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Abstract

In this paper, we define the online localized resource allocation problem,
especially relevant for modeling transportation applications. The problem
modeling takes into account simultaneously the geographical location of con-
sumers and resources together with their online nondeterministic appearance.
We use urban parking management as an illustration of this problem. In
fact, urban parking management is an online localized resource allocation
problem, where the question is how to find an efficient allocation of parking
spots to drivers, while they all have dynamic geographical positions and ap-
pear nondeterministically. We define this problem and propose a multiagent
system to solve it. The objective of the system is to decrease, for private
vehicles drivers, the parking spots search time. The drivers are organized
in communities and share information about spots availability. We have de-
fined two cooperative models and compared them: a fully cooperative model,
where agents share all the available information, and a “coopetitive” model,
where drivers do not share information about the spot that they have chosen.
Results show the superiority of the first model1.
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systems, Simulation

1. Introduction

Transport activities have important financial consequences and serious
ecological fallout. As a consequence, increasing number of researches opti-
mizing these activities are being conducted in the recent years, especially
concerning urban activities. Indeed, investment on infrastructure are lim-
ited by space and financial costs, while the fleet of vehicles is continuously
increasing. As a consequence, optimizing urban traffic is vital, together with
increasing the use of electric vehicles and encouraging vehicle sharing. To
this end, intelligent transportation systems are designed to improve the use,
safety and efficiency of the transport means and infrastructure with infor-
mation and communication technologies. Indeed, researchers are more and
more interested in problems such as the search of charging stations for electric
cars (Acha et al., 2011), the sharing of vehicles (taxi, car, bike, etc.) (Katzev,
2003), urban parking management (Delot et al., 2013), etc.

A part of these problems can be seen as resource allocation problems,
where the challenge is to find an optimal allocation of resources to consumers.
In transportation applications, the drivers or the travelers are generally the
consumers. The resources might be charging stations, parking spots, traf-
fic information or vehicles. However, these resource allocation problems are
recurrent in transport applications and should have a generic problem for-
mulation representing them. This formulation would identify the common
concepts and constraints of these applications. One of the main characteris-
tics of these problems is that they require the simultaneous consideration of
time and space. Indeed, in a transport application, there is always an explicit
representation of the environment (i.e. the transport network). The actors
(drivers, travelers, etc.) are localized in this environment where they dynam-
ically move. A generic formulation of resource allocation that is specific to
these problems is the first objective pursued in this paper.

In transportation applications, the time dimension has to be explicitly
represented because the information about resources and/or consumers is
not known at the beginning of the allocation. This kind of problem is gen-
erally modeled as an online resource allocation (ORA) problem (Tesauro,
2005). The space dimension has to be explicitly modeled because resources
and consumers are situated and because the distance between them generally
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conditions the allocation: resources and consumers have to be geographically
co-located or close enough for the allocation to take place. This kind of prob-
lem can be modeled as a localized resource allocation (LRA) problem (Golkar
and Sousa, 2011). We present in this paper a generic model for both ORA
and LRA problems called OLRA (for Online Localized Resource Allocation)
problem. One main contribution is the introduction of a systematic, explicit
and dynamic representation of the physical environment in the problem def-
inition. Different instantiations of the problem specify different transport
applications. Indeed, consumers might have only access to a sub-part of
their physical environment at a certain time, resources might be volatile, es-
pecially in a shared environment, and can therefore be taken by any close
consumer and resources might be uncontrollable because they are created
and released in a nondeterministic way.

A lot of applications can be modeled as an OLRA problem. Actually, a
resource allocation problem that involves moving entities (resources or con-
sumers) can be seen as an OLRA problem. For instance, in the search of
charging stations for electric cars (Acha et al., 2011), the consumers are mo-
bile (the electric cars), while the charging stations are the resources. In the
sharing of vehicles (car, bike, etc.) (Katzev, 2003), both the resources (the
vehicles) and the consumers (the drivers or the passengers) are mobile. The
scheduling of aircraft landings to multiple run-ways (Beasley et al., 2000) can
also be seen as an OLRA problem, where the run-ways are the resources and
the planes are the consumers. Among all the applications that can be mod-
eled as an OLRA, we are more particularly interested in the search of urban
parking spots, in which spots have to be assigned to drivers. This is one of
the most challenging OLRA problems. Indeed, the resources in this problem
appear and disappear non-deterministically. In addition, to consume a re-
source, a driver has to drive to the spot location, with uncertain arrival time
due to traffic conditions. The management of urban parking is identified as
an important issue to improve the quality of life in urban areas (Bayless and
Neelakantan, 2012).

To formally model and analyze the problem of urban parking manage-
ment, we propose to define it as an OLRA problem. Indeed, the solution
to a particular urban configuration implies the assignment of a set of park-
ing spots (the resources) to the drivers (the consumers). In addition to the
problem specification, we are interested in proposing an efficient solution to
the problem. In this paper, we propose a multiagent transport information
system that helps finding parking spots in an urban agglomeration.
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The multiagent paradigm facilitates an approach by analogy in the trans-
portation domain where one of the objectives is the coordination of dis-
tributed entities. This is why the multiagent approach is often chosen to
model, solve or simulate transportation problems. This approach is partic-
ularly relevant for the management of parking spots, since the problem is
indeed to take into account human behaviors that interact in a complex,
dynamic and open environment. We propose a multiagent system that facil-
itates the information sharing related to parking for a community of drivers.
In our system, agents communicate to exchange information concerning the
parking spots availability. The information come from the users, while re-
maining anonymous, and their collaboration ensures an information of good
quality. Our agent-based approach is totally decentralized and we employ
an inter-vehicular communication (using VANET2) to allow vehicles to re-
ceive and broadcast information to the other vehicles of the same community.
VANETs provide a bottom-up discovery of parking places. One advantage
of our proposal is that it can be developed without any additional infrastruc-
ture. Our solution is able to function without initial information and ensure
drivers to have information that are the most up-to-date possible.

This article is organized as follows. Section 2 defines the OLRA problem
as well as the urban parking management problem. Section 3 presents the
multiagent system solving the problem. Section 4 details our experimental
results. Section 5 discusses the related works. Finally, section 6 concludes
this paper and provides some perspectives.

2. Problem definition

In this section, we detail the formal model of Online Localized Resource
Allocation (OLRA) (Bessghaier et al., 2012b).

2.1. Description

Consider a set of resources and a set of consumers. Both resources and
consumers appear non-deterministically and can subsequently change their
position at any moment. Each resource has a state and a set of properties.
An allocation changes the state of the resource but the properties that define
it remain the same (Topaloglu and Powell, 2005).

2Vehicle Ad Hoc Networks
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The problem that we define in this paper involves the assignment of re-
sources to consumers, where both resources and consumers are situated in
space and time and are not known in advance. A consumer starts looking for
a resource at nondeterministic moments. These moments are not predefined
and are discovered during the allocation process. On the other side, the re-
sources are available starting from unknown moments and remain available
during an unknown period of time. The compliance of a resource with a con-
sumer’s needs is conditioned with their spatial and temporal situation. As
for all resource allocation problems, the compliance of the resource with the
consumer is also conditioned by the latter’s preferences, which concern the
state and the properties of the resource. The preference of a consumer for
resources is measured with an individual utility function. The local objective
of the consumers is to maximize their own utility while the global objective
of the allocation system is generally to minimize the total traveled distance
and/or the total travel time.

2.2. Problem formulation

In the following, we formulate the Online Localized Resource Allocation
(OLRA) problem and we define its various components.

2.2.1. Resources and consumers

An OLRA is a tuple:

OLRA = 〈R, C,G,D〉

where:

• R = {r} is the set of resources.

• C = {c} is the set of consumers.

• G = 〈V , E〉 is a directed graph, with V the set of nodes indexed from 1
to N , and E = {eij|i, j ∈ V and i 6= j} the set of edges.

• D = {dij|i, j ∈ V and i 6= j, dij ∈ R+}, dij is the distance between two
successive nodes i and j.

Each node of the network can contain one or more resources of R. Resources
may represent, for instance, vehicle seats, parking spots, places to recharge
electric cars, etc. The distances between nodes are fixed, while the travel
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times may vary according to the dynamics of the environment. If the graph
represents a transportation network, the travel times would be impacted by
traffic status and congestion.

To represent the non-deterministic availability of a consumer or a re-
source, we define the following function:

availability : (R∪ C)× T → {0, 1}

where T is the time horizon. This function returns 0 if the resource is not
yet localized, or if the consumer is either not localized or is not interested in
any resource.

The two following sets describe the different characteristics of the re-
sources:

• P = {p1, p2, ..., pm}: represents all the possible properties of resources,
with m the number of properties.

• ∆ = {d1, d2, ..., dn}: contains the description domains of the properties,
with n ≤ m the number of description domains (two properties might
have the same description domain).

A property pi ∈ P : R∪ C → dj is a function that gives the value of
the property pi in its description domain dj ∈ ∆. The description domain
can be quantitative, qualitative or a finite set of data. Each resource is
characterized by a set of property-value pairs. The properties that are defined
for a resource, together with the corresponding description domain, are given
by this function:

% : R → (P ×∆)q

where q is the number of properties that are defined for the resource. If R
is homogeneous, resources are defined by the same q properties. Otherwise,
the problem considers different types of resources, represented by different
properties.

The function compatibility(c, r, t) defines the fact that a consumer c and a
resource r are compatible at time t, meaning that the values of the properties
correspond to the requirement of the consumer at that moment. For instance,
if the property concerns the type of electricity plug, consumers and resources
should have the same value for that property all the time.

compatibility : C ×R× T → {0, 1}
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The three following functions define the dynamic costs and the dynamic
positions of resources and consumers.

• τ : V × V × T → R+, τ(i, j, t) returns the travel time between i and j
at time t ∈ T (the time horizon).

• ρ : R∪C×T → V , ρ(r, t) or ρ(c, t) returns the node where the resource
r or the consumer c is located at t.

A resource or a consumer on the edge eij is considered to be positioned
on i until it reaches j.

2.2.2. Allocation modeling

The following functions specify the dynamics of the allocation process.
The interest of a consumer for a resource varies over time, either following
an internal process or following his context. This context may include his
current position or his final destination. The usefulness of a resource to a
consumer is given by the following utility function:

µ : C ×R× T → R+

µ(c, r, t) returns the utility of the resource r for the consumer c at time t.
However, the consumption of a resource by a consumer is conditioned by
their co-location. This can be verified with the following function:

1F : C ×R× T → {0, 1}
1F(c, r, t) is an indicator function that returns 1 if the consumer c could

have the same position than the resource r at time t and if they are both
available at that time. That means that 1F returns 1 for all the tuples F =
{(c, r, t) ∈ C×R×T |ρ(c, t) = ρ(r, t)∧availability(c, t) = availability(r, t) =
1}∧compatibility(c, r, t). 1F(c, r, t) returns 0 otherwise. Therefore, F defines
the set of potential space-time co-locations of resources and consumers under
availability constraints. The availability constraint is necessary to filter the
situations where a consumer and a resource are indeed co-located, but not
available, for instance if the resource has been taken by another consumer.

The quality of a resource allocation in OLRA is generally related to
the distance and the travel time of consumers. Their successive positions
throughout the execution are specified with the three following functions.

π : C → ({1, . . . , | V |} × T )n, n ∈ N
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π defines the path of a consumer. Applied to a consumer c, π returns
the nodes that the consumer has visited while moving towards a resource,
together with the times corresponding to his visits. π(c)[i, 1] allows to ac-
cess the index of the ith visited node, while π(c)[i, 2] allows to access the
corresponding visit time.

For instance, π(c1)[3, 1] = 10 indicates that the third node visited by
consumer c1 is v10, while π(c1)[3, 2] = t3 indicates that this visit occurs at
time t3.

δ(c) =
∑

i=1...|π(c)|−1

dπ(c)[i,1],π(c)[i+1,1]

δ determines the total distance traveled by c. The term dπ(c)[i,1],π(c)[i+1,1]

represents an element dxy of the D matrix of distances, where x = π(c)[i, 1]
and y = π(c)[i+ 1, 1] are, respectively, the ith and the (i+ 1)th node indices
returned by π(c). |π(c)| gives the total number of nodes visited by c.

For instance, if π(c1) = [(5, t1), (10, t3)], i.e. consumer c1 visits node v5 at
time t1 then node v10 at time t3; if the distance d5,10 = 6, then δ(c1) = 6.

ϕ(c) = π(c)[|π(c)|, 2]− π(c)[1, 2]

ϕ gives the total travel time of a consumer c. The expressions π(c)[|π(c)|, 2]
and π(c)[1, 2] are the instants of visits, respectively, of the last node and
the first node visited by c. With the same above example, if π(c1) =
[(5, t1), (10, t3)], then ϕ(c) = t3 − t1.

2.2.3. Solution constraints

A solution to an OLRA instance is an allocation of resources to consumers.
This solution is given by the function γ, which specifies that a customer
actually consumes a resource at a certain time:

γ : C ×R× T → {0, 1}

γ(c, r, t) returns 1 if a consumer c takes the resource r at t and 0 if not.
A consumer cannot take a resource if they are not at the same position

at the same time. Hence, γ(c, r, t) = 1 cannot be valid unless 1F (c, r, t) = 1.
OLRA is not bound to specific resource properties. It can model prob-

lems where the resources are shareable or not, and where consumers can
consume several resources at the same time or not. The considered variant
of the problem is specified by two parameters k and l. The solution to the
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considered problem has to comply with the two following constraints, which
depend on k and l.

∑
c∈C

γ(c, r, t) ≤ k,∀r ∈ R,∀t ∈ T (1)∑
r∈R

γ(c, r, t) ≤ l,∀c ∈ C,∀t ∈ T (2)

The constraint (1) specifies that the resources can be shareable and be
taken simultaneously by at most k consumers (k ∈ N). If the resources are
not shareable, k is equal to 1. If several resources are co-located with a
consumer, the problem definition may allow him to consume them simulta-
neously (constraint (2)). The number of resources that can be taken simul-
taneously is a parameter l ∈ N. Again, if this is not allowed, l is set to 1.
The values of k and l are model parameters and enable to take into account
different problem variants and therefore different application types.

2.2.4. Objectives

The social objective of the study of OLRA is generally to minimize the
time and/or the distance spent in the search of resources. This social objec-
tive can be expressed as:

min
∑
c∈C

[αδ(c) + βϕ(c)]

where α and β are positive numbers weighting the relative importance of time
and space in the specific problem that is considered. We assume that α and
β integrate scaling factors in order for the function terms to be expressed in
the same unit and to truly reflect the weights of time and space. Indeed, δ(c)
is usually expressed in meters while ϕ(c) is usually expressed in seconds. The
scaling factor could be based, for instance, on the average speed v (expressed
in meters per second) of the consumers. In which case, α would be equal to
a× 1

v
where a is the actual weight of space and 1

v
the scaling factor.

Besides, every consumer has the local objective of maximizing his own
satisfaction by obtaining the resources that best satisfy his preferences and
maximize his utility. This personal objective is defined as follow:

max
∑

r∈R,t∈T

[µ(c, r, t)× γ(c, r, t)]
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A system might behave well w.r.t the local objectives of the consumers
while the social objective is not optimized. Or it may exhibit good results
for the social objective, while the individual objectives are of poor quality.
As usual in this kind of problems, there is a compromise between these two
objectives that the proposed solutions to this problem have to find.

2.3. Urban parking allocation model

2.3.1. The problem of urban parking

The management of urban traffic growth is an important issue, since the
number of drivers that are cruising for parking can exceed 33% of all traffic
in large crowded city centers (Shoup et al., 2005). The situation is getting
worse, because the usage of cars is increasing, the cost of energy is getting
higher and parking spaces are getting scarcer and more coveted. Indeed,
several studies such as (Bayless and Neelakantan, 2012) have identified the
importance of better parking systems to improve the quality of life, and an
increasing number of smart parking solutions are being proposed to help
optimizing the search for parking spots.

There is a growing conscience that cities are unable to cope with the
continuous increases in car traffic, the management of parking spaces moved
from being “important but rather narrow concerns about safety and the
obstruction of traffic flow on the streets” into a consideration of the degree to
which parking policy contributes to the wider economic, environmental and
social policies of towns and cities (Valleley et al., 1997). Parking policies,
if they are well designed, contribute to more efficient use of the transport
network, higher densities, lower emissions, and better urban design (Shoup
et al., 2005). If not, they can act in the opposite direction.

Three main objectives have been identified (Marsden, 2006):

• to use urban parking management as a means of regenerating specific
parts of the urban area (e.g. town centre: providing more parking
attracts business);

• to use parking controls to restrain traffic and improve environmental
quality, or to encourage the use sustainable transports;

• to secure sufficient income from the parking operation to cover costs or
to fund other activities.
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These are the reasons that lead us to consider this problem in particular.
We first propose an OLRA modeling of the urban parking problem, then we
propose a multiagent solution to it.

2.3.2. An OLRA modeling of urban parking

In the urban parking application, the set of resources R is homogeneous,
and composed of the parking spots. At the start of execution, R might be
equal to ∅, and is enriched by the parking spots made available. The set of
consumers C is composed of the drivers. G is the transport network of the
considered town, region or neighborhood. The nodes of the network represent
either a crossroad or a parking spot on an edge. The time horizon T is the
considered timeframe for the execution, typically 24 hours. The function
availability(r, t) returns 1 from the moment when a spot r is free until the
moment when it is occupied. Similarly, availability(c, t) returns 1 from the
moment when a driver c is seeking a parking spot.

The possible properties of a parking spot are its size in centimeters
(dsize = R+), the rating of the neighborhood (dneighborhood = [0, 1]) and
its safety (dsafety = [0, 1]). A parking spot r1 can have the following val-
ues: size(r1) = 200, neighborhood(r1) = 0.9 and safety(r1) = 0.9. The
compatibilty function in the model allows to define the minimal conditions
a driver has for a spot. For instance, a driver can be interested in the only
safe spots (safety ≥ 0.7), which size is longer than 2 meters and that are
not further from his final destination than 500 meters. Among the resources
matching these conditions, the drivers uses his utility µ to sort them following
a preference criterion, for instance from the nearest to the furthest.

In this problem, the spots can be taken by anyone, but not more than
one driver can take a spot. As a consequence, the parameter k is equal to
1. In addition, not more than one spot can be co-located with a driver, and
one driver cannot take more than one spot at the same time. The parameter
l is then also equal to 1.

In order to assess our proposal with an objective decision criteria, we
have used a utility function that takes into account the time to reach the
resources:

µ(c, r, t) = 1
τ(ρ(r,t),ρ(c,t),t)

Following the value of l and k, each spot will be taken by at most one
driver. If the driver leaves the spot and starts looking for another, they both
will be considered as a new consumer and a new resource. Each driver c is
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looking for one resource r and his problem is to find among the potential
pairs {(r, t) | (c, r, t) ∈ F} the one maximizing µ(c, r, t).

Here follows a model of urban parking as an instance of OLRA.
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node : a spot or crossroad
parking spot : a spot where one can park
R = {parking spot}
C = {driver}
G = transport network
V = the set of nodes in G
D = the distances between nodes in G
T : execution timeframe

• availability(r,t) =

{
0 if r is occupied

1 otherwise
, r ∈ R

availability(c,t) =

{
1 if c∈ G and wants to park

0 otherwise
, c ∈ C

• ρ : (R ∪ C) × T 7→ V , returns the node where the designated
ressource or consumer is located

• τ : V × V × T 7→ R+, returns the travel time between two nodes

• µ : utility function that measures the usefulness of a spot towards
a driver at time t

µ(c, r, t) =
1

τ(ρ(r, t), ρ(c, t), t)

• P = {size, safety, rating}, the set of possible properties of spots
in R

• ∆ = {R+, [0, 1]}, set of possible description domains for the prop-
erties

• %(r) = [(size,R+), (safety, [0, 1]), (rating, [0, 1])],∀r ∈ R, the
property-domain pairs for spots.

a driver can only park on one spot at a time, and a spot is
occupied by at most one driver, thus

• Parameters k = l = 1

• F : set of tuples (driver, parking spot, time) such that driver and
parking spot are co-located and available.
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In the following, we propose a solution to the problem of urban parking
that is based on a distributed architecture. In our configuration, there is no
central information system nor an infrastructure that would list the available
spots. Each driver has to expand his knowledge about the available spots by
locally interacting with the other drivers. That means that we don’t have
a single accurate and up-to-date representation of F , but each driver must
build his own approximation of F based on the knowledge that he has, which
continuously evolve over time.

3. Multiagent solution

We propose a multiagent solution that helps finding parking spots in an
urban agglomeration. This solution uses minimal information on shared,
volatile and uncontrollable resources. The multiagent system works without
initial information, without infrastructure to collect information about spots
availability, and without a central information system (Bessghaier et al.,
2012a).

3.1. Agents Model

The multiagent system proposed here is fully decentralized. Agents em-
ploy inter-vehicular communication to exchange information with the other
vehicles, which have to belong to the same community of equipped vehicles.
The choice of a distributed approach allows, among other advantages, to
minimize the infrastructure needed to implement this solution and to limit
investment.

The proposed system for the search of spots in an urban area is made
of a type of agent designated by assistant agent, embedded in the driver’s
vehicle and supports him during his spot search. The assistant agent passes
through four states as indicated by the automata of Figure 1.

• state 0: the vehicle is parked, the assistant agent is stopped.

• state 1: the driver has left his origin and is moving toward his destina-
tion.

• state 2: the assistant agent is looking for a parking spot to propose it
to the driver of the concerned vehicle.

14



Figure 1: Assistant agent state diagram

• state 3: the driver moves toward the spot proposed by the assistant
agent. The latter stays aware of possible alternatives which would be
more suitable for the driver.

Starting from state 0, the assistant agent As goes to state 1 when the
driver starts his trip (and eventually releases a parking spot) (arc (1) in
Figure 1). When the driver is near his destination, As switches to state 2
(arc (2)). If As has no place to propose, the driver keeps on driving and
looking for a place while As keeps on looking (i.e. he remains in state 2).
In this case, if As cannot offer places before the driver manages to find one
on his way, he returns to state 0 (arc (3)). However, if As proposes a spot
to the driver together with his itinerary, he proceeds to state 3 (arc (4)) and
the driver goes to the chosen place. Finally, from state 3, he goes to either:

• state 0 (arc (5)), if the driver finds a spot on his way that suits him
better than the one proposed, or when he arrives at the chosen spot
and it is free.

• state 2 (arc (6)), the search cycle starts again. This happens when the
driver arrives at the spot and finds out that it is taken (for instance, a
driver from outside the community would have found and taken it)

The internal architecture of the assistant agent is composed of three mod-
ules: an Itinerary module, a Communication module and a Decision module.
These modules are detailed in the next sections.
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3.1.1. Itinerary module

The itinerary module calculates the route to the chosen parking spot
starting from the driver’s current position and then guides him to the spot.
The choice of a parking spot is based on:

• the interaction with other assistant agents (Communication module)

• the choice of a spot maximizing µ and maximizing the chances to find
the spot available (Decision module)

3.1.2. Communication module

This module enables the agent to communicate with his neighbors, which
have to belong to the community as well. This communication is based on
messages and allows to exchange information about the availability of parking
spots.

Our choice to make the agents communicate via an inter-vehicular net-
work allows the information exchanged to move following two vectors. The
first is specific to the communication. Indeed, the messages exchange takes
place between each two neighboring vehicles in the community, and by tran-
sitivity agents can be informed of the availability of places, however remote.
For instance, in Figure 2, agents As4 and As6 share information via agent
As5. The second vector concerns the movement of vehicles that mechanically
move their information. For example, in Figure 2, agents As1 and As2 do
not share information yet but will do so shortly following their movements.

However, the broadcast of information within the community can lead to
a deterioration of the quality and the effectiveness of the system. There is
quality degradation if an isolated agent cannot access or share his informa-
tion. It is the case for agent As3 in the figure. But also if many agents choose
the same spot as it may be the case for agents As4 and As6. The effectiveness
of the system can also be challenged by a very large number of communi-
cations. Indeed, the information update is based on a restricted broadcast
that depends on the location, but this communication is systematic. For
instance, in Figure 2, communication between As4, As5 and As6 implies the
exchange of four messages. On the scale of the entire transportation network,
the number of messages at a time t is the sum of communication between all
adjacent agents. Depending on the density of the network, this can represent
a large number of messages. However, the communications take place very
locally between vehicles and the total number of messages per agent should
be less important than in a centralized architecture.
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Figure 2: Information dissemination in the community through an inter-vehicular network

3.1.3. Decision module

Finally, the decision module takes care of two types of decision. With this
module, the agent decides on which information it shares. It also chooses
which parking spots are the most relevant for the driver. The main issues
of the information management about parking spots concern, on the one
hand, the definition and the use of the information and on the other hand
the update of this information. These two elements influence the quality of
the knowledge of the assistant agent and therefore the quality of the decision
process. The decision is based on information that is given by the members of
the community via communication and is related to two events: 1) a parking
spot is released by a member of the community; 2) a parking spot is occupied
by a driver belonging or not to the community.

The choice of a parking spot for the driver must meet his criteria, which
may concern for instance its distance, the time since its release, or the safety
of its location. In other words, the decision module of a driver c implements
the utility function µ and computes his own approximation of F (which de-
fines the set of potential space-time co-locations of resources and consumers),
both defined in the OLRA model. By abuse of notation, we use F to denote
the knowledge of the assistant agent about the available spots.

17



3.2. Cooperation model

The cooperation model depends on the nature of the information that is
shared and how this information is used by the assistant agents. Section 3.2.2
presents a cooperation model where agents share information about parking
spots while in section 3.2.3, the agents exchange in addition their intention
about the parking spots. The shared information are:

• F which contains information about the free spots and their associated
release time.

• O which contains the spots that were in F but which turned out to be
occupied with the moment that this information was known.

The minimal definition of a parking spot is a pair 〈spot, timediscovery〉:
the geographic position of the spot and the moment when it was released. F
and O contain each a set of such pairs that are exchanged between assistant
agents. The combined use of the two sets provides a dynamic update of the
system information. Indeed, one consequence of the volatility of information
regarding the availability of spots is illustrated when an agent chooses a
spot on his F set assumed to be free but, once there, he finds it occupied.
In this case, the F sets contain incorrect information about this spot. In
this case, the concerned spot is moved from F to O and this information
will spread over the community. Both sets are exchanged by the assistant
agents and are updated gradually by the knowledge of each one, following
two alternative cooperation models. The cooperative model influences the
choice by the assistant agent of which spots in his F to broadcast and which
to hide. In the following paragraph, we describe the common behavior of the
agents, regardless of the chosen cooperation model before to give the specific
behavior to each model.

3.2.1. Generic behavior

The environment being dynamic, there is a “social update process” with
information acquired in real time by communication, and also a “temporal
update process” because the agent’s knowledge evolves over time. The social
update process begins in the communication module of the assistant agent
where the sets F and O from each received message (denoted FB and OB
respectively) are extracted and forwarded to the decision module. This cor-
responds respectively to edges (1) and (2) in Figure 3. The decision module
updates both sets by aggregating the received FB and OB sets with its own
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F and O sets (denoted FA and OA respectively). The idea of the update
process is to browse each received set (FB and OB) and update the local sets
(FA and OA) in consequence, using the ⊕ operator.

FA ← FA ⊕FB
OA ← OA ⊕OB

The ⊕ operator is defined as follows :
S1⊕S2 = S1∪S2−{〈spot, timediscovery〉 ∈ (S1∪S2) | 〈spot, timediscovery2〉 ∈

(S1 ∪ S2) ∧ timediscovery < timediscovery2}
where S1 and S2 are sets of 〈spot, timediscovery〉 pairs. The ⊕ operator

merges the two sets (S1 ∪ S2), and if there are two information about the
same spot (〈spot, timediscovery〉 and 〈spot, timediscovery2〉), only the one with
the newest timediscovery is kept. Note that timediscovery associated with a spot
in O is the time when the occupancy of the spot has been discovered by a
driver.

Then an update of FA or OA is launched, using the 	 operator.

FA ← FA 	OA
OA ← OA 	FA

The 	 operator is defined as follows :
S1 	 S2 = S1{〈spot, timediscovery〉 ∈ S1 | 〈spot, timediscovery2〉 ∈ S2 ∧

timediscovery < timediscovery2}
S1 	 S2 subtracts from S1 the 〈spot, timediscovery2〉 pairs ∈ S2 with an

information about a spot in S1 (〈spot, timediscovery〉 and 〈spot, timediscovery2〉)
with a newer timediscovery. This way, the information in F andO continuously
concern different spots with the newest information available.

The temporal update process of the agents is a filtering of outdated in-
formation after a time θ from F and O. The spots that were discovered θ
time ago are deleted. The value of the parameter θ has to be chosen tak-
ing into account the transport network activity. Thus, a low value reflects
a high volatility (e.g. rush hours in downtown), while a high value keeps a
longer sharing of information and reflects, for instance, the lower volatility
in a residential area. This is done using the � operator.

FA ← FA � θ
The � operator is defined as follows :
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Figure 3: Assistant agent internal data flows

S � θ = S − {〈spot, timediscovery〉 ∈ S | timediscovery < timecurrent − θ},
with timecurrent the current time.

The result of the application of S�θ will be the the (〈spot, timediscovery〉)
pairs in S, where all information older then θ is filtered (all the pairs where
timediscovery < timecurrent − θ will be absent from S � θ.

When the driver is looking for a parking spot, FA is sent to the itinerary
module. This corresponds to the edge (3) in Figure 3. The itinerary mod-
ule computes the routes for each spot on this set and forwards the result
back to the decision module (edge (4) in Figure 3). Based on the utility
function µ, the decision module proposes a spot that best meets the needs
of the driver. Finally, he sends FA and OA to the communication module
(edge (5) in Figure 3) which takes care of their distribution to the neighbors
(edge (6) in Figure 3). Now, with the chosen spot and the lists FA and
OA, the assistant agent has to choose which information to broadcast to the
neighboring vehicles. We have identified two possibilities for this informa-
tion broadcast, following two cooperation models: “coopetitive” model and
cooperative model, both described in the following paragraphs. Note that
during the movement of the driver to the chosen spot, the assistant agent
can receive new information about spots. That might make him suggest an
alternative spot to the driver that would better meet his needs, following the
generic behavior that we have just described.

Every agent makes a decision individually, and based on his own knowl-
edge, regarding the spot choice. If agents A and B cannot exchange their
information, because their communication fields did not overlap directly or
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via other vehicles, they might head towards the same spots and there might
be a conflict on the same spot. The cooperation models defined in the fol-
lowing sections will try to limit the occurrences of such a situation. In our
experiments, we verify if this situation happens, with respect to the cooper-
ation model in the one hand and to defined parameters in the other.

The itinerary module calculates the travel times based on the latest known
status of the network. The chosen spot is then the best possible for the driver
when the assistant take his decision. At each reception of information about
available spots, the itinerary module recalculates the shortest paths with the
new status of the traffic. There is a continuous replanning for the drivers
until they reach the chosen spot, that makes these choices the best possible,
provided the knowledge of the agent and the absence of a central planner.

3.2.2. “Coopetition” model

The “Coopetition” model is a combination of cooperation and competi-
tion (Luo, 2007). In our implementation of this model, agents are indeed
cooperative, because they altruistically share information about spots. But
they are also competitive, because they do not share an information about a
spot if they are interested in it and planning to take it. When the decision
module chooses a spot, it deletes the information corresponding to the pro-
posed spot from F . The removal of the information about this spot reduces
its spread within the community. Thus, the assistant agent increases the
driver’s chances of finding the spot free.

3.2.3. Fully cooperative model

In the fully cooperative model, the agents exchange the information about
the spots, but they also exchange their preferences about the parking spots
as well. Indeed, they broadcast their intentions to the other agents. In this
model, F contains tuples {< spot, timediscovery, timereach, timeintention >}.
The timeintention and timereach define the moment when the agent took a
decision to head toward a spot and the time needed for him at that moment
to reach the spot. This way, every agent would know if he can be at a spot
before another has reached it. If not, he would choose another spot with
more chances for him to get it. The fields spot and timediscovery together
with the θ parameter are still used to filter the O and F sets with the ⊕, 	
and � operators.
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4. Experiments

In a dynamic and online problem such as the urban parking problem, eval-
uating a new proposal is an issue. Indeed, optimal solutions are for static
problems where the problem data do not change during execution. Optimal
solutions also assume the presence of a central system that optimizes every
vehicle’s route. To find optimal solutions for this problem, we would have to
solve a static allocation problem with each modification in the problem data
(traffic times, new driver, new available spot, etc.). Provided this difficulty,
and since we propose fully distributed solutions, our objective in this exper-
iments section is to compare the system behavior with the two cooperation
models that we propose for the drivers (coopetitive and cooperative). In all
the simulations, the two models are compared with a default model, where
the drivers are not informed at all (called the reference simulation).

4.1. Configuration

To demonstrate the effectiveness and utility of our proposal, we have
conducted many series of simulations. Our objective is to assess three hy-
pothesis. The first hypothesis is that inter-vehicular communication has
positive impact on urban parking. To do so, we compare simulations results
with inter-vehicular communication and driving assistance, with simulations
where drivers look for spots on their own. The second hypothesis is that
the quality of the result depends on the quality of F , thus declaring drivers
intentions about spots is better for urban parking. To assess this hypothesis,
we compare results with the coopetitive model versus results with the coop-
erative model. The third hypothesis is related to communication costs, and
states that the number of messages per agent is less in a system with inter-
vehicular communication than the number of messages treated by a central
server guiding the drivers.

In all of these simulations, the criterion to minimize is the average time
spent to find a spot. We use the road network of the city of Saint Etienne,
France. We place 124 spots on this network. We have 300 agents in all the
simulations, and we vary the number of agents in the community from 100
to 300 with a step of 20 agents. As a consequence, we vary the number of
agents outside the community from 200 to zero.

We define two system parameters. The first parameter is θ, the informa-
tion lifetime in the agent’s knowledge base. The second parameter is r, the
radius of information broadcast around a vehicle. θ is expressed in simulation
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time cycles while a value of r = 1 is proportional to 4.26 meters. To tune
the two system parameters θ and r, we define mean values and vary the two
parameters around these values. For r, the mean value is chosen so that the
communication range of 200 agents (the mean number of considered agents)
cover the whole network if placed optimally. The computed value is 12. We
vary the values of r in {5, 10, 15, 20}, then in {5, . . . , 60} for specific tests.
For θ, we run a first set of experiments to find a mean search time, which we
use as a mean value for θ. The computed value is 14. We choose the values
of θ in {5, 10, 15, 20}, then in {5, 10, . . . , 35}.

4.2. Results

In the following four paragraphs, we test our three hypothesis and we
assess the impact of the parameters θ and r.

4.2.1. Cooperative Vs. coopetitive model

The first set of experiments is related to the comparison between three
simulations:

1. a simulation with no intervehicular communication

2. a simulation with intervehicular communication and a coopetitive model

3. a simulation with intervehicular communication and a cooperative model

Figure 4: Cooperative model (with θ = 15)

Figure 4 provides the results related to the cooperative model with θ = 15.
The results with θ ∈ {5, 10, 20} will be reported in the next subsection. The
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x-axis reports the number of considered agents in each simulation and the
y-axis reports the improvements w.r.t a simulation with no intervehicular
communication. Each point in the different curves represents an average of
20 simulation runs. Results show that the cooperative model outperforms
the reference simulation. However, starting from 240 agents, the difference
between the two models becomes less important. This result validates the
first hypothesis: using intervehicular communication and driving assistance
is indeed beneficial for urban parking.

Figure 5: Coopetitive model (with θ = 15)

An example of results related to the coopetitive model is reported in
Figure 5, with θ = 15. The results with θ ∈ {5, 10, 20} have the same trend,
and suggest the same interpretation. The results show that the coopetitive
model outperforms less and less the reference simulation when we consider
from 100 to 180 agents. Starting from 200 agents, the reference simulation
gives better results. That means that when the number of agents becomes
widely greater than the number of available spots (3 agents per 2 spots), it
becomes useless to use urban parking assistance using a coopetitive model.
This is due to the fact that hiding the chosen spot by the agent might lead
several agents to choose the same spot, which is called “multiple-car-chasing-
single-space” (Shi et al., 2004), especially when the number of available spots
becomes limited. The figure 6 shows the effect of the chosen model on the
concentration of vehicles around spots. We see clearly that the cooperative
model enables to limit this concentration. Hypothesis 2 is also valid.

24



Figure 6: Density of the agents searching for a spot (300 agents and θ = 15)

In the remainder of this experiments section, we use the simulation based
on the cooperative model for investigating other aspects of the applications.

4.2.2. Impact of information lifetime

In the following series of simulations, we investigate the impact of the
parameter θ, expressing the information lifetime, on the average search time.
The results are reported in Figure 7. As we can see, a greater value of θ
is beneficial for urban parking, since the improvements w.r.t the reference
simulation are higher with higher values of θ. However, we observe a stag-
nation of the improvement beyond the mean value of θ = 15. Indeed, the
results are almost the same with θ = 15 and θ = 20. This result suggests
that there is an optimum value of θ to be found, beyond which it is useless to
keep information about spots. Indeed, high values of θ incur large data to be
stored and exchanged between vehicles. If the marginal benefit of increasing
θ becomes negligible, it is better not to increase it. This value has to be
found and tuned for every considered region and each considered timeframe.
Moreover, these results confirm that the use of θ reflects the volatility of the
parking spots (see section 3.2.1). Indeed, Figure 7 shows that the increase
of θ influences mostly the result with a low volatility, i.e. when the number
of agents is less than 240.

4.2.3. Impact of communication field

In the following series of simulations, we investigate the impact of the
parameter r, expressing the communication field of the vehicles. In an ur-
ban area, vehicles communication fields can be limited due to obstacles, the
objective of our investigation is to check whether lower communication field
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Figure 7: Impact of information lifetime, with θ = {5, 10, 15, 20}

would significantly impact quality of service. Besides, it would be interesting
to artificially limit that field since a higher value of r incurs higher number of
exchanged messages and also more information to store and manage. Besides,
the value of r cannot be increased indefinitely. Indeed, as the communication
range r increases, it may cause communication interference and worsen the
communication efficiency as well as the application built upon. In (Schmidt
et al., 2011), it is specified that the degradation in VANETs starts to become
significant starting from a range of 300 meters. In our simulation, r = 60 is
equivalent to 255.6 meters and remains lower than the 300 meters threshold.

The results are reported in Figure 8. We have varied the value of r from
5 to 60 with a step of 5. As we can see it, a greater value of r is always
beneficial, since the improvements w.r.t the reference simulation are higher
with higher values of r. We also observe that the best results are with θ = 10
and θ = 15, higher values of θ provide worse results. However, whatever
the value of θ, we observe less and less improvement starting from r = 25.
There is a balance to find between the value of r and the number of incurred
exchanged messages. This will be the object of the following paragraph.

4.2.4. Number of messages

In the centralized version, each agent informs a central server when he
releases a parking spot or if he finds a proposed spot occupied. The central
server performs the choice of the spots, based on the vehicle knowledge and
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Figure 8: Impact of the variation of r

following the cooperative model. Thus, the central server mimics the same
behavior of the cooperative model, and there is no difference in terms of
travel times between the cooperative and central solutions. The objective is
only to compare the number of messages per agent in the cooperative model
with the number of messages manipulated by the central server.

We vary r from from 5 to 60 with a step of 5. The results are reported
in Figure 9. Each point in the curve is the average of the simulation results
with θ = {0, 5, 10, . . . , 35}. As expected, a greater value of r incurs higher
number of exchanged messages in the cooperative model (r has obviously no
impact on the centralized version since vehicles don’t communicate directly).
However, this number remains inferior to the number of messages handled
by a central server until r = 45. Beyond this value, the cooperative model
generates more messages per agent than the centralized version.

For this series of experiments, it seems than a value of r = 25 is a good
compromise between search time optimization (around 27% better than the
reference simulation) and number of exchanged messages (around 2000, which
is 5 times less than the results with r = 60). These results validate hypothesis
3.
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Figure 9: Number of messages (centralized vs. cooperative model)

5. Related works

In this section, we compare our proposal with the approaches of the lit-
erature. Section 5.1 discusses alternatives to our modeling of OLRA and
section 5.2 discusses other solutions to urban parking management.

5.1. Alternatives in resource allocation problem modeling under space and
time constraints

Several allocation problems face the constraints related to space or time
constraints. The Online Resource Allocation (ORA) problems deal with the
time constraint while the Localized Resource Allocation (LRA) deals with
the space constraint. The knowledge about resources and/or consumers,
but also the allocation process itself, can be constrained by the time or space
properties of the problem. In this section, these two constraints are discussed,
either when the space and time properties are considered separately (ORA
and LRA) or together.

A first constraint in the problem considered in this paper is related to the
availability of the information about resources and/or consumers during the
allocation process. In ORA, the information is not known at the beginning
of the allocation. The satellite exploitation (Narula-Tam et al., 2004) is an
example of such problems, where image requests are submitted dynamically.
The work in (Lardieri et al., 2007) is another example where the authors
propose an architecture supporting dynamic resource management with a
reallocation process to optimize and reconfigure system resources at runtime
and to adapt to changing mission needs and resource status. In LRA, the
information is known in a specific area. The domain that faces frequently this
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kind of allocation problems is telecommunication. In Madan et al. (2010),
the objective is to find the optimal spectrum and power allocation between
users in a telecommunication cell. In Ta et al. (2005), the authors propose
a real-time truck allocation process to enhance the efficiency of the hauling
operation.

The second constraint concerns space. In smart grids for instance (e.g. (Hom-
Chaudhuri and Kumar, 2011)), the allocation problems are generally LRA
problems, since the objective of the allocation is to reduce the transactions
price which depends strongly on the distance between resources and con-
sumers. Another instance of space constraints of the allocation process
is Dohler et al. (2004), since the objective in a multi-hop communication
system is to optimize the bandwidth and power allocation to each relaying
hop over spatially separated relaying mobile terminals to drastically increase
end-to-end capacity.

When the allocation problem has space-time characteristics, one of them
is often dominant. For instance, the space dimension is implicit if the model-
ing considers the time to reach the resource. Resource allocation in wireless
cellular networks (e.g. in (Madan et al., 2010)) tackles the problem of wireless
channels allocation in an online fashion because of the time-varying nature
of the resources. The resource is localized but the main issue is related to its
online nature.

This partial modeling does not enable to take into consideration simul-
taneously and explicitly the constraints related to space and to time. For
instance, if the space is not modeled explicitly, we cannot express the fact
that the consumer knowledge about a resource depends on the distance be-
tween them. This was the choice of the authors in (Topaloglu and Powell,
2005), where they model the problem of resource allocation related to fleet
management. They reduce the problem to a dynamic allocation problem by
decomposing it into sub-problems since the resource requests are known in
well-determined time and area.

Our contribution is to introduce an explicit representation of the physical
environment in the problem, and to consider both time and space constraints.
This notably allows us to consider that consumers do not have complete
knowledge about resources and their states following the space and time
dimensions. To the best of our knowledge, such a modeling has not been
proposed so far.
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5.2. Urban parking management

Several studies have identified the importance of better parking systems
to improve the quality of life. Several works have proposed solutions to help
drivers find a place as soon as possible. In the following paragraphs, we
present the current research on this subject, from the proposals for closed
parking, to outdoor and urban areas. These works rely mostly on sensors in
the environment, some propose reservation methods, others rely on vehicle-
to-vehicle interaction and multiagent approaches. This section is structured
as follows: First, we present the algorithms that consider controlled environ-
ment such as closed parkings. Then we present the extension of these algo-
rithms to outdoor environment. The next paragraph presents the reservation-
based approaches. Intervehicular communication and agent based solutions
for urban parkings are presented in the next two paragraphs.

A great number of the existing solutions for parking management de-
tect parking spots in controlled environments such as closed parking. For
instance, ParkSens3 is a parking spots locators system that senses the occu-
pancy status of a parking spot with a magnetic sensor. Commercial systems
for the indoor parking management have also been proposed. For instance,
SIPARK is a parking management developed by Siemens that guides drivers
to empty parking spaces in an indoor parking. The system monitors every
single parking spot with ultrasonic detectors. Airports also provide more
and more real-time information on available parking spaces to drivers, us-
ing electronic signs about parking availability (Shin and Jun, 2014). Even
though these systems are very useful, they are however circumscribed to
single protected areas or buildings.

In (Yoo et al., 2008), the authors have developed a wireless sensor net-
work for outdoor environment to extend monitoring from indoor to outdoor.
San Francisco is the first city to adopt this type of intelligent system. Indeed,
it has deployed SFpark4 for the management of parking places in real time.
The collection of real-time information is done through ground sensors. They
are connected to a wireless network and thus allow to indicate at all times
the presence or absence of cars on a place and transfers this information to
a centralized database. Drivers can be informed of the availability through
various means, such as electronic road signs placed along the streets, dynamic

3http://www.parksens.net/
4sfpark.org/
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maps on the website dedicated to mobile applications. The authors in (Shin
and Jun, 2014) also propose a guidance algorithm, in which information
about spots is discovered via sensors. In (Giuffrè et al., 2012), the authors
have proposed an architecture to provide parking management solutions for
street parking, using sensor network. Proposals using central information
and sensing infrastructure include (Mackowski et al., 2015) and (He et al.,
2015). In (Samaras et al., 2014), the authors use a method for estimating the
free size of parking spots using wireless sensors. In France, the first experi-
ment took place in Lyon in early 2009 with the OptiSur project (Giraudon
et al., 2013). The system analyzes the presence of vehicles and calculates the
length of the parking spot with sensors under the roadway every 2.5 meters
that communicate via RFID. Information is updated every 10 seconds and
disseminated to clients on their mobile devices. To consider real-time envi-
ronment, the authors in (Shi et al., 2004) used fuzzy clustering of drivers,
and assigned spots considering the preferences of each group of drivers. With
these works, it is possible to manage parking spots for both indoor and out-
door environments in real-time. However, since they use sensors to collect
information, they require significant investments, in contrast to the solution
we propose in this paper.

To improve parking guidance, new processes such as online reservation
have been adopted in parking management systems. The bay area rapid
transit (BART), in San Francisco/Oakland metropolitan area, has been de-
veloped as a centralized intelligent reservation and real time availability sys-
tem which provides parking availability via telephone and internet. The
authors in (Teodorovic and Lucic, 2006) have also introduced a reservation
function for urban parking. Geng and Cassandras (2012) have proposed a
reservation system and dealt with an optimal allocation problem of parking
spot considering parking cost and distance to destination. The e-car concept
presented in (Hodel and Cong, 2003) offers the driver to book online a park-
ing space. In (Chen et al., 2015), the authors consider a smartphone-based
parking reservation system. In these solutions, it is assumed that informa-
tion is perfect and some authors propose a program to achieve an optimum
allocation of parking spaces. In our system, the spots are uncontrollable and
such central reservation and optimization is neither desirable nor possible.

Intervehicular communication has also been used for parking guidance,
in several ways. For instance, SPARK (Rongxing et al., 2009) is an ap-
plication of smart car that offers a new way of parking for large parking
spots using communication in a VANET. Another work in this context is
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presented in (Delot et al., 2009). The authors employ inter-vehicular com-
munication where a driver releasing a parking place disseminates information
to her neighbors and assigns the resource to one of them. Thus, this solu-
tion assumes that the driver remains in the vicinity of the place and nearby
vehicles that are interested until the allocation is made. In (Caliskan et al.,
2006), the authors propose an algorithm using a VANET and based on the
dissemination of information regarding the state of urban parking fee. They
produce such information and disseminate them to nearby vehicles, then the
vehicles exchange information through inter-vehicular communication. Read-
ers interested in VANETs solutions for parking assistance are invited to refer
to (Baldev and Ghosh, 2015) for a recent review. As we can see it, some stud-
ies have analyzed the contribution of VANETs to parking context (Szczurek
et al., 2010; Vaghela and Shah, 2011), but very few researches explore the
impact of VANETs on the optimization of the parking process (Tasseron and
Martens, 2014).

Besides, several agent-based solutions have been proposed for urban park-
ing management. For instance, the authors in (Benenson et al., 2008) have
proposed an agent-based model simulating parking in a city. The purpose
is to assess the impact of additional parking supply. The authors in (Chou
et al., 2008) have also proposed an agent-based solution where the parking
guidance is performed by negotiation between drivers and the parking based
on parking price. Some other researchers have investigated driver behavior
in urban parking environment. For instance, in (Lan and Shih, 2014), the
authors have designed a phone-based system to track a driver’s trajectory
to detect when they are about to leave their parking spot. This approach
is complementary to ours, in which case, the information about spots avail-
ability would be created sooner. Some works have proposed parking spot
search algorithms to give drivers the highest chances to find a free parking
spot. For instance, in (Thompson and Richardson, 1998), the authors have
proposed a model for estimating the utility of a car park and the choice
model of a driver, taking into account access, waiting, direct and egress cost
components. In (Thompsona et al., 2001), they have proposed a behavioral
model of parking choice when faced with parking signs. Again, these works
are complementary with ours, since they provide an extended choice model
that could be integrated in our agents behaviors.

The majority of solutions in the literature are centralized and use sensors
to collect information, they require significant investments in contrast to
the solution we propose in this paper. A less expensive option is explained
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in (Suhas et al., 2009), where the authors have proposed to use an architecture
called ParkNet based on a network of mobile sensors positioned in the vehicle
that collects information about the availability of parking places in an urban
area, along with the movement of the vehicle. They have proposed two
architectures: a centralized architecture and a distributed architecture. In
the distributed architecture, another vehicle-related sensors act as detectors
of places and disseminators of information to other sensors. Our proposal
in this paper is even cheaper, since vehicles do not scan the environment
looking for parking spots, this information being generated through actual
releases of spots.

6. Conclusion

In this paper, we propose a modeling for the resources allocation problem
taking into account simultaneously the location and the moment when the
resources are available. Our modeling is well adapted to the transportation
domain where many applications are characterized by the difficulty to take
into account their space-time dimension. Our modeling is able to take into
account several kinds of constraints: i) space constraints: the resources or
consumers have static or dynamic positions?; ii) time constraints: do the
availability of the resources and needs of consumers change overtime?; iii)
space-time constraints: do the resources and the consumers have to be at
the same location?

We have used our modeling to specify the management of parking spots in
an urban area and proposed a multiagent solution. The system is based on a
community of drivers that interact to keep up-to-date information regarding
the availability of parking spots. Communication between agents is sup-
ported by an inter-vehicular network with a radius of restricted broadcast,
ensuring the consideration of local information. Our system works with-
out prior information on the places and no central storage of information.
The distributed solution also allows to provide quick spots proposals to the
drivers, since assistant agents do not perform complex allocation, but only
computes and compares shortest paths.

Our experiments have mainly validated three hypothesis: inter-vehicular
communication has positive impact on urban parking (with a cooperative
model), declaring drivers intention about spots is better for urban parking
and the number of messages per agent is less important than for a central
server (until a threshold of communication range).
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We are considering different perspectives to this work. Among them, we
want to improve the decision function of the agents in order to take into
account other criteria than the time and space and to evaluate how the
aggregation of their preference impacts the quality of the solutions.
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Schmidt, R. K., Kloiber, B., Schüttler, F., Strang, T., 2011. Degradation
of communication range in vanets caused by interference 2.0-real-world
experiment. In: Communication Technologies for Vehicles. Springer, pp.
176–188.

Shi, Han, B., Wang, J., 2004. Study of the mode of real-time and dynamic
parking guidance and information systems based on fuzzy clustering analy-
sis. In: Proceedings of 2004 International Conference on Machine Learning
and Cybernetics, 2004. IEEE, pp. 2790 – 2794.

Shin, J.-H., Jun, H.-B., 2014. A study on smart parking guidance algorithm.
Transportation Research Part C: Emerging Technologies 44, 299 – 317.

Shoup, D. C., Association, A. P., et al., 2005. The high cost of free parking.
Vol. 206. Planners Press Chicago.

Suhas, M., Sanjit, K., Gruteser, M., Trappe, W., 2009. Parknet: A mobile
sensor network for harvesting real time vehicular parking information. In:
MobiHoc S3’09: Proceedings of the 2009 MobiHoc S3 workshop on Mobi-
Hoc S3. pp. 25–28.

Szczurek, P., Xu, B., Wolfson, O., Lin, J., Rishe, N., 2010. Learning the
relevance of parking information in vanets. In: Proceedings of the seventh
ACM international workshop on VehiculAr InterNETworking. ACM, pp.
81–82.

Ta, C. H., Kresta, J. V., Forbes, J. F., Marquez, H. J., 2005. A stochastic
optimization approach to mine truck allocation. International journal of
surface mining, reclamation and environment 19 (3), 162–175.

Tasseron, G., Martens, K. ans Van der Heijden, R., November 2014. The
potential impact of in-car information on urban parking. the case of spa-
tial heterogeneity and heterogeneous driver behavior. Tech. rep., TRAIL
Research School, Radboud University Nijmegen, The Netherlands.

37



Teodorovic, D., Lucic, P., 2006. Intelligent parking systems. European Jour-
nal of Operational Research 175 (3), 1666 – 1681.

Tesauro, G., 2005. Online resource allocation using decompositional rein-
forcement learning. In: Proceedings of the 20th national conference on
Artificial intelligence. Vol. 2. AAAI Press, pp. 886–891.

Thompson, R. G., Richardson, A. J., 1998. A parking search model. Trans-
portation Research Part A: Policy and Practice 32 (3), 159 – 170.

Thompsona, R. G., Takadab, K., Kobayakawab, S., 2001. Optimisation of
parking guidance and information systems display configurations. Trans-
portation Research Part C: Emerging Technologies 9 (1), 69 – 85.

Topaloglu, H., Powell, W. B., March 2005. A Distributed Decision-Making
Structure for Dynamic Resource Allocation Using Nonlinear Functional
Approximations. Operations Research 53, 281–297.

Vaghela, V. B., Shah, D., 2011. Vehicular parking space discovery with agent
approach. In: Proceedings of the International Conference & Workshop on
Emerging Trends in Technology. ACM, pp. 613–617.

Valleley, M., Jones, P., Garland, R., Macmillan, A., 1997. Parking perspec-
tives: A sourcebook for the development of parking policy. Landor Pub-
lishing.

Yoo, S.-E., Chong, P. K., Kim, T., Kang, J., Kim, D., Shin, C., Sung, K.,
Jang, B., 2008. Pgs: Parking guidance system based on wireless sensor net-
work. In: 3rd International Symposium on Wireless Pervasive Computing,
2008. ISWPC 2008. IEEE, pp. 218 – 222.

38


