symmetry analyses.8,10 To extensively report on symmetry properties, we 

herein describe in details the high-temperature 3D perovskite cubic reference phase. But it has 

been shown that, for example, symmetry breaking is relevant to understand the influence of 

crystal structure change at a phase transition corresponding to a group-subgroup relationship.10,17 

From a crystallographic point of view, at sufficiently high temperature, 3D HOP have a simple 

cubic lattice with an octahedron pattern and a central cation. Organic cations automatically break 

the cubic symmetry, but the cubic space group Pm-3m is restored by dynamical averaging of the 

cation stochastic reorientations at high temperature. Thus, to perform our symmetry analysis 

within this TB scheme, only the inorganic atoms of each octahedron are considered (Fig. 1a,b). 

For each metal atom B and halogen atom X, we consider one s and three p orbitals (Fig. 1c). No 

basis functions are considered for any of the A cations, consistently with DFT studies of the 

electronic states close to the band edges that do not reveal significant weight stemming from A 

cations.13  

An isolated octahedron cluster BX6 belongs to Oh point group symmetry (Fig. 1a), as the cubic 

crystal ABX3 (Fig. 1b). However, translational symmetry of crystal modifies orbitals 

hybridization. For an isolated cluster without SOC, s orbitals and p orbitals of B atom correspond 

to A1g and T1u irreducible representation (IR), respectively. Meanwhile, s and p orbitals of the six 

X atoms correspond to  ��	 + �	 + �� and  ��	 + �	 + ��	 + ��	 + 2�� + �� IR, 

respectively. s(B) and p(X) orbitals can therefore be hybridized. However, if we consider the 
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same orbitals of the cubic crystal ABX3, no hybridization between s(B) and p(X) is possible at 

the Γ-point, while it is possible at the R-point as illustrated Fig. 2.10 The aim of the present TB 

study is to build an empirical model taking into account these specific symmetry considerations, 

and thus provide accurate simulation of experimental data close to the band gap.  

Our TB model is based on a sixteen basis functions without SOC and thirty-two basis 

functions when taking SOC into account. The symmetries are accounted for under simple and 

double space groups, respectively.8,10,13 The crystal pattern contains one B metal atom at 

�� = �0,0,0�, and three X halide atoms at �� = ��
� , 0,0� �, �� = �0, �

� , 0� � and �� = �0,0, �
�� �. 

The sixteen corresponding atomic orbitals centered at �� are denoted |��� for s orbitals and 

 |���, | ��, |!�� for p orbitals, " = 0 for the B atom and " = 1, 2 or 3 for each of the three halide 

atoms (see graphical abstract).  
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Figure 2. (a) Reciprocal space 3D view showing the first Brillouin Zone (BZ) of the Pm3m 

space group, with high symmetry points. Points denoted M, X and R are zone-boundary points at 

��
� , �

� , 0�, ��
� , 0,0� and ��

� , �
� , �

�� respectively. The Γ-point is the BZ center. (b) Illustration of the 

hybridization between s(B) and p(X) orbitals in the VB (bottom) and between p(B) orbitals in the 

CB (top) at the R-point of the BZ.13 (c) Electronic band diagram of MAPbI3 obtained within the 

TB scheme with SOC, for the Pm-3m pseudo-cubic phase, using parameters of Table 1. The 

energy of the valence band maximum is set to zero. (d,e) Effect of SOC in the conduction band 
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close to the R-point of the Brillouin zone: SOC lifts the degeneracy of the six conduction bands 

separating the two lower # = �
� and the 4 upper # = �

� bands. The arrows towards M and Γ denote 

the directions in reciprocal space. These zooms correspond to 20% of the BZ in each direction. 

Labels of irreducible representation obtained for simple (d) or double (e) group representation 

are given at the R-point near the band gap.8,10  

The semi-empirical TB method is a way to solve the Schrödinger equation considering that the 

crystal Hamiltonian $ is the sum between each isolated atom Hamiltonian ℎ& and a perturbation 

Hamiltonian $'() describing atomic interactions.38,39 Atomic orbitals  |���, |���, | ��, |!�� are 

therefore eigenfunctions of ℎ& and linear combinations of these atomic orbitals are 

eigenfunctions of the full crystal Hamiltonian. The coefficients of this linear combination are 

determined by computing the electronic band structure, which is subsequently compared to data 

available from experiment and/or first-principles calculations. 

Without SOC, nine parameters are considered. This encompasses four different diagonal 

matrix elements related to the atomic energies of the chemical constituents B and X:  

• ��� = *��|$|��� 
• ��� = *��|$|��� = * �|$| �� = *!�|$|!�� 
• ��� = *��|$|��� = *��|$|��� = *��|$|���  
• ��� = +�,-$-�,. = + ,-$- ,. = +!,-$-!,. where / = 1, 2, 3 for each X atom.  

Five transfer matrix elements refer to the overlap integral of first neighbor atomic functions: 

• ��� = +��-$'()-�,. where / = 1, 2, 3 for each X atom 

• ����� = *��|$'()|��� = *��|$'()| �� = *��|$'()|!�� 
• ����� = *��|$'()|��� = * �|$'()|��� = *!�|$'()|��� 
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• ���� = *��|$'()|��� = * �|$'()| �� = *!�|$'()|!�� 

• 
���� = * �|$'()| �� = * �|$'()| �� = *!�|$'()|!��

= *!�|$'()|!��  = *��|$'()|��� = *��|$'()|���.  

These are schematically represented Fig. 1c. Noteworthy, the overlap integrals between 

perpendicular p orbitals are vanishing. The transfer matrix elements between s and p orbitals are 

nonzero if and only if the axis of the p orbital contains a s orbital center. The complete 

expression of the 16-band Hamiltonian $ without SOC is given in the supporting information 

(SI).  

In presence of SOC, the triply degenerate p states whose orbital angular momentum is 3 = 1 

split into lower # = �
� and upper # = �

� bands, respectively doublet and quartet, whereas SOC is 

ineffective on s states (3 = 0).10,13 The 32-band TB Hamiltonian reads: $4&& = $ + $567 . 

$567 is a block-diagonal matrix. For each atom, " = 0 for B and " =  1, 2, 3 for X, 

|�� ↑�, | � ↑�, |!� ↑�  up spins and |�� ↓�, | � ↓�, |!� ↓� down spin states are coupled by the Pauli 

matrix $56 written as follows in the basis :|�� ↑�, | � ↑�, |!� ↑�, |�� ↓�, | � ↓�, |!� ↓�;: 
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To determine the parameters of the TB Hamiltonian relevant to the cubic phase of MAPbI3, we 

fit the TB band diagram on the following experimental and theoretical data: (i) the experimental 

band gap, �C = 1.61 E�, as obtained by photoluminescence measurement at room temperature,40 

(ii) the reduced effective mass, F = 0.104 H�, as determined by magneto optical measurement,41 

and (iii) the band diagram obtained within the quasiparticle  self-consistent GW theory (QSGW), 

with SOC included in the self-consistent cycle.14 Valence (VB) and/or conduction (CB) band 

densities of states determined by photoelectron spectroscopy with hard X-rays,42 ultraviolet and 

inverse photoemission spectroscopies,43 as well as pressure study of the band gap,44 provide 

further information to assess model parameters. Noteworthy, the complete calculation of the 

electronic band diagram including SOC presented in this work, takes less than 1 sec on any basic 

desktop computer without any computational pitfall. 

A first set of TB parameters (Table S1, with corresponding computed properties shown Figure 

S1) allowed to obtain a fit of quite good quality with �C = 1.620 E� at the R-point (see Brillouin 

zone sketched Fig. 2a) and a reduced effective mass of 0.116 H�, consistently with the above 

mentioned experimental results. The SOC value between the predominantly lead-based spin-

orbit split-off bands (CB) amounts to Δ�=� = 1.3 E�, in line with the findings of earlier 

reports.13,45–47 Noteworthy, this value is consistent with the SOC splitting between p-like orbitals 

reported in atomic energy level tables which amounts to 1.75 eV for lead in its 6s26p electronic 

configuration.48 Meanwhile, this first set of TB parameters is obtained with Δ�=� = 1.2 E�. This 

value seems rather high as compared to the 0.94 eV reported for the 5s25p5 electronic 

configuration of iodine.49  

��� ����� ����� ���� ���� ��� ��� ��� ��� <�=� <�=� 

–1.10 1.19 0.70 –3.65 0.55 –9.01 –13.01 2.34 –1.96 1.30 0.90 
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Table 1. Tight binding parameters in eV for MAPbI3 band diagram with SOC.  

This prompts us to examine the way this parameter influences the computed band diagram. 

Unfortunately, unlike Δ�=� that can be rather easily extracted from the splitting of the doublet 

and quartet CB (Fig. 2e and S1), Δ�=� related to iodine p-like states cannot be easily extracted 

from the highest lying VB, as a consequence of significant hybridization with the lead 6s orbitals 

(Fig. 2b). Thus, we chose Δ�=� = 0.9 E�, close to the value reported in atomic tables, and refine 

all other TB parameters except Δ�=� = 1.3 E�. Corresponding values and band diagram are given 

in Table 1 and Fig. 2c, respectively. The band gap remains at the R-point with �C = 1.603 E�. 

Close to the band gap, effective masses are: HK∗ = 0.215 H� for the VB and HN∗ = 0.218 H� for 

the CB, which leads to a reduced effective mass of 0.108 H�, i.e. remaining consistent with the 

experimental value taken as reference.41  

As a matter of fact, all parameters have to be refined, because the SOC splitting of iodine has a 

direct impact on the band gap and effective masses, as has been evidenced earlier.50 This is 

further illustrated by keeping all parameters fixed expect Δ�=�, which is decreased to 0.45 and 0 

eV. Corresponding band gaps (reduced effective masses) increase to �C = 1.65 eV (µ = 0.111 

m0) and �C = 1.68 eV (µ = 0.112 m0), respectively (Figure S2). The comparison of Figure 2c 

with Figures S1 and S2 clearly evidences that the smaller the splitting Δ�=� the smaller the 

dispersion of the p(X) bands lying about 2 to 4 eV below the top of the valence band. For 

Δ�=� = 0, ten of them are totally flat and the quality of the fit with the QSGW significantly 

deteriorates. We thus proceed with the TB parameters given Table 1 to further investigate the 

potential of this sp3 TB model.  

Prior to that, we should underline two limitations of the present TB model. They are a direct 

consequence of the desired simplicity, namely a model simple enough to allow symmetry 
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consideration to be taken into account close to the band gap. Firstly, the present TB approach is 

limited to first nearest neighbor interactions and this directly influences the flexibility of the TB 

model, namely it further contributes to the flatness of some of the band dispersions (vide supra). 

Secondly, the sharp curvature of VB in the vicinity of 5 eV below the top of the VB (Fig. 2c), 

much less pronounced in both DFT and QSGW calculations,8,14  is an indirect consequence of 

the low hole effective mass that has to be considered to fit both the band edge dispersion and 

experimental data. However DFT based computations also fail to reproduce the experimental VB 

density of states in the same energy range.42,43  

Among others, the optical absorption of a given material is a key parameter for its potential 

relevance in the field of photovoltaics. The present model allows calculating optical absorption 

by deriving the TB Hamiltonian. An electromagnetic wave 

�P = Q��E'�RSPTPUV)� + ��∗ EU'�RSPTPUV)�WEP�=& creates a perturbation of the Hamiltonian H due to optical 

excitation $X = N
Y? �PZP. The photon absorption rate between an initial VB state |[�, of energy �', 

and a final CB state |\�, of energy �4, is given by Fermi’s golden rule.  

]^_� = ��
ℏ |*\|$X|[�|�ab�4 − �' − ℏde with *\|$X|[� = Nf?

Y? +\-E'RSPTPEP�=&. ZP -[� 

The optical matrix element g'→4 = +\-E'RSPTPEP�=& . ZP -[� = +ijk-EP�=& . ZP -ilk�ZN�m� is calculated 

as ZN�m� = Y?
ℏ ∇k$�m�, deriving the crystal Hamiltonian for each value of k in the first BZ in the 

polarization direction EP�=&. Left and right side of this bra-ket are eigenstates obtained solving the 

TB Hamiltonian for each value of m in the BZ. To perform the BZ integration, the resulting 

discrete transitions are dressed with a 10 meV Gaussian broadening in order to get smooth 

spectral functions. Fig. 3a shows the absorption spectrum resulting from this calculation for 

cubic MAPbI3. The validity of this absorption spectrum extends not further than 3.3eV. 
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Figure 3. Absorption spectrum (black straight line) of MAPbI3 computed with the sp3 TB model 

and parameters given in Table 1. Sketch of VB and CB (blue dashed line) and optical transitions 

at R and M points.  

The absorption coefficient shows a sharp optical absorption edge, corresponding to the 

VB1(R)-CB1(R) optical transition at the R-point.8 It is consistent with experimental data 

recorded by De Wolf51 and comparable to the absorption spectrum of GaAs. The calculated 

absorption slope is modified above 2.75 eV, which corresponds to the VB1(M)-CB1(M) optical 

transition at M-point and a saddle point in the R � M direction of the BZ.8,17 The additional 

absorption feature near 2.75 eV also contains contributions from the VB2(R)-CB1(R) and 

VB1(R)-CB2(R) secondary transitions.8 This again points the multi-valley and multi-bandgap 

nature8 of the optical absorption of HOP leading to high photovoltaic efficiency in very thin 

layers. 
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Noteworthy, the shape of the spectrum is similar to that computed by Brivio and co-workers.14 

It might not be surprising, as part of the TB parameterization relies on their calculated band 

structure. Nonetheless, there is a marked difference for the higher optical feature, which is found 

above 3 eV in the QSGW spectrum,14,52 while it is close to the experimental value in the TB 

spectrum computed with parameters of Table 1, without need of any empirical rescaling. In fact, 

an empirical rescaling was used for QSGW data, to correctly match the optical spectrum over a 

large energy range.52 In addition, when using our first set of TB parameters (Table S1) in which 

the SOC splitting for iodine atoms is unrealistically high, similar discrepancies with 

experimental observation are found (Figure S1). Thus, using the TB parameters of Table 1 also 

improves quantitatively the higher optical features by comparison to state of the art DFT 

approaches.  

General symmetry properties of the halide perovskite lattice,10 are translated in the TB model 

to block diagonal Hamiltonians at high symmetry points Γ, R and M. Indeed point groups of 

vectors mo��
� , �

� , �
�� and mp ��

� , �
� , 0� are Oh and D4h, respectively. Isotropic optical transitions are 

predicted because the star of mo contains only itself whereas the star of mp contains three arms:8 

��
� , �

� , 0�, �0, �
� , �

�� and ��
� , 0, �

�� which all contribute equally to the observed absorption. The 

electronic energy eigenfunctions are described as Bloch waves to obtain the effects of point and 

translational symmetries on the band diagram: 

q(,r��� = E'r�i(,r���     (1) 

where s is the band index, � the position vector and r the wave vector inside the BZ. The E'r� 

phase factor is important to understand the bonding or antibonding character of the 

wavefunctions.50 
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Here, we propose to associate a basis of symmetrized linear combination of atomic orbitals 

(SLCAO) used in the TB model to each IR obtained by symmetry. We start without SOC. The 

center of the BZ t�0,0,0� and u ��
� , �

� , �
�� are both points where the group of wave vector is Oh, 

whereas the wave vector at g ��
� , �

� , 0� belongs to the D4h group, with only sixteen symmetries 

instead of forty-eight for Oh. In the Oh group, s orbitals have v�Kw� = Γ�y or R�y IR while p 

orbitals have v�Kw� = Γ{U or u{U IR.8,10 In the D4h group, s orbitals have v�Kw� = M�y IR while p 

orbitals have v�Kw� = M�U + g}U IR.53 To account for the site symmetry, one determines the site 

reducible representation v�')N. At the Γ-point, the site symmetry correspond to t�y for the B 

atom, and t�y + t�y for X atoms. The product v�')N⨂v�Kw� provides the IR of eigenfunctions. At 

Γ-point, the SLCAO leads to t�y, t{U, t�y + t�y, 2t{U + t}U IR for s(B), p(B), s(X) and p(X) 

orbitals, respectively, and there is no common IR between s(B) and p(X).10 At the R-point, a 

similar analysis leads to u�y, u{U, u{U, u�y + u�y + u{y + u}y IR for the same orbitals. At the M-

point, this analysis leads to g�y, g�U + g}U, g�y + g}U, g�U + g}U + g�y + g�y + g�y + g{y +
g}y. This decomposition allows determining which orbitals are hybridized at each point of the 

BZ (Table 2).  

Point of BZ s(B) p(B) s(X) p(X) 

R  u�y  u{U  u{U u�y + u�y + u{y + u}y 

M  g�y g�U + g}U g�y + g}U   g�U + g}U + g�y + g�y + g�y + g{y + g}y 

Γ  t�y t{U,  t�y + t�y  2t{U + t}U 

 

Table 2. Irreducible representations (IR) of eigenfunctions within the TB model at various points 

of the BZ without SOC. 
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At the R-point corresponding to the optical band edge (Fig. 2a, Fig. 3 and Table 2), the 

symmetry adapted basis functions associated to each IR are (without SOC): 

• two u�y functions: |���, �
√� �|��� + | �� + |!��� 

• two u�y functions: 
�

√� �2|!�� − | �� − |����, �
√� �|��� − | ��� 

• three u{y functions: 
�

√� �| �� + |!���, 
�

√� �|��� + |!���, 
�

√� �|��� + | ��� 

• three u}y functions: 
�

√� �|!�� − | ���, �
√� �|��� − |!���, 

�
√� �| �� − |���� 

• six u{U functions: |���, | ��, |!��, |���, |���, |��� 
This confirms that the totally symmetric u�y correspond to s(B) – p(X) hybridized atomic 

orbitals at the top of the VB at point R, whereas the bottom of the CB u{U correspond to p(B) 

states (Fig. 2b).10  

In order to account for the influence of the lattice strain, we use a simple variation of the five 

transfer matrix elements as a function of the interatomic distance �: �' = �'� ��?
� ��

where �'� and 

�� are respectively the transfer matrix element and the lattice parameter, without strain.38 The 

band gap variation as a function of the lattice strain, shown Fig. 4, is reversed as compared to 

classical semiconductors. This is a consequence of the reverse ordering of the CB and VB in 

halide perovskites.13 In order to precisely track the origin of the band gap variation, it is possible 

to calculate analytically the eigenvalues after block diagonalization of the Hamiltonian. The 

triply degenerate CB minimum (�7���o�, u {U�T���) and the VB maximum (�����o�, u �y�A���) 

correspond respectively to (without SOC): 

�7���o� = ��� + ���
2 +

�b��� − ���e� + 16������

2                     u {U�T��� 

and 
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�����o� = ��� + ���
2 +

����� − ����� + 48������

2                   u �y�A��� 

 

Figure 4. Variation of the band gap as a function of the volumetric strain (sketch in the center), 

computed with the sp3 TB model and parameters given in Table 1: with (blue straight line) or 

without (magenta dashed line) SOC.  

For a small variation ∆� of the lattice parameter �, the variations of �7���o� and �����o� are 

given by: 

a�����o� � U{���?�@A

����@U��?�Ay{���?�@A
∆^
^      (2)  

and 

a�7���o� � U����?�@A

����?U��@�Ay����?�@A
∆^
^      (3) 

This clearly shows that the band gap variation as a function of the strain is related to the 

transfer integrals between the s and p orbitals of B and X atoms, ����� and �����. The most 

important variation is related to the VB maximum. The same conclusion was drawn qualitatively 
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in a recent experimental paper reporting on pressure dependence of the band gap of MAPbI3.
44 

Indeed, the authors assumed that the CB has mainly a nonbonding Pb p character. It is possible 

to quantify this aspect with the TB modelling, and state that the p orbitals of X atoms and the s 

orbital of the B atom are energetically closer, thus enhancing the coupling (see expressions (2) 

and (3)).  More, ����� is significantly larger than ����� (Table 1).  

With SOC, the CB minimum splits in a double degenerate CB minimum (�7���o�, u �U�E�/��� ) 
and a quadruple degenerate band lying at higher energy (�7���o�, u �U�F�/��� ):8  

�7���o� = ��� + ��� − 2∆�=�/3
2 +

����� − ��� − 2∆�=�/3�� + 16������

2               u �U�E�/��� 
and 

�7���o� = ��� + ��� + ∆�=�/3
2 +

����� − ��� + ∆�=�/3�� + 16������

2               u �U�F�/��� 

The variation of �7�� as a function of the strain now reads as follows: 

a�7���o� � −16������

����� − ��� − 2∆�=�/3�� + 16������
∆�
�  

The additional 
�∆��?

�  term at the denominator is much smaller than ��� − ���. This explains 

why the band gap variation as a function of a volumetric strain, shown Fig. 4, follows the same 

trend with and without SOC. Moreover, using the experimental value of the bulk modulus 

reported by Rakita et al.,54 � = 14���, the TB band gap decrease computed for a pressure of 

32��� is -0.04eV, which compares well with the experimental value of -0.03eV. A refined TB 

modelling of strain effect is possible by slightly tuning the dependence of the transfer matrix 

elements as a function of the interatomic distances,55 but this is beyond the scope of the present 

paper.  
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At point M ��
� , �

� , 0�, the basis functions associated to each IR read: 

• three M�y functions: |���, |���, �
√� �|��� + | ��� 

• six g}U functions: |���, | ��, |���, | ��, |���, |��� 
• two g�U functions: |!��, |!�� 
• one g�y function: 

�
√� �|!�� + |!��� 

• one g�y function: 
�

√� �|!�� − |!��� 

• one g{y function: 
�

√� �|��� − | ��� 

• two g}y functions: | ��, |���  
The electronic states at the M-point correspond to a saddle point of the Fermi surface,8 and 

contribute to an additional feature in the optical absorption spectrum (Fig. 3). The symmetry 

decomposition of Bloch states at the M-point is fully translated in the TB Hamiltonian (See 

supporting information for the full expression of this Hamiltonian). For example, at point M, the 

TB Hamiltonian is block-diagonal with a 3 × 3 block for g�y, a 6 × 6 block for g}U, a 2 × 2 

block for g�U and five diagonal terms for g�y + g�y + g{y + g}y.  

At point Γ, the basis functions associated to each IR read: 

• two t�y functions: |���, �
√� �|��� + |��� + |���� 

• two t�y functions: 
�

√� �2|��� − |��� − |����, 
�

√� �|��� − |���� 

• nine t{U functions: |���, | ��, |!��, |���, | ��, |!��, �
√� �| �� + |!���, 

�
√� �|��� + |!���, 

�
√� �|��� + | ��� 

• three t}U functions: 
�

√� �|!�� − | ���, 
�

√� �|��� − |!���, 
�

√� �| �� − |���� 
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From symmetry consideration, it appears clearly that the s-p bonding does not stabilize the VB 

maximum t�y at the Γ-point like at the R-point; this is a direct consequence of the phase factor in 

the definition of the Bloch functions (expression (1)).50 

Finally, in order to illustrate a simple approach of the Rashba effect within a TB model, we 

shift the position �� of the third iodide atom X along the z axis, by a quantity i (�� = �
� + i) 

(Fig. 5a). This shift corresponds to a space group change from Pm-3m to P4mm and the creation 

of a permanent electric dipole along the � axis.19 Using the variation of the above mentioned 

transfer matrix elements as a function of interatomic distances, it is straightforward to show that, 

for small values of i, two phase factors are modified (see supporting information for the 

definition of ℎ�, ��): 

��
                   ������ ��� − 4iℎ��EU'k�^ 

and 

ℎ�
                   ������ �ℎ� − 4i���EU'k�^ 

The resulting electronic band diagrams along the g� �0, �
� , �

�� − u − g  ��
� , 0, �

�� path of the 

cubic BZ are given in Fig. 5b,c, for a displacement of the axial iodine atom along Oz u=0.05. 

Without SOC, the phase transition lifts partially the degeneracy in the CB.17 Adding SOC lifts 

totally the degeneracy (Fig. 5c).17 The Rashba effect is characteristic of a further lifting of the 

spinor degeneracy in the vicinity of the R-point, both in CB and VB, first revealed in the 

context of HOP in ref. 17 based on DFT calculations. Noteworthy, the band structure along the 

u − g¡ path does not exhibit such a degeneracy lifting, since the Oz polar axis corresponds to 

the C4 axis of the structure.19 
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Figure 5. (a) Displacement of the axial iodine atom along the z axis: �� = �
� + i. This shift 

corresponds to a space group change from Pm-3m to P4mm. (b) Corresponding electronic band 

diagram of MAPbI3, along the g� − u − g  path of the cubic BZ, obtained within the TB 

scheme and parameters of Table 1 and i = 0.05: (b) without SOC and (c) with SOC.  

In summary, based on a symmetry analysis, an semi-empirical TB model for halide perovskites 

of general formula ABX3 has been designed and thoroughly investigated for the reference Pm-

3m cubic phase. Model parameters have been derived using experimental as well as state-of-the-

art DFT data. Particular attention has been paid on the strength and effect of spin-orbit effects, 

both for the metal and the halogen atoms. MAPbI3 has been considered to illustrate the 

usefulness and suitability of the model. The calculation of the electronic band diagram is easy 

and costless as compared to standard DFT calculations. The same holds true for band-to-band 

absorption spectrum, which is computed from the derivative of the TB Hamiltonian, or to predict 

the variation of the band gap under volumetric strain. The derived analytic expressions allow 
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streamlining the findings, e.g. providing a natural explanation for the effect of SOC or in terms 

of orbital hybridization such as s-p transfer integrals.  

The powerfulness of the present TB Hamiltonian is further exemplified with the Rashba effect 

by considering an uniaxial symmetry breaking.  Compared to first-principles approaches, this 

semi-empirical model challenges us to tackle more difficult questions in terms of size with 

complex heterostructures, nanostructures or composite materials as well as diversity of physical 

phenomenon under investigation. We strongly believe that such a TB model, suited for an 

atomic-scale description, is relevant to perovskite device modeling, as it is for conventional 

semiconductors. 
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