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ABSTRACT

The aim of this study is to classify grassland management
practices using satellite image time series with high spatial
resolution. The study area is located in southern France where
52 parcels with 3 management types were selected. The spec-
tral variability inside the grasslands was taken into account
considering that the pixels signal can be modeled by a Gaus-
sian distribution. A parsimonious model is discussed to deal
with the high dimension of the data and the small sample
size. A high dimensional symmetrized Kullback-Leibler di-
vergence (KLD) is introduced to compute the similarity be-
tween each pair of grasslands. The model is positively com-
pared to the conventional KLD to construct a positive definite
kernel used in SVM for supervised classification.

Index Terms— Satellite image time series, high dimen-
sion, Kullback-Leibler divergence, grassland management
type, classification.

1. INTRODUCTION

In the frame of sustainable development, the study of land-
scape state and its evolution are required to understand en-
vironmental changes and biodiversity loss. To this aim, re-
search in landscape ecology is devoted to understanding how
the landscape configuration and composition impact on bio-
diversity and services provided. This research requires the
identification and characterization of semi-natural elements in
the landscape. Indeed, semi-natural habitats are perennial and
less inclined to be disturbed. They are sources of biodiversity
in farmed landscapes. Particularly, permanent grasslands, as
they represent one of the largest terrestrial landscape (they
cover 18% of France territory [1]), are a source of signifi-
cant animal and vegetal biodiversity [2, 3], providing many
ecosystem services such as carbon storage, erosion regula-
tion, crop pollination, biological regulation of ravagers [4].
Although policies have been adopted to protect biodiversity in
semi-natural landscapes (European Union Habitats Directive,
92/43/EEC), the permanent grasslands area is continuously
decreasing, leading to a loss of biodiversity [3, 5].

Grasslands being the main livestock feeding resource, the
species composition in semi-natural grasslands is also im-
pacted by the management practices [5, 6] . Indeed, the an-
thropic events on the grasslands, like mowing and/or casual
grazing, disturb the natural cycle and the structure of the veg-
etation. Therefore, it is essential to identify the management
practices in each parcel in order to predict their effect on bio-
diversity and related ecosystem services.

In this context, remote sensing appears to be an appro-
priate tool to characterize grasslands at the landscape scale,
because of the large spatial coverage and revisit frequency of
satellite sensors. However, the reflected signal of the grass-
lands is more difficult to interpret compared to mono-specific
lands like crops, due to the diversity and the mixing of grass-
land species. Furthermore, grasslands are relatively small el-
ements of the landscape (in the range of the hectare), which
require high spatial resolution data to be distinguishable [7].
Given their phenological cycle and the punctuality of the an-
thropic event (e.g., mowing), very dense time series through
the vegetation cycle are necessary to identify the management
types [8].

Until recently, satellite missions offering high frequency
of revisit had low spatial resolution (i.e., MODIS), and high
spatial resolution missions did not offer dense time series.
New missions like Sentinel-2 [9], with very high revisit fre-
quency (5 days) and high spatial resolution (10 meters) offer
new possibilities for grasslands monitoring [10].

The aim of this study is to identify grassland manage-
ment practices using time series of a spectral vegetation index
(NDVI) with high temporal resolution. Management prac-
tices are defined at the parcel scale. Classical pixel-oriented
approaches result in the appearance of misclassified pixels
within a class [11], leading to non-homogeneous objects that
are unrealistic ecologically.

The first contribution of the method was to take into ac-
count the spectral variability in a grassland. We considered
that the distribution of the pixel spectral reflectance in a given
grassland can be modeled by a Gaussian distribution. Then,
the Kullback-Leibler divergence was used to compute the dis-
tance between each couple of grasslands. To deal with the
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Fig. 1. Distribution of the number of pixels per grassland.
The red line corresponds to the number of parameters to be
estimated for each grassland for a conventional multivariate
Gaussian model. This number is derived from the number of
variables using the formula d(d+ 3)/2 = 170 for d = 17.

small sample size compared to the number of temporal vari-
ables, a parsimonious Gaussian model was proposed as a sec-
ond contribution.

The object-oriented approach was compared to a pixel-
based approach, through supervised classification.

In section 2, the dataset is introduced. Then, the high di-
mensional Kullback-Leibler divergence method that we de-
velopped is described in section 3. Finally, the experimental
results conducted on real SITS are presented.

2. DATASET

2.1. Study site

The study site is located in south-west France, near Toulouse,
in a semi-rural area where livestock farming is in decline in
favor of field crops. Grasslands are mostly used for forrage or
silage production. The extent of the area corresponds to the
satellite image extent (4400 km2).

2.2. Field Data

The dataset is composed of 52 parcels with their management
methods. The homogeneity has been controlled during a field
survey in May, 2015, where the past and current management
practices were also determined, by interviewing the farmers
or grassland owners. We identified 3 management types dur-
ing the vegetation cycle: one mowing (34 parcels), grazing
(10 parcels) and mixed management (mowing then grazing, 8
parcels). We used them as classes for the classification. The
grasslands have been digitalized by hand.

2.3. Satellite data

The satellite image time series (SITS) is composed of 17
multispectral Formosat-2 images (8 meters spatial resolution)
from 2013. The images are provided with a mask of clouds
and shadows [12]. The Normalized Difference Vegetation
Index (NDVI) [13] was used during this study: each pixel
x ∈ R17.

To remove the noise due to clouds and shadows in the
SITS, the NDVI was smoothed applying the Whittaker filter
pixel-by-pixel [14].

3. HIGH DIMENSIONAL KULLBACK-LEIBLER
DIVERGENCE (HDKLD) METHOD

3.1. Symmetrized KLD

The pixel reflectance distribution of grasslands is modeled by
a Gaussian distribution, i.e. the density function of pixels x
is, conditionally to grassland gi, a Gaussian distribution. To
compute the similarity of the distribution of each grassland,
we used the symmetrized Kullback-Leibler divergence [15].
The symmetrized KLD between two Gaussian distributions
can be written as:

KLD(gi, gj) =
1

2

[
Tr
[
Σ−1i Σj + Σ−1j Σi

]
+

(µi − µj)>
(
Σ−1i + Σ−1j

)
(µi − µj)

]
− d (1)

where Σi is the covariance matrix, µi is the mean vector
of the signal, d the number of variables and Tr is the trace
operator. They are estimated by their empirical counterparts
µ̂i =

1
ni

∑ni

l=1 xl and Σ̂i =
1
ni

∑ni

l=1(xl − µ̂i)(xl − µ̂i)>
with ni the number of pixels in grassland i.

Unfortunately, the number of pixels used in the estimation
is low compared to the number of variables. Figure 1 shows
that the number of pixels of most grasslands is lower than the
number of parameters to estimate. Thus, the covariance ma-
trix is non invertible for these grasslands. Furthermore, for the
other grasslands, the estimated covariance matrices in eq.(1)
are ill-conditioned making the computation of their inverse
numerically unstable. To cope with this issue, specific deriva-
tions are considered in the next section.

3.2. High Dimensional Symmetrized KLD

In this work, a high dimensional model is used to model the
Gaussian distribution of grasslands [16]. The model assumes
that the last (lowest) eigenvalues of the covariance matrix are
equal. According to this model, the covariance matrix of
grassland i can be written as:

Σi = QiΛiQ
>
i + λiId (2)

where:



• Qi =
[
qi1, . . . ,qipi

]
,

• Λi = diag
[
λi1 − λi, . . . , λipi − λi

]
,

• Id is the identity matrix of size d = 17,

• qij , λij are the jth eigenvalues/eigenvectors of the co-
variance matrix Σi, j ∈ {1, . . . , d} such as λi1 ≥
. . . ≥ λid,

• pi is the number of non-equal eigenvalues,

• λi is the multiple eigenvalue corresponding to the noise
term (last and equal eigenvalues).

Following this model, the inverse of the covariance matrix
can be computed explicitly:

Σ−1i = −QiViQ
>
i + λ−1i Id (3)

with Vi = diag
[

1
λi
− 1

λi1
, . . . , 1

λi
− 1

λipi

]
, and eq.(1) can be

written as:

HDKLD(gi, gj) =

1

2
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1
2
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− λj Tr
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1
2
i Q>i (µi − µj)‖2 − ‖V

1
2
j Q>j (µi − µj)‖2

+
λi + λj
λiλj

‖(µi − µj)‖2 +
λ2i + λ2j
λiλj

d
]
− d (4)

where ‖L‖2F = Tr(L>L) is the Frobenius norm.

3.3. Estimation

The parameters of eq.(4) are estimated for each grassland i
from the empirical mean vector and covariance matrix such
as [16]:

• λ̂i =
Tr(Σ̂i)−

∑
j≤pi

λ̂ij

d−pi ,

• λ̂ij , q̂ij are the first eigenvalues/eigenvectors of Σ̂i,
j ∈ {1, . . . , pi}. Thus, only the pi first eigenval-
ues/eigenvectors are required and the unstable estima-
tion of the eigenvectors associated to small eigenvalues
is avoided,

• p̂i corresponds to the number of eigenvalues needed to

reach a given percentage of variance t,
∑p̂i

i=1 λ̂i∑d
i=1 λ̂i

≥ t, t
being tuned during learning.

3.4. Properties of (HD)KLD

The (HD)KLD measure is a semi-metric, i.e., it satisfies only
three first axioms of a metric [17]: (HD)KLD(gi, gj) ≥
0, (HD)KLD(gi, gi) = 0 and (HD)KLD(gi, gj) =
(HD)KLD(gj , gi). This semi-metric can be turned to a
positive definite kernel function by plugging it into a radial
basis function [18]: K(gi, gj) = exp

[
− (HD)KLD(gi,gj)

2

σ

]
with σ ∈ R>0. This kernel is used in the experimental section
with a SVM.

4. EXPERIMENTAL RESULTS

4.1. Competitive method

In order to test the effectiveness of the proposed approach,
the kernel built in the previous section was used to classify
the data using SVM, both for the conventional KLD and the
HDKLD. In order to make tractable the inverse problem in
KLD, a small (10−9) ridge regularization was done for the
covariance matrices. The Gaussian modelization was further
compared to the simple case where the pixel reflectance dis-
tribution of a grassland is modeled by the mean vector value.
Then grasslands are classified by SVM with a conventional
RBF kernel. Finally, a pixel-wise SVM classification with a
RBF kernel was performed and a majority rule inside each
grassland was done to extract one class label at the grass-
land scale. The SVM and the HDKLD were implemented
in Python through the Scikit library. In the remaining of the
paper, the methods are denoted, KLD-SVM, HDKLD-SVM,
µ-SVM and P-SVM, respectively.

4.2. Protocol

All the parameters of each method were optimized using
cross-validation. The search ranges were σ ∈ {2−5, 2−4, . . . , 25}
for p-SVM and µ-SVM, σ ∈

{
28, 29, . . . , 212

}
for KLD-

SVM and HDKLD-SVM, C ∈ {1, 10, 100} for all the meth-
ods and t ∈ {0.80, 0.85, 0.90, 0.95, 0.99} for HDKLD-SVM.

Given the small size of the reference data, a Leave One
Out procedure was chosen. One grassland is iteratively clas-
sified given all the other grasslands. The confusion matrix
is built during the process. The classification accuracy is as-
sessed with the Kappa coefficient and the statistical signifi-
cance of the observed differences are computed between each
result with the given formulae:

Z =
|K̂m − K̂n|√

v̂ar(K̂m) + v̂ar(K̂n)
.

4.3. Results

The Kappa coefficients resulting from the classifications are
the following: 0.09 for KLD-SVM, 0.57 for HDKLD-SVM,



0.41 for µ-SVM, 0.64 for P-SVM. All the methods are signifi-
cantly better than the KLD-SVM: the conventional KLD does
not perform well in this small sample size context. The pro-
posed model is robust to this configuration and outperforms
the conventional KLD. It allows a proper modelization of the
grassland at the parcel scale.

However, with this dataset, the obtained classification
between the object and pixel-wise approaches are statistically
equivalent since the Kappa coefficients between HDKLD-
SVM and P-SVM are not significantly different.

As an example, there was only one more well-classified
grassland with p-SVM compared to HDKLD-SVM. Thus, at
this step, no conclusion can be drawn about the performance
of HDKLD against µ-SVM and P-SVM.

The performance of these classification methods can be
different with a larger dataset and with more balanced classes.

If accepted, the discussion about the parameters of HD-
KLD model will be further detailed in the final version of this
paper.
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