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Differential-Algebraic Inclusions with Maximal Monotone Operators

The term differential-algebraic inclusions (DAIs) not only describes the dynamical relations using set-valued mappings, but also includes the static algebraic inclusions, and this paper considers the problem of existence of solutions for a class of such dynamical systems described by the inclusion

for a symmetric positive semi-definite matrix P ∈ R n×n , and a maximal monotone operator M : R n ⇒ R n . The existence of solutions is proved using the tools from the theory of maximal monotone operators. The class of solutions that we study in the paper have the property that, instead of the whole state, only P x is absolutely continuous and unique. This framework, in particular, is useful for studying passive differential-algebraic equations (DAEs) coupled with maximal monotone relations. Certain class of irregular DAEs are also covered within the proposed general framework. Applications from electrical circuits are included to provide a practical motivation.

I. INTRODUCTION

Set-valued dynamical systems are particularly useful for modeling when one does not have complete knowledge of the system parameters, or when the relation between certain variables of the system is not necessarily one-to-one. On other instances, the only information about the variables of the system appears in the form of an inclusion in a static set. To handle such scenarios, this article proposes the study of a relatively new class of differential inclusions, which not only comprise dynamic evolution of the state variable but also includes static algebraic set-valued relations. We use the term differential-algebraic inclusions (DAIs) to describe such systems, and study the inclusions of the form

d dt P x ∈ -M(x) (1) 
over a compact interval [0, T ], where x : [0, T ] → R n denotes the state trajectory of the system, P ∈ R n×n is a symmetric positive semi-definite matrix and M : R n ⇒ R n is a maximal monotone operator (see Definition 1). It is clear that, due to semi-definiteness of the matrix P , there are certain static relations encoded in [START_REF] Brogliato | Nonsmooth Mechanics: Models, Dynamics and Control[END_REF] which make it difficult to study the solutions of system class (1) with existing tools from the literature and, in particular, the theory of differential inclusions with maximal monotone operators cannot be directly applied here.
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For system class [START_REF] Brogliato | Nonsmooth Mechanics: Models, Dynamics and Control[END_REF], if P = I, then the resulting differential inclusion (DI) ẋ ∈ -M(x) is a well-studied object in the literature [START_REF] Brézis | Opérateurs Maximaux Monotones et Semi-Groupes des Contractions dans les Espaces de Hilbert[END_REF]. Such DIs form an important class of setvalued and nonsmooth systems. The applications of DIs with maximal monotone can be seen in various forms. Certain class of evolution inclusions where the set-valued dynamics are due to subdifferential of the indicator function of a convex set are a particular case [START_REF] Monteiro Marques | Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction[END_REF], which have found useful applications in the modeling of electrical and mechanical systems [START_REF] Brogliato | Nonsmooth Mechanics: Models, Dynamics and Control[END_REF], [START_REF] Vasca | A new perspective for modeling power electronics converters: Complementarity framework[END_REF]. Another instance of such DIs is observed in differential variational inequalities [START_REF] Pang | Differential variational inequalities[END_REF] which appear in the solutions of the optimal control problems. More recently, the control design problems for such systems has also attracted a lot of attention [START_REF] Tanwani | Stability and observer design for multivalued Lur'e systems with non-monotone, time-varying nonlinearities and state jumps[END_REF], [START_REF] Tanwani | On output regulation in systems with differential variational inequalities[END_REF]. The study of DAIs ( 1) is thus aimed at enlarging the class of systems treated in aforementioned references, and finding applications which cannot be treated within the existing frameworks.

Several physical systems are modeled as ordinary differential equations (ODEs) coupled with maximal monotone relations. In such cases, it often happens that the set-valued mappings that describe the maximal monotone relation are multliplied by non-square matrices which do not render the resulting map maximal monotone. This problem is solved in the literature by imposing a passivity relation between the variables constrained by the maximal monotone relation [START_REF] Brogliato | Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings[END_REF], [START_REF] Camlibel | Linear passive systems and maximal monotone mappings[END_REF]. This allows for rewriting the entire system dynamics as a DI with maximal monotone relation. Going by this line of thought, one motivation for studying the system class (1) comes from looking at a system of differential-algebraic equations (DAEs) (see [START_REF] Trenn | Distributional differential-algebraic equations[END_REF] for details), where the forcing terms are described by a maximal monotone relation. More formally, we consider DAEs of the form

d dt E x(t) = Ax(t) + Bz(t) (2a) 
w(t) = Cx(t) + Dz(t), (2b) 
where the variable z(•) is related to w(•) through the relation

w(t) ∈ F(-z(t)) (2c) 
for some given set-valued maximal monotone operator F : R dm ⇒ R dm . When E = I, it was shown in [START_REF] Camlibel | Linear passive systems and maximal monotone mappings[END_REF] that under passivity assumption on the quadruple (A, B, C, D), the system (1) can be rewritten as a differential inclusion of the form ẋ ∈ -M(x) for some maximal monotone M. One can then invoke the classical results from [START_REF] Brézis | Opérateurs Maximaux Monotones et Semi-Groupes des Contractions dans les Espaces de Hilbert[END_REF] to obtain existence and uniqueness of the solutions. Trying to generalize this idea for a singular E matrix does not always lead to a differential inclusion with maximal monotone operators. It is shown in this paper that under appropriate passivity assumptions on the matrix quintuple (E, A, B, C, D), system (2) can be rewritten in the form of inclusion (1), hence the solution theory for system (1) is also very relevant for studying the dynamical system (2). While system (2) already presents a generalization from the system class studied in [START_REF] Camlibel | Linear passive systems and maximal monotone mappings[END_REF], the utility of system class (2) can also be found in the modeling of electrical circuits with nonsmooth devices such as diodes and switches. An example is included in Section V for this purpose.

The remainder of the paper is organized as follows: Some basic definitions from convex analysis and the preliminary results are stated in Section II. The main result on existence of solutions for system class (1) appears in Section III. These results are applied to study DAEs with maximal monotone relations (2) under passivity assumption in Section IV, followed by an illustrative example in Section V.

II. PRELIMINARIES AND MOTIVATION

In this section, we recall the basic definitions and some standard results which will be used later in the paper.

A. Convex Sets

The results related to analysis of convex sets have been borrowed from [START_REF] Rockafellar | Convex Analysis[END_REF], [START_REF] Rockafellar | Variational Analysis, volume 317 of Gundlehren der mathematischen Wissenchaften[END_REF]. For a set S ⊂ R n , we denote the interior by int(S), the relative interior by rint(S), and the closure by cl(S). The horizon cone of S, denoted S ∞ , is defined as

S ∞ := {x | ∃ x v ∈ S, λ v 0 such that λ v x v → x} .
For S convex, we denote the normal cone to S at x by N S (x). For a linear map L : R m → R n , the kernel and range space are denoted by ker L and im L, respectively. Finally, we define L -1 (S) := {x ∈ R m | L(x) ∈ S}.

B. Maximal Monotone Operators

A set-valued mapping

F : R n ⇒ R n is called monotone, if y 1 -y 0 , x 1 -x 0 ≥ 0, (3) 
whenever y 0 ∈ F(x 0 ), y 1 ∈ F(x 1 ). The domain of the mapping

F, denoted dom(F) is the set {x ∈ R n | F(x) = ∅}.
Definition 1 (Maximal monotonicity): A monotone mapping F : R n ⇒ R n is called maximal monotone if for every (x, ŷ) ∈ R n ×R n \graph(F), there exists (x, y) ∈ graph(F) such that y -ŷ, x -x < 0. In other words, F is maximal monotone if an enlargement of graph(F) is not possible without destroying monotonicity.

Maximal monotonicity is a very important concept in variational analysis, as one readily sees that the subdifferential of convex (possibly nondifferentiable) functions are maximally monotone [START_REF] Rockafellar | Variational Analysis, volume 317 of Gundlehren der mathematischen Wissenchaften[END_REF]Theorem 12.17]. The mappings defined by positive semi-definite matrices are monotone, and continuous, hence they are also maximally monotone [START_REF] Rockafellar | Variational Analysis, volume 317 of Gundlehren der mathematischen Wissenchaften[END_REF]Example 12.7]. The following characterization of maximal monotone operators appeared in [START_REF] Löhne | A characterization of maximal monotone operators[END_REF], and will be used in the derivation of certain results in the paper. Proposition 1: A set-valued mapping M : R n ⇒ R n is maximal monotone if, and only if, the following hold i) M is monotone, ii) there exists a convex set

S M ⊆ dom(M) ⊆ cl(S M ), iii) M(x) is convex for all x ∈ dom(M), iv) for all x ∈ dom(M), M(x) ∞ = N cl(dom(M)) (x), where cl(dom(M)) is a convex set, v) graph(M) is closed.
As already stated in the introduction, there exist unique solutions to differential inclusions with maximal monotone operators on the right-hand side.

Theorem 1: Consider a maximal monotone mapping M : R n ⇒ R n , and the differential inclusion

ẋ ∈ -M(x), x(0) = x 0 . (4) 
For each x 0 ∈ dom(M), there exists a unique Lipschitz continuous function

x : [0, ∞) → R n such that • x(t) ∈ dom(M) and (4) holds a.e. • ẋ ∈ L ∞ ([0, ∞), R n ) and ẋ ∞ ≤ |M 0 (x 0 )|, where M 0 (x) denotes the least norm element of the set M(x). • if x 1 and x 2 satisfy (4) with initial conditions x 1 (0) = x 1 0 and x 2 (0) = x 2 0 , then |x 1 (t) -x 2 (t)| ≤ |x 1 0 -x 2 0 |, ∀ t ≥ 0.
There are two commonly used techniques, both somewhat constructive, for proving the result of Theorem 1. The first one relies on introducing a sequence of single-valued Lipschitz functions which converge to the least-norm element of the set-valued mapping M in the limit. The solutions of the resulting differential equations, called the Yosida-Moreau approximations, can then be shown to converge to a function that satisfies the properties listed in Theorem 1.

The second technique relies on constructing a sequence of piecewise constant functions. Each element of this sequence corresponds to a discrete approximation of the inclusion (4) with a certain sampling period. As the sampling period converges to zero, the corresponding sequence is shown to converge to the unique solution of system (4), see [START_REF] Brézis | Opérateurs Maximaux Monotones et Semi-Groupes des Contractions dans les Espaces de Hilbert[END_REF], or a more recent survey [START_REF] Peypouquet | Evolution equations for maximal monotone operators: Asymptotic analysis in continuous and discrete time[END_REF], for details on proof techniques.

C. Theoretical Motivation

We now state an academic example comprising a system of the form (2) which can not be represented as ẋ ∈ -M(x) for a maximal monotone M. For that, consider the system (2) defined by the quintuple

(E, A, B, C, D) = 1 0 0 0 0 1 0 0 0 , 0 0 0 0 1 0 0 0 1 , 1 1 1 , [ 1 α 0 ] , 0 (5) 
with -z ∈ F -1 (w) = max{0, w}, and some fixed scalar α.

We consider the set-valued operator F(x) := -Ax + BF -1 (Cx), and it is observed that

x → F(x)   x 1 x 2 x 3   →   max{0, x 1 + αx 2 } -x 2 + max{0, x 1 + αx 2 } -x 3 + max{0, x 1 + αx 2 }   .
To ensure that F(x) ∈ dom(E -1 ) = im E, we must take x 3 = max{0, x 1 + αx 2 }. This leads to ẋ ∈ -M(x) where the set-valued map M is given by

x → E -1 (F(x)), F(x) ∈ im E x →      max{0, x 1 + αx 2 } σ -x 2 + max{0, x 1 + αx 2 }   σ ∈ R    . By choosing σ < x 3 -2 Cx 2 x2
, one can find ŷ ∈ E -1 (F(x)) such that x ŷ < 0. Thus, the system defined by matrices in (5) cannot be described by inclusions of the form ẋ ∈ -M(x) for some maximal monotone operator M, and hence the results from existing literature cannot be used to analyze the solutions for the system class [START_REF] Brogliato | Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings[END_REF]. For this reason, we are motivated to look at the class of inclusions (1).

III. SOLUTIONS OF DAIS

The aim of this paper is to show existence of solution for system [START_REF] Brogliato | Nonsmooth Mechanics: Models, Dynamics and Control[END_REF]. The presence of some algebraic inequalities require us to define an appropriate concept of solution for such system class.

Definition 2: We call x : [0, ∞) → R n a solution of (1), if it satisfies the following two properties:

• For every t ≥ 0, we have x(t) ∈ M -1 (im P ),

• P x is Lipschitz continuous, and the inclusion (1) holds for Lebesgue almost every t ≥ 0. Based on this definition, we now state the first main result of this paper on existence of solutions for the DAI (1).

Theorem 2: Consider system (1) and assume that P is a symmetric positive semidefinite matrix, and M is a maximal monotone operator. Assume that

rint(im M) ∩ im P = ∅. (6) 
Then, for each x 0 ∈ M -1 (im P ), there exists a solution x with x(0) = x 0 in the sense of Definition 2 such that andd dt P x ∞ ≤ c 0 (x(0)), where c 0 (x(0)) is a constant that depends on the initial condition.

• d dt P x ∈ L ∞ ([0, ∞), R n ),
• if x 1 and x 2 are two solutions to (1), then

|P x 1 (t) -P x 2 (t)| ≤ γ P |x 1 (0) -x 2 (0)|
for some constant γ P > 0. In particular, P x is unique.

• there exists a matrix Q ∈ R (n-rank P )×n satisfying im P ⊕ im Q = R n , and a time-varying convex-valued mapping 1 S : [0, ∞) ⇒ R n-rank P such that Qx(t) ∈ S(t). The above theorem states that, under condition (6), solutions of (1) starting from an admissible set are defined for all times. However, the solutions are not necessarily unique. It is observed that, certain part of the solution described by P x is sufficiently regular and uniquely determined. The rest of the solution, which is not necessarily unique, is described by Qx. At this moment, we only introduce the time-varying set S(t) to which this nonunique component 1 The exact construction of S(•) is a part of the proof of Theorem 2.

belongs and essentially it comes from solving the static algebraic inclusion in [START_REF] Brogliato | Nonsmooth Mechanics: Models, Dynamics and Control[END_REF]. Whether it is possible to make a selection from the multivalued component S(•) which satisfies some regularity conditions, is still a topic under investigation. For the proof of Theorem 2, we first state two intermediate lemmas.

Lemma 1: Let P = P ≥ 0 and let M : R n ⇒ R n be a maximal monotone operator. Then there exists M : R n ⇒ R n maximal monotone and a coordinate transformation ξ = Hx such that

d dt P x ∈ -M(x) ⇐⇒ ξ = Hx ∧ d dt I 0 0 0 ξ ∈ -M(ξ).
Proof: Since P is symmetric, it is diagonalizable with an orthogonal coordinate transformation, i.e. there is an invertible matrix V with V -1 = V and a diagonal full rank matrix P 1 such that

P = V P 1 0 0 0 V = V P 1/2 1 0 0 I I 0 0 0 P 1/2 1 0 0 I V.
Let us now define the matrix H and the operator M as

H := P 1/2 1 0 0 I V and M(ξ) := H -M(H -1 ξ)
then ker P = ker [ I 0 0 0 ] H. Hence, d dt P x exists if and only if

d dt [ I 0 0 0 ] Hx exists, which results in d dt P x ∈ -M(x) ⇐⇒ ξ = Hx ∧ d dt I 0 0 0 ξ ∈ -M(ξ).
To show that M is maximal monotone, we make use of the characterization given in Proposition 1. Using the fact that M being maximal monotone already satisfies the five listed properties, it is now shown that the same holds for M.

i) To check monotonicity, take z i ∈ H(dom M) and y i ∈ M (z i ), for i = 1, 2, then (H y i , H -1 z i ) ∈ graph(M), and it follows that

y 1 -y 2 , z 1 -z 2 = H (y 1 -y 2 ), H -1 (z 1 -z 2 ) ≥ 0.
ii) It is noted that dom M = H(dom M), and the desired inclusions follow by taking

S M = HS M . iii) For each z ∈ H dom M, M(H -1 z) is convex, and so is H -M(H -1 z) = M(z). iv) Since cl(dom M) is convex, then so is cl(dom M) = cl(H dom M). Moreover, ( M(z)) ∞ = H -(M(H -1 z)) ∞ = H -N cl(dom(M)) (H -1 z) = N cl(H dom(M)) (z).
v) Using the fact that H -1 is single-valued and linear, it can be shown that graph( M) is closed. This completes the proof.

Lemma 2: Consider a maximal monotone mapping M : R n ⇒ R n , and decompose x ∈ R n as x := (x 1 , x 2 )

with x i ∈ R ni , i = 1, 2. Assume that rint(im M) ∩ (R n1 × {0} n2 ) = ∅. Then, for each x(0) ∈ S cons := M -1 (R n1 × {0} n2 ), the following differential inclusion ẋ1 0 ∈ -M(x) (7) 
has a solution x : [0, ∞) → R n , with x(t) ∈ S cons for each t ≥ 0, such that

• x 1 is unique and Lipschitz continuous, • ẋ1 ∈ L ∞ ([0, ∞), R n1
), and | ẋ1 | ≤ c 1 (x(0)), for some constant c 1 depending on x 1 (0). • x 2 (t) ∈ S(t), where S : [0, ∞) ⇒ R n2 is a convexvalued operator. Remark 1: Roughly speaking the statement of Lemma 2 says that the solution of ( 7) has some regularity associated to the x 1 component, while x 2 may not even be singlevalued. In the proof of this lemma, we express x 1 as a solution to a reduced order differential inclusion with a maximal monotone operator which guarantees the uniqueness, regularity, and the bounds on its derivatives. For x 2 , we are able to compute a time-varying set-valued mapping S, such that any selection of x 2 (t) ∈ S(t) would constitute a solution. It is not clear at this point whether S satisfies some continuity condition (in the sense of set-valued mappings), so that appropriate regularity claims can be made for x 2 . Proof of Lemma 2. Let G(y) := M -1 (y), and define G 1,0 :

R n1 → R n1 as G 1,0 (y 1 ) := x 1 ∈ R n1 ∃ x 2 ∈ R n2 satisfying x 1 x 2 ∈ G y 1 0 . Since rint(im M) ∩ (R n1 × {0} n2 ) = ∅, there is a y 1 ∈ R n1
such that ȳ1 0 ∈ rint(im M) = rint(dom G), which shows that G 1,0 is maximal monotone [START_REF] Rockafellar | Variational Analysis, volume 317 of Gundlehren der mathematischen Wissenchaften[END_REF]Exercise 12.46]. For the given initial condition x(0) ∈ S cons , it follows that x 1 (0) ∈ im G 1,0 = dom G -1 1,0 . Hence, due to Theorem 1, there exists a unique Lipschitz continuous x 1 (t) that satisfies the differential inclusion

ẋ1 (t) ∈ -G -1 1,0 (x 1 (t)) (8) 
almost everywhere. It also follows from the same result that

ẋ1 ∈ L ∞ ([0, ∞), R n1 ) and ẋ1 ∞ ≤ (G -1 1,0 ) 0 (x 1 (0)). Next, for a fixed ȳ1 ∈ R n1 , define G 2,ȳ1 : R n2 → R n2 as G 2,ȳ1 (y 2 ) := x 2 ∈ R n2 ∃ x 1 ∈ R n1 satisfying x 1 x 2 ∈ G ȳ1 y 2 .
Following the same arguments as in the case of G 1,0 , it can be shown that G 2,ȳ1 is maximal monotone. We define S :

R n2 → R n2 as S(t) := G 2,y1(t) (0),
where y 1 (t) := -ẋ1 (t) is the function satisfying [START_REF] Löhne | A characterization of maximal monotone operators[END_REF]. Clearly, S(t) is convex-valued as it is the image of a point under a maximal monotone operator. We choose x 2 (t) ∈ S(t) as a part of the solution to [START_REF] Freund | An extension of the positive real lemma to descriptor systems[END_REF].

To see that, the aforementioned construction of x 1 and x 2 is a solution to [START_REF] Freund | An extension of the positive real lemma to descriptor systems[END_REF], it is seen that

x 1 (t) x 2 (t) ∈ G 1,0 (-ẋ1 (t)) G 2,-ẋ1(t) (0) ⇐⇒ x 1 (t) x 2 (t) ∈ G -ẋ1 (t) 0 ⇐⇒ ẋ1 (t) 0 ∈ -M x 1 (t) x 2 (t) .
This completes the proof of Lemma 2. We now combine Lemma 1 and Lemma 2 to write a formal proof of Theorem 2. Proof of Theorem 2. Applying the transformation ξ = Hx as described in Lemma 1, we obtain ξ1 0 ∈ -M(ξ).

It is verified that the condition (6) leads to rint(im

M) ∩ (R n1 × {0} n2 ) = ∅, and that M -1 (R n1 × {0} n2 ) = M -1 (im P ).
Hence, using Lemma 2, there exists a unique Lipschitz continuous ξ 1 , and a time-varying convex set S ξ : [0, ∞) ⇒ R n-rank P with ξ 2 (t) ∈ S ξ (t) as the admissible solution. It easily follows that

P x = H I 0 0 0 ξ 1 ξ 2 = ξ 1 0
showing that P x is Lipschitz continuous and the bound on

d dt P x ∞ is obtained directly from the bound on ξ1 ∞ . It is also observed that |P x 1 -P x 2 | ≤ H (ξ 1 1 -ξ 2 1 ) ≤ H H -1 |x 1 (0)-x 2 (0)|.
For the multivalued component, one may choose Q := 0 I H, so that Qx = ξ 2 , and the conclusion then follows from the statement of Lemma 2.

IV. PASSIVE DAES WITH MAXIMAL MONOTONE RELATIONS

We now address the problem of existence of solutions of DAEs of the form

d dt E x(t) = Ax(t) + Bz(t) (9a) 
w(t) = Cx(t) + Dz(t), (9b) 
where the variable z(•) is related to w(•) through the relation

w(t) ∈ M(-z(t)) (10) 
and M : R n ⇒ R n is a maximal monotone operator. The basic idea behind studying the solutions of this system is to use the passivity notion to obtain an equivalent representation of the system which is then transformed to the inclusion of the form (1). We thus recall the passivity notion for DAEs and then describe the related transformations. Definition 3 (Solution concept): We call (x, z, w) : [0, ∞) → R n+2m , a solution to system (2) if the following hold:

A. Passivity: Definition and Characterization Definition 4: We call the system (9) passive with storage function

V : R n → R + if V (x(t 1 )) ≤ V (x(t 0 )) + t1 t0 z (t)w(t) dt
for all t 0 , t 1 , t 1 ≥ t 0 and (x, w, z) is a solution of ( 9)- [START_REF] Pang | Differential variational inequalities[END_REF] in the sense of Definition 3.

The following results are derived in [START_REF] Camlibel | Extension of Kalman-Yakubovich-Popov lemma to descriptor systems[END_REF], [START_REF] Freund | An extension of the positive real lemma to descriptor systems[END_REF]: Proposition 2: System (9) with minimal (E, A, B, C, D) is passive with storage function x Kx for K = K ≥ 0 if, and only if, the following two statements hold:

• There exist matrices S, T ∈ R n×n that transform the system matrices in the special Weierstrass form:

(SET, SAT, SB, CT ) =

I 0 0 0 0 I 0 0 0 , A1 0 0 0 I 0 0 0 I , B1 B2 B3 , [ C1 C2 C3 ] , (11) 
• The matrix K can be decomposed as

K = K =   K 11 0 0 0 0 0 0 0 K 33   ≥ 0 (12) 
and the submatrices in [START_REF] Peypouquet | Evolution equations for maximal monotone operators: Asymptotic analysis in continuous and discrete time[END_REF] satisfy the matrix inequaliy

A 1 K 11 + K 11 A 1 K 11 B 1 -C 1 B 1 K 11 -C -( D + D ) ≤ 0, (13) 
where D := D -C 2 B 2 -C 3 B 3 and lastly

B 3 K 33 = -C 2 . (14) 
From the classical Kalman-Yakubovich-Popov lemma for ordinary differential equations, it readily follows from (13) that the quadruple (A 1 , B 1 , C 1 , D) describe a passive system.

B. Equivalence to DAIs

We now use the aforementioned passivity characterization to write the system (9)- [START_REF] Pang | Differential variational inequalities[END_REF] in the form of inclusion [START_REF] Brogliato | Nonsmooth Mechanics: Models, Dynamics and Control[END_REF]. The following lemma is crucial for that purpose.

Lemma 3: Let (E, A, B, C, D) be minimal and passive with quadratic storage function. There exists a full row rank matrix P x1 ∈ R n1×n where n 1 < n and

A1 B1 C1 D ∈ R (n1+m)×(n1+m) with (A 1 , B 1 , C 1 , D) passive such that for the DAE d dt I 0 0 -B 3 K 33 B 3 x 1 z = A 1 B 1 C 1 D x 1 z - 0 I w (15 
) the following equivalence between ( 9) and ( 15) holds:

{(P x1 x, z, w) | (x, z, w) solves (9)} = {(x 1 , z, w) | (x 1 , z, w) solves (15) ∧ B 3 z is abs. cont.} .
Proof: From Proposition 2, we obtain the matrices S, T so that the solution triplet (x, z, w) of system (9) with col(x 1 , x 2 , x 3 ) = T -1 x satisfies

ẋ1 = A 1 x 1 + B 1 z (16a) ẋ3 = x 2 + B 2 z (16b) 0 = x 3 + B 3 z (16c) w = C 1 x 1 + C 2 x 2 + C 3 x 3 + Dz (16d)
Next we use the notation introduced in Proposition 2, and recall that C 2 = -B 3 K 33 for some positive semidefinite K 33 . Multiplying (16b) by B 3 K 33 , and inserting (16c) as well as (16d), we arrive at

- d dt B 3 K 33 B 3 z = C 1 x 1 +(D -C 2 B 2 -C 3 B 3 )z -w. (17) 
With P x1 defined as

P x1 := I 0 0 T -1 (18) 
the inclusion "⊆" is proven.

To show the converse inclusion let (x 1 , z, w) be a solution of (15) and let 16) and hence T x 1 x 2 x 3 z w solves ( 9). This lemma is the key component in proving the following main result of this section:

x 3 := -B 3 z, x 2 := -B 2 z - d dt B 3 z, then (x 1 , x 2 , x 3 , z, w) solves (
Theorem 3: Assume that (E, A, B, C, D) is minimal and passive with quadratic storage function x Kx. Consider the DAI

d dt P x ∈ -M(x), (19) 
where using the notation from Lemma 3,

x := x 1 -z , P := K 11 0 0 B 3 K 33 B 3 , (20) 
M(x) = - K 11 A 1 -K 11 B 1 C 1 -D x + 0 M(-z) (21) 
so that P is a positive semidefinite matrix and M is maximal monotone.

The equivalence between the solution (x, z, w) of ( 9)-( 10) and (19) holds in the sense that

{(P x1 x, z) | (x, z, w) solves (9)} = {(x 1 , z) | (x 1 , z) solves (19) ∧ B 3 z is abs. cont.}
where P x1 is defined in (18).

Proof: Once we have arrived at [START_REF] Tanwani | On output regulation in systems with differential variational inequalities[END_REF] in Lemma 3, then we can apply transformations (20) and (19) follows readily. By construction, P is positive semidefinite, and it only remains to show that M is maximal monotone.

Since

(A 1 , B 1 , C 1 , D) is passive, it follows that A = K 11 A 1 -K 11 B 1 C 1 -D
is negative semidefinite. The result is immediate using the fact that

K 11 A 1 + A 1 K 11 C 1 -K 11 B 1 C 1 -B 1 K 11 -( D + D ) = I 0 0 -I K 11 A 1 + A 1 K 11 K 11 B 1 -C 1 B 1 K 11 -C 1 -( D + D ) I 0 0 -I
is negative semidefinite. The function -Ax, being continuous, is thus maximal monotone with domain equal to entire space. Using [START_REF] Rockafellar | Variational Analysis, volume 317 of Gundlehren der mathematischen Wissenchaften[END_REF]Chapter 12], the sum of two maximal monotone operators is maximal monotone, and its domain is the intersection of the corresponding domains. Thus, M is maximal monotone with dom(M) = dom(M).

V bb j V L j L C c - + v C j C R j R - + -v Z j Z e Fig. 1. Simple circuit example V. CIRCUIT EXAMPLE
Let us consider the RLC circuit in Fig. 1 supplied by a constant voltage source (a battery) and interconnected with a Zener diode (see its input-output characteristic in Fig. 2). The modified nodal analysis approach [START_REF] Chung-Wen | The modified nodal approach to network analysis[END_REF] allows us to derive the following equations:

C c de dt = -R -1 e -j L -j V + j Z (22a) L dj L dt = e (22b) 0 = e -V bb , (22c) 
that can be rewritten as a DAE by assuming a state vector e j L j V , an exogenous input vector z = j Z V bb and w = -v Z -j V as output of interest. Note that w ∈ M(-z) where M is a maximal monotone set-valued mapping whose graph is in R 2 × R 2 , see Figure 2a. The corresponding matrices are (24) the representation ( 16) is obtained with x 1 = j L , x 2 = j L + j V , x 3 = -C c e:

E = Cc 0 0 0 L 0 0 0 0 , A = -R -1 -1 -1 1 0 0 1 0 0 , (23a) 
ẋ1 = L -1 V bb (25a) ẋ3 = x 2 -j Z + R -1 V bb (25b) 0 = x 3 + C c V bb . (25c) 
In this case we have The matrix inequality ( 13) is satisfied and the system evolves according to the differential inclusion (19) with

A 1 = 0, B 1 = 0 L -1 , C 1 = 0 1 , D = 0 1 -1 R -1 , K 11 = L, K 22 = 0, K 33 = C c . v Z j Z -V Z ( 
P =   L 0 0 0 0 0 0 0 C c   , (26) 
and

M(x) = -   0 0 1 0 0 1 -1 -1 1/R   x + 0 M(-z) . (27) 

VI. CONCLUSIONS

We have studied the existence of solutions of a novel class of dynamical systems described by differential-algebraic inclusions. Tools from the theory of maximal monotone operators have been used to prove existence of solutions globally in time. The results were used to study wellposedness of DAEs coupled with maximal monotone relations under certain passivity assumption. Applications of such systems are found in certain electrical circuits with nonsmooth devices such as diodes or transistors.

Fig. 2 .

 2 Fig.2. Set-valued mappings of the circuit example

• Ex is absolutely continuous and the DAE (9a) holds for Lebesgue-almost every t ≥ 0, • -z(t) ∈ dom(M) for each t ≥ 0,• the relations (9b) and (10) holds for each t ≥ 0.