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ABSTRACT

Do some environments favor efficient conversion of molecular gas into stars? To answer this, we need to be able to estimate the H2
mass. Traditionally, this is done using CO observations and a few assumptions but the Herschel observations which cover the far-IR
dust spectrum make it possible to estimate the molecular gas mass independently of CO and thus to investigate whether and how
the CO traces H2. Previous attempts to derive gas masses from dust emission suffered from biases. Generally, dust surface densities,
H i column densities, and CO intensities are used to derive a gas-to-dust ratio (GDR) and the local CO intensity to H2 column density
ratio (XCO), sometimes allowing for an additional CO-dark gas component (Kdark). We tested earlier methods, revealing degeneracies
among the parameters, and then used a sophisticated Bayesian formalism to derive the most likely values for each of the parameters
mentioned above as a function of position in the nearby prototypical low metallicity (12 + log(O/H) ∼ 8.4) spiral galaxy M 33. The
data are from the IRAM Large Program mapping in the CO(2–1) line along with high-resolution H i and Herschel dust continuum
observations. Solving for GDR, XCO, and Kdark in macropixels 500 pc in size, each containing many individual measurements of the
CO, H i, and dust emission, we find that (i) allowing for CO dark gas (Kdark) significantly improves fits; (ii) Kdark decreases with
galactocentric distance; (iii) GDR is slightly higher than initially expected and increases with galactocentric distance; (iv) the total
amount of dark gas closely follows the radially decreasing CO emission, as might be expected if the dark gas is H2 where CO is pho-
todissociated. The total amount of H2, including dark gas, yields an average XCO of twice the galactic value of 2×1020 cm−2/K km s−1,
with about 55% of this traced directly through CO. The rather constant fraction of dark gas suggests that there is no large population
of diffuse H2 clouds (unrelated to GMCs) without CO emission. Unlike in large spirals, we detect no systematic radial trend in XCO,
possibly linked to the absence of a radial decrease in CO line ratios.

Key words. ISM: general – galaxies: individual: M 33 – submillimeter: ISM – radio lines: ISM – Local Group – ISM: structure

1. Introduction

Recent work has shown that large-scale star formation in galax-
ies is strongly linked to the molecular gas reservoir, in particular
the dense molecular gas, and less so to the total amount of neutral
gas (H2 + H i) (Kennicutt & Evans 2012; Lada et al. 2012). If we
are to understand what affects the relationship between molec-
ular gas and star formation, we need to be able to measure the
amount of molecular gas at all positions within the disk of galax-
ies, ideally down to the scale of individual star-forming regions.

In low-metallicity objects, we are very far from such an under-
standing. The cosmic star-formation rate density rises rapidly
with redshift (Madau & Dickinson 2014), suggesting that either
or both the molecular gas content and the star-formation effi-
ciency (mass of stars formed per unit time and unit H2 mass)
also increase while the fraction of metals decreases with redshift
(Combes 2013). This is such that what we learn about local star
formation at subsolar metallicities may be useful to better inter-
pret observations of the young universe. The small Local Group
spiral galaxy M 33 has a half-solar metallicity and is near enough
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Fig. 1. Dust surface density [g/cm−2] maps of M 33 at 25′′ resolution: (left) for a constant β = 2, (right) radially variable β (2−1.3) as derived in
Tabatabaei et al. (2014). The ellipsed correspond to a galactocentric radius of 7 kpc.

(840 kpc, Galleti et al. 2004) to resolve Giant Molecular Clouds
(GMCs) and has an inclination (i = 56◦) that makes the position
of the clouds in the disk well defined (in contrast to e.g. M 31).

The whole bright stellar disk of M 33 (up to a radius of
∼7 kpc) was recently observed in the CO(2–1) line down to a
very low noise level (Druard et al. 2014; Gratier et al. 2010a) us-
ing the IRAM 30 m telescope on Pico Veleta. The single-dish
CO(2–1) data do not suffer from missing flux problems which
is an essential asset to the understanding of the entire molecular
phase in the galactic disk. M 33 is a chemically young galaxy
with a high gas mass fraction and as such represents a different
environment in which to study cloud and star formation with re-
spect to the Milky Way. As the average metallicity is subsolar by
only a factor of two and the morphology remains that of a rotat-
ing disk, M 33 represents a stepping stone towards lower metal-
licity and less regular objects. Measuring the link between CO
and H2 is particularly important given the evidence that the con-
version of H2 into stars becomes more efficient at lower metallic-
ities (Gardan et al. 2007; Gratier et al. 2010a; Druard et al. 2014;
Hunt et al. 2015).

With the advent of high resolution dust maps in the Her-
schel SPIRE and PACS, and Spitzer MIPS and IRAC bands it
is possible to determine reliable dust column densities with spa-
tial resolution close to the size of individual GMCs in M 33 (see
Kramer et al. 2010; Braine et al. 2010; Xilouris et al. 2012). Un-
der the assumption of local independence of the gas-to-dust ratio
(GDR) with respect to the H2/H i fraction, it is possible to deter-
mine the local CO intensity to H2 column density ratio (XCO).

A simplified global version of such an approach has been ap-
plied in Braine et al. (2010, Fig. 4). A more sophisticated method
based on maximizing correlation between dust column density
structure and that of the gas as derived from H i and CO through
an optimal XCO factor has recently been proposed and success-
fully demonstrated by Leroy et al. (2011) and Sandstrom et al.
(2013).

However, these methods have biases and/or degeneracies
which will be studied in Sects. 3 and 4, in particular they often
do not consider a possible contribution from CO dark molecular
gas. In this work, the dust, CO, and H i data covering the disk of
M 33 are analyzed using existing these methods along with sim-
ulations to quantify bias and degeneracy. A new Bayesian ap-
proach is then used and tested in order to calculate the GDR and
XCO for any position but also the amount of potential CO dark
gas, unseen in H i or CO. All the methods take as a basic assump-
tion that any gas not traced by CO, or potentially optically thick
H i, contains dust with similar properties as in the gas traced
by CO and H i. This is common to all other studies using dust
emission.

2. Data

The CO data are from the recently completed CO(2–1) survey of
M 33, which now covers the bright optical disk at high sensitiv-
ity (Druard et al. 2014; Gratier et al. 2010b; Gardan et al. 2007).
The H i data are from Gratier et al. (2010b). In both lines, we use
the datasets produced at 25′′ resolution. The dust surface den-
sity is estimated from the Herschel observations (Kramer et al.
2010; Boquien et al. 2011; Xilouris et al. 2012), using the 100,
160, 250, and 350 micron flux densities convolved when neces-
sary to a resolution of 25′′ (see Fig. 1). Thus, the linear spatial
resolution at which this study is carried out is 100 pc.

In Fig. 1 (left panel), we show the dust surface density es-
timated from the SPIRE 250 and 350 µm fluxes, using the ra-
tio of these two bands to define the temperature, and assuming
a dust opacity of κ = 0.4(ν/250 GHz)2 cm2 per gram of
dust (Kruegel & Siebenmorgen 1994), or κ350 = 4.7 cm2 g−1 at
350 µm.

It is now clear that the dust emissivity index, traditionally
designated β, is not necessarily 2 as has generally been as-
sumed. In particular Tabatabaei et al. (2014) have shown that β
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Table 1. Description variables.

Variable Quantity Unit
ICO Observed 12CO(2–1) integrated intensity K km s−1

IH i Observed H i 21cm integrated intensity K km s−1

N(H i) Atomic gas column density cm−2

N(H2) Molecular gas column density cm−2

ΣH i
a Atomic gas surface density M�/pc2

ΣH2
a Molecular gas surface density M�/pc2

Σgas
a Total gas surface density M�/pc2

Σdust
a Dust surface density M�/pc2

σΣdust
a Uncertainty on dust surface density M�/pc2

αCO
a Conversion factor from ICO to H2 mass surface density M�/(pc2 K km s−1)

XCO N(H2)/ICO Conversion factor from ICO to H2 column density cm−2/ K km s−1

GDRb Gas to dust mass ratio unitless
Kdark

a CO dark gas surface density M�/pc2

K′dark CO dark gas column density cm−2

κ Dust opacity cm2/g
β Dust emissivity index unitless
σdust Dust cross section cm−2/H
Bν,T Black body surface brightness at frequency ν and temperature T Jy/sr
Zgas gas-phase-metal-fraction unitless
mp Proton mass g

Notes. (a) Quantities involving masses are considered without taking the helium fraction into account. (b) GDR is the same quantity as δGDR in
Leroy et al. (2011).

is variable and lower in M 33 (β = 2−1.3 from the center to the
outer disk). However, without being able to calibrate the value
κ at the wavelength of interest, it is difficult to be sure of the
constant (0.4 above for the dust opacity) as extrapolations have
generally assumed β = 2. If the intrinsic β of the dust grains is
less than 2, then using β = 2 will result in an underestimate of
the temperature and thus an overestimate of the dust mass (com-
pare the two panels of Fig. 1). In this context, a more accurate
but more complex means of deriving the dust surface density
has been tested. Tabatabaei et al. (2014) find a link between the
galactocentric distance and β in M 33 (their Fig. 3). This β(r)is
used to derive dust temperatures over the disk of M 33.

In a similar way as in Braine et al. (2010), we then take pix-
els with H i column density measurements and dust temperatures
but no CO emission and compute the median dust cross-section
(σdust) per H-atom: σdust = S ν/(Bν,T NH), where S ν is the dust
emission and Bν,T the Planck black body emissivity for a fre-
quency ν and a temperature T . At submillimeter wavelengths
the dust emission is optically thin. This yields a cross-section
per H-atom which naturally varies with radius, much like the
metallicity (Magrini et al. 2009). Using σdust(r), we calculate the
total H (i.e., cold, neutral hydrogen gas: H i + H2) column den-
sity. The dust opacity is NHσdust = κΣdust = S ν/Bν,T (β), and the
dust surface density Σdust = S ν/(Bν,T (β)κ). For κ350 as above, the
dust surface density can be computed for all points in M 33, as
shown in Fig. 1 (right panel), such that the difference with re-
spect to Fig. 1 (left panel) is that the temperature is computed
with a radially varying β. The values of β are below 2 in M 33
(Tabatabaei et al. 2014) so the temperatures are higher. Since the
Planck function Bν,T (β) increases with T , the dust surface den-
sity in Fig. 1 (right panel) is lower, particularly in the outer disk
where β is lower.

In this work, we only discuss hydrogen content and do not
include helium. As helium is present in both the atomic and
molecular phases in equal proportion, this does not affect the

calculations. As in many other works, we use the term GDR to
refer to the hydrogen to dust mass ratio.

3. Dust-derived H2 versus CO intensity

A simple approach is to take the pre-existing map of the H2 col-
umn density based on Herschel and H i data from Braine et al.
(2010) where N(H2) is estimated from the dust and H i emission
as N(H2) = (N(H) − N(H i))/2, as in their Fig. 4.

In this case, the variables are XCO and, potentially, a CO-dark
gas column density designated K′dark. Figure 2 shows the scatter
plots for a sample of three radial bins – 0 kpc < r < 1 kpc,
1 kpc < r < 2 kpc, and 4 kpc < r < 5 kpc. These radii show pro-
gressively the transition from an H2 dominated ISM, to approxi-
mate H i–H2 equality between radii 1 and 2 kpc, to the H i dom-
inated outer regions.

Thick red lines show the binning of the scatter-plot in
0.5 K wide intervals. The cloud of points are fit by two lines,
one assuming N(H2) = XCO × ICO (light red line) and N(H2) =
XCO×ICO+K′dark in green. As described by Dickman et al. (1986)
a XCO ratio is an average over many different clouds so it cannot
be expected to characterize all clouds, or all of our data points.

Figure 2 shows the relationship between the dust-derived
H2 column density and ICO for three radial intervals chosen to
represent the inner and outer regions, respectively H2 dominated,
slightly H i dominated (1−2 kpc), and strongly H i dominated
with weak CO emission. From the inner to outer regions, the
XCO factor increases, as could be expected given that there is a
metallicity gradient and a decline in CO emission (Gratier et al.
2010b) and cloud temperature (Gratier et al. 2012).

The lines without a K′dark systematically overestimate the
H2 mass at moderate and high ICO and both fits overestimate
N(H2) at high ICO. There is no physical reason to expect a con-
stant offset (K′dark) but it appears that there is gas whose dust
emission is detected but is not seen in CO – this could be
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Fig. 2. Fit of dust-derived N(H2) as a function of ICO for data in radial
intervals between 0 and 1 kpc (top), 1−2 kpc (middle), and 4−5 kpc
(bottom). No cut in intensity has been applied. The color scale indicates
the density of points and the thick red histogram shows the N(H2) data
averaged in bins of 0.5 K km s−1. The thin green line shows an affine
fit between N(H2) and ICO; the corresponding fit results are printed in
green. The thin red line is a linear fit without an offset; the correspond-
ing fit results are printed in red. Blue cross: average value of the plotted
data.

optically thick H i, molecular gas where CO has not formed or is
photodissociated, low density H2 clouds, or unexpectedly large
quantities of ionized gas.

4. Leroy-Sandstrom method

4.1. Prior discussion on the gas-to-dust ratio (GDR)

The GDR is likely well-constrained by the metallicity, at least
for metallicities reasonably close to solar. The solar metallicity
is about Z = 0.0142 by mass (Asplund et al. 2009, Sect. 3.1.2).
Assuming the standard hydrogen-to-dust mass ratio of 100
(Draine & Li 2007, Table 3), the total gas/dust mass ratio is
M(H + He + gas-phase metals)/M(dust), assuming H and He
to be negligible contributors to the dust mass. From Asplund,
M(H) = 0.7154 and M(He) = 0.2703, and denoting the gas-
phase-metal-fraction as Zgas, we define the hydrogen gas-to-dust
mass ratio as GDR = (0.7154 + 0.0142 Zgas)/(0.0142(1− Zgas)).
Helium adds just under 40% to this number. For GDR = 100, the
typical Galactic value, the gas-phase-metal-fraction Zgas = 0.49
and 51% of the metals are in the dust phase. This value is rea-
sonably robust; for a solar composition, if GDR = 100±20 then
50 ± 10% of the metals are in the gas phase.

What about lower metallicity environments? Since dust con-
denses from the gas in AGB stellar winds (Gielen et al. 2010)
and super nova remnants (Matsuura et al. 2011), one expects that
when there is less dust and less metals, the gas-phase metal frac-
tion will tend to be higher. At very low metallicities, except for
very dense environments, the GDR should be higher than the re-
lation given above due to the difficulty in forming dust grains and
mantles sufficiently quickly such that evaporation or destruction
processes do not reduce the dust mass (Rémy-Ruyer et al. 2014).

4.2. Method and application to M 33

Developed in Leroy et al. (2011) and later extended and applied
to the HERACLES/KINGFISH data in Sandstrom et al. (2013),
the idea is that the dust emission can be expressed as the sum
of the emission from the atomic and molecular components, im-
plicitly assuming that the contribution from the ionized gas is
negligible. The latter assumption is likely appropriate and is also
common to other studies

Σgas = GDR × Σdust

= mp × [N(H i) + 2XCO × ICO]
= ΣH i + αCO × ICO (1)

where αCO is a surface density conversion factor from ICO to ΣH2 .
Equating the right-hand terms gives us the relation equivalent to
Sandstrom et al. (2013, Eq. (3)). In order to allow for some form
of CO dark gas, we allow for an additional term, such that the
basic equation becomes

Σgas = GDR × Σdust

= mp ×
[
N(H i) + 2XCO × ICO + K′dark

]
= ΣH i + αCO × ICO + Kdark. (2)

The procedure is fairly simple: the αCO – Kdark space is explored
on a regularly spaced grid and, for each couple (αCO, Kdark), the
dispersion in log(GDR) over the ensemble of pixels is computed.
The best fit parameters (αCO, Kdark) are chosen as the ones that
minimize the log(GDR) dispersion, similar to what was done in
Leroy et al. (2011). Sandstrom et al. (2013, their appendix) later
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studied the influence of different methods to identify the best so-
lution finding robust results over the different methods and set-
tling to using a minimization of the (robust) standard deviation
of the logarithm of the GDR. Our maps of M 33 cover an area of
several thousand beams. This enables us to look for variations,
in particular radial variations, of GDR, αCO, and Kdark. Figure 3
shows this space for three radial intervals in M 33, with a mini-
mum computed assuming that a single value for each of the three
parameters GDR, αCO, and Kdark is appropriate. The best fits are
shown as a function of radius in Fig. 4 where the same procedure
is applied to concentric elliptical rings sampling 1 kpc in radius.

Figure 3 shows that a very broad region of αCO – Kdark space
yields similar quality fits but that a prior on GDR would help
break this degeneracy. The radial behavior shown in Fig. 4 ap-
pears somewhat unphysical as the metallicity gradient necessar-
ily yields an increasing GDR and would be expected to also yield
XCO increasing with radius.

If we assume that Kdark = 0, then we see from Fig. 3 (hori-
zontal line where Kdark = 0) that the fit is clearly poorer than the
best fit. The same is true for the individual radial bins. The phys-
ical interpretation of Kdark is far from straightforward. The same
procedure has been applied but with a filter only accepting pix-
els with ICO > 2σ. The result is essentially the same: the slope of
the ellipses decreases steadily with radius, showing how difficult
it is to measure XCO in the outer regions. The radial variation of
the parameters with radius is shown in Fig. 4.

The somewhat more complicated nature of the L–S method
(3 parameters: αCO, GDR and Kdark) and the broad degenera-
cies prompted us to explore the effect of noise on typical values
(Sect. 4.4) and the recoverability of input parameters using real-
istic simulated data (Sect. 4.3).

4.3. Recoverability
In order to check the recoverability of the parameters, we have
created simulated dust observations with known parameters αCO,
GDR and Kdark. The ICO and IH i used are the observed values
for M 33 to maintain the right correlation between these two
quantities. Simulated observations are created following Eq. (6).
Noise is then added to each observable quantity ICO, IH i and
Σdust.

We then create the same figures as in Sect. 4.2. The figures
are not shown because they are indistinguishable in shape from
those in Sect. 4.2 (Figs. 3 and 4). This is not surprising as the
data are the same. However, we can add many mock runs of the
noise and examine how the biases are affected by differing noise
levels and intensity cuts.

Figure 5 shows the result of 200 sets of trial data based on the
inner kpc. Input parameters are XCO = 4×1020 cm−2/(K km s−1),
GDR = 150 and Kdark = 5 M�/pc2, indicated as red lines.

It is immediately clear that the optimization (i.e., the low-
est log(GDR) dispersion in Fig. 3) favors low-valued solutions,
with “optimal” values clearly below the input. Even in this high
signal-to-noise (S/N) region, XCO is underestimated by 25% as
is Kdark and the GDR by half as much. The GDR is less affected
because the H i column density is not modified by Kdark or XCO
but contributes close to half of the GDR.

Two variants were tested as well. Although a Kdark was
present in the input parameters, we test the values obtained if
it is assumed that Kdark = 0, as in Eq. (3) of Sandstrom et al.
(2013). In this case, the GDR is underestimated, presumably be-
cause more dust is present (as a Kdark was injected) than what
is seen in H i or CO. Near the center, (Fig. 5) XCO is under-
estimated (see middle row) but at larger radii the situation is
different (cf. next paragraph). If metallicity measurements are

Fig. 3. Scatter in log(GDR) as a function of XCO and Kdark. The color
scale and solid white contours indicate the amplitude of the scatter in
log(GDR) as measured by the standard deviation for varying XCO and
Kdark offsets. Radii between 0 and 1 kpc (top), 1−2 kpc (middle), and
4−5 kpc (bottom). The white cross corresponds to the minimum scatter
(i.e., best fit). The contours correspond to constant scatter values and
give an indication of the uncertainties and degeneracies. The white lines
correspond to constant GDR values of 100 (solid), 150 (dashed), 200
(dotted), 250 (dash-dotted).
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Fig. 4. Average values for Kdark, XCO, and GDR derived for 1 kpc radial
bins using the Leroy-Sandstrom method. The black histogram shows re-
sults derived with the variable beta (Tabatabaei et al. 2014) prescription
and the red used the β = 2 to determine dust temperatures.

reliable, then the GDR is quite constrained (Sect. 4.1). The top
row shows the values for XCO and Kdark if the true GDR is in-
jected. If a prior on GDR is injected, then we approximately re-
cover XCO and Kdark. The dispersion in the histograms is rather
small, showing that the results do not depend on the number of
realizations.

In the H i dominated outer regions, Fig. 6 shows the same
biases as before except that XCO is overestimated when Kdark is
forced to zero. The prior on GDR again helps recover the input
values with reasonable fidelity. There is only weak CO emission
at these radii so the constraint on XCO is weak. We therefore
made a test excluding values where Ico < 2σ. The differences
with respect to the input parameters are somewhat less severe
(compare Figs. 6 and 7). For the inner kpc, excluding values be-
low 2σ makes no difference because virtually all of the values
exceed the threshold.

4.4. Noise effects

In order to evaluate the behavior of the Leroy-Sandstrom (L-S)
method in the presence of noise, we took typical values of the
CO intensity, the H i column, and noise for both, in order to test
how the method was affected by noise. We also allow for the
presence of CO dark gas, where dark means gas not observed in
CO or H i but detected via the emission of the associated dust.
Thus, we start with a single value for each of ICO, N(H i) (opti-
cally thin assumption), and Kdark (dark gas, assumed constant).
Assuming a XCO conversion factor, we calculate the gas column
density (N(H) = 2×XCO× ICO + N(H i) + Kdark) which we divide
by an assumed gas-to-dust ratio (GDR) to obtain a dust surface
density Σdust, similar to what is estimated from analyses of Her-
schel photometric data (Kramer et al. 2010; Xilouris et al. 2012;
Tabatabaei et al. 2014). We then assume a noise level in the same
units for each of these quantities and generate 1000 samples
(value + Gaussian noise) of each of ICO, N(H i), Kdark, and Σdust.
Σdust after addition of noise is then converted back into a gas sur-
face density using the same GDR. The final step is to test a grid
of XCO and Kdark values, minimizing the sum of

(ΣdustGDR − αCOICO − ΣH i − Kdark)2 (3)

Fig. 5. Histogram of recovered values for the generative model includ-
ing noise in all three observables XCO, GDR, and Kdark. Bottom row:
recovering the 3 parameters. Middle row: recovering only αCOand GDR
even though Kdark is present in the data. Top row: same as bottom row
but imposing the correct value of GDR. This figure is for the central kpc
of M 33. Input values are in red.

Fig. 6. Same as Fig. 5 but for 4 kpc < R < 5 kpc.

where the quantities are after addition of noise and the sum is
over the 1000 samples.

The fiducial model has ICO = 1± 0.25 K km s−1, N(H i) = 8±
1 × 1020 cm−2, and Kdark = 1 ± 0.25 × 1020 cm−2 and we as-
sume the uncertainty in the dust surface density is 25%. We in-
ject XCO = 4 × 1020 cm−2/(K km s−1) in order to calculate Σgas –
this, along with Kdark, is what we try to get out of the simulations.
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Fig. 7. Same as Fig. 6 but only considering pixels where ICO > 2σ. A
similar cut for the central radii would show little effect as the CO signal
there is strong.

The GDR is transparent in that it is used to convert Σgas into Σdust
but then back into Σgas after addition of noise so it disappears.

Figure 8 shows the typical degeneracy between the XCO
and Kdark parameters. The color scale shows the quality of the
fit (the lower the better) and contours show the acceptable re-
gions. The black dotted lines indicate the average gas-to-dust
ratio for the pixel (i.e., averaged over the 1000 samples for the
(ICO,Kdark) combination). The dotted lines indicate, from left to
right, GDRs of 100, 150, 200, and 250. For this example, with
ICO = 0.5 ± 0.25 K km s−1, the apparently optimal fit is quite far
from the input parameters. These values are quite typical of a
large number of the pixels in M 33.

Figures 9a−f show how the retrieved values of XCO and Kdark
vary with the CO intensity (before adding noise) and the noise
level of the CO observations. The first two figures show the re-
sults for N(H i) = 8 ± 1 × 1020 cm−2 and a 25% uncertainty in
the dust surface density. The second set of figures shows how the
recovered XCO and Kdark values depend on the CO intensity and
uncertainty in the case where N(H i) = 4 ± 1 × 1020 cm−2. In
the third set, N(H i) = 8 ± 1 × 1020 cm−2 but the uncertainty in
the dust (and thus gas) surface density has been reduced to 10%.

The result is striking: in all cases, the XCO conversion fac-
tor and the Kdark surface density are well recovered for the high
CO intensities and small errors but where the intensity or the
S/N is lower the recovered XCO decreases systematically and the
amount of dark gas increases rapidly. A general tendency is seen
towards high Kdark and low XCO as the S/N decreases, similar to
Fig. 8.

5. Bayesian method

5.1. Principles

This method enables us to take into account the uncertainties in
all of the observed quantities and recover the best estimates of

Fig. 8. Quality of fit for model with ICO = 1 ± 0.25 K km s−1, N(H i) =
8 ± 1 × 1020 cm−2, and Kdark = 1 ± 0.25 × 1020 cm−2, assuming that the
uncertainty in the dust surface density is 25%. Dotted lines represent,
from left to right, constant GDR values of 100, 150, 200, 250. The star
at XCO = 4 × 1020 cm−2/(K km s−1) is the input value but the best fit is
far from that.

the GDR, XCO, and Kdark values. This is done in the Bayesian
framework of errors in variables.

The generative model is defined as:

Iobs
H i,i ∼ N

(
Itrue
H i,i, σIH i,i

)
(4)

Iobs
CO,i ∼ N

(
Itrue
CO,i, σICO,i

)
(5)

Σtrue
dust,i =

1
GDR

(
αH iItrue

H i,i + αCOItrue
CO,i + Kdark

)
(6)

Σobs
dust,i ∼ N

(
Σtrue

dust,i, σΣdust

)
. (7)

The above notation means that the quantity Iobs
H i,i observed at

pixel i has a Gaussian distribution centered on the true Itrue
H i,i in-

tegrated intensity with a dispersion equal to the observational
uncertainty σH i,i. Same for the CO in Eq. (5). The third line
states that the true dust surface density Σdust,i is a function of
the true IH i,i and ICO,i and the three model parameters αCO,
GDR and Kdark. We assume that the H i emission is optically
thin such that XH i = 1.823 × 1018 cm−2/(K km s−1) which con-
verted into units of solar masses per square pc gives αH i =
0.0146 M�/pc2/( K km s−1). The fourth equation states that the
observed dust surface density (left) has a gaussian distribution
centered on the true Σdust,i with dispersion of σΣdust . We note that
the only equality is for the true quantities, not the observations.
This method provides an estimate for the true values of Σdust,
ICO, and IH i, as well as the parameters αCO, GDR, Kdark.

Because the observations are independent, we can express
the likelihood of the parameters knowing the full dataset as
the product of the likelihoods of the parameters knowing each
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Fig. 9. Optimal retrieved values of XCO (left column) and K (right column) as a function of the CO intensity (before adding noise) and the noise
level of the CO observations. Top figures: fiducial model. Middle row: fiducial except H i column density reduced to 4×1020 cm−2. Bottom: fiducial
except dust uncertainties reduced to 10%.
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individual datapoint. For N observations,

L(a, b, c, {Itrue
CO,i}, {I

true
H i,i}, σdust|D) =

p(D|a, b, c, {Itrue
CO,i}, {I

true
H i,i}, σdust) =

(2π)N∏N
i=1

√
σ2

ICO,i
σ2

IH i,i
σ2

Σdust

×

N∏
i=1

exp

− (Iobs
CO,i − Itrue

CO,i)
2

2σ2
ICO,i


×

N∏
i=1

exp

− (Iobs
H i,i − Itrue

H i,i)
2

2σ2
IH i,i


×

N∏
i=1

exp

− (Σobs
dust − aItrue

H i,i − bItrue
CO,i − c)2

2σ2
Σdust

 (8)

where D is the observed dataset {{Iobs
CO,i}, {I

obs
H i,i}, {Σ

obs
dust,i}}, a =

αH i/GDR, b = αCO/GDR, c = Kdark/GDR. The likeli-
hood is thus the probablility of having an observed set of
{{Iobs

CO,i}, {I
obs
H i,i}, {Σ

obs
dust,i}} (i.e., the observed map of Σdust, ICO and

IH i) given a set of values for αH i/GDR, αCO/GDR, Kdark/GDR,
{Itrue

CO,i}, {Itrue
H i,i}, and σΣdust . We know the uncertainty in the ICO and

IH i observations (σIH i , σICO ) and the values are input to the cal-
culation. On the other hand, we do not have a good estimate of
the uncertainty in the dust surface density σΣdust so this is left as
a free parameter and becomes an output of the calculation. This
σΣdust will also parameterize Gaussian scatter around the true re-
lationship so σΣdust may be larger than the measurement error, but
accounts for additional scatter in the data (Hogg et al. 2010).

Thus, there are 4 + 2N parameters (αH i/GDR, αCO/GDR,
Kdark/GDR, σΣdust and the Itrue

CO,i and Itrue
H i,i for each of the N pixels)

to the model and a total of 3N observations (Σobs
dust,i, I

obs
CO,i, I

obs
H i,i for

each pixel).
Since we are interested in the distribution of the parameters

and the likelihood is a probability distribution for the observa-
tions, we use the Bayes formula to convert from one to the other.

p(a, b, c, {Itrue
CO,i}, {I

true
H i,i}, σΣdust |D) ∝

p(a, b, c, {Itrue
CO,i}, {I

true
H i,i}, σΣdust )

× p(D|a, b, c, {Itrue
CO,i}, {I

true
H i,i}, σΣdust ). (9)

The left hand side of Eq. (9) is the posterior distribution – the
distribution function of the parameters given the observations.
The first term on the right is the prior distribution of the parame-
ters. In our case, very little information is injected because only
unreasonable values are not tested. GDR is varied either uni-
formly from 0 to 500 or uniformly from 0 to 50 000, the first
case enables to check the influence of using a physically jus-
tifies prior, namely that the GDR values cannot be higher than
500. αCO is varied from 0 to 30 times M�/pc2/ K km s−1 and
Kdark from −10 to 30 M�/pc2. The Itrue

H i,i and Itrue
CO,i parameters

are varied between the minimum and the maximum of the ob-
servations. The last term is the probability defined above. The
posterior distribution is explored using an Monte Carlo Markov
Chain (MCMC) code, specifically the EMCEE Python implemen-
tation (Foreman-Mackey et al. 2013) of Affine Invariant Ensem-
ble Sampler described in Goodman & Weare (2010).

The priors can be summarized as:

GDR ∼ U(0, 500) orU(0, 50 000)
αCO ∼ U(0, 30)
Kdark ∼ U(−10, 30)

Itrue
CO,i ∼ U(min({Iobs

CO,i}),max({Iobs
CO,i}))

Itrue
H i,i ∼ U(min({Iobs

H i,i}),max({Iobs
H i,i})) (10)

where U(xmin, xmax) stands for a uniform distribution between
values xmin and xmax.

5.2. Validation of the Bayesian method

To test the Bayesian method, we simulated a dataset using αCO =
2 × 3.2 M�/pc2/K km s−1 (twice the galactic value), GDR =
150, Kdark = 10 M�/pc2 and σΣdust = 0.01 M�/pc2. Since we
need to input “true” values of ICO and IH i in order to see if we
can recover the parameters we inject the observed values of ICO
and IH i. These values are then used to create the “true” dust map
as per Eq. (6). Since the method starts with observations, we take
the simulated observed values to be the real observed values plus
noise. Thus, the calculation uses somewhat noisier values than
the real data. The tests use datapoints (IH i,ICO) characteristic of
the inner disk of M 33. Noise is also added to the “true” dust
surface density map (created via Eq. (6)).

This model dataset is then used as input into the Bayesian
method described in Sect. 5.1. Figure 10 shows the number den-
sity of points in the six planes mixing the four parameters αCO,
GDR, Kdark, and σdust in grayscale. The orientation of the con-
tours illustrates any degeneracies in the relationship between the
parameters. The input parameters to the simulation are shown as
solid blue lines. The 4 histograms show the entire set of values
for each parameter and the dashed lines show the median and
the ±1σ and ±2σ. The results contain no obvious bias and are
very close to the input parameters. Furthermore, the confidence
intervals (±1σ and ±2σ) are determined in a self-consistent way.

Figure 10 is the result of a simulation of the inner kpc of
M 33. In the outer parts, the CO emission is very weak and the
gas (and thus dust) surface density is dominated by the H i. The
Bayesian method as proposed here is not always able to measure
the XCO factor where there is little CO emission but an upper
limit comes out naturally. On the other hand, GDR can be mea-
sured because H i is present in many pixels.

5.3. Application to M 33

M 33 was divided into 324 macropixels measuring 500 pc ×
500 pc, each containing 225 independent pixels of H i, CO, and
dust data. This size is large enough that the parameters are well-
defined but small enough not to be affected by large-scale gra-
dients. From the results for the macropixels, it is possible to es-
timate the radial variation of each parameter. The large number
of pixels and macropixels results in an extremely high compu-
tation time – about six months CPU using a machine with 12
processors and 128 Gb of memory.

Nearly all (99%) of this time is taken up by the “error in
variables” approach (using the full model consisting of all four
Eqs. (4) to (7)). Thus, given the prohibitive CPU time, we tested
the Bayesian estimation without the error in variables (using a
restricted model consisting of only Eqs. (6) and (7)), which runs
in a day so we can test different hypotheses. The cases we would
like to test are: using the two different dust maps, with different
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Fig. 10. Test of the Bayesian method. The input values for the sim-
ulation are shown as blue lines and these correspond rather well to
the peaks of probability distributions determined by the method. The
dashed lines indicate the median and ±1σ and ±2σ intervals.

cuts in CO intensity, and with or without limits on the value that
GDR can take.

The “error in variables” approach produces slightly lower
uncertainties but essentially the same values for the parameters
GDR, XCO, and Kdark. This can be seen in Fig. 11 which shows
the values of Kdark, αCO, and GDR for the error-in-variables and
the rapid versions. In these simulations, the dust surface den-
sity for the variable-β was used, only pixels with CO intensities
above 3σ were included, and GDR was allowed to take values
between 0 and 500 (5 times the Galactic value).

Therefore, we use the rapid (1 CPU-day) computations in the
following.

Even with the Bayesian approach, some degeneracy is
present. In Fig. 12 (result) and 13 (radial), we show the results
for variable-β dust with a 3σ CO cut but without placing a limit
on GDR. Both Kdark (upper panel) and GDR (lower panel) di-
verge at large radii, where the CO becomes less of a constraint.
This is due to some pixels reaching arbitrarily high GDR values
(thousands). If the CO cut is reduced to 0σ, then Kdark and GDR
diverge at lower radii. The hydrogen mass to dust mass ratio in
the Milky Way is about 100, close to 140 if He is included. We
thus decided to limit GDR, not allowing it to go above 500 (close
to 700 if He is included). Presumably this is well above any true
GDR value for a half-solar metallicity galaxy. The XCO factor is
not very affected by the divergence of Kdark and GDR although
it is difficult to be confident of its value where there is little CO.

Figure 14 shows the maps of the number of measurements
used for each of the macropixels for the 0σ and 3σ CO cuts.

Figure 15 is similar to Fig. 4 in that it shows the influence
of the choice of the dust emissivity index β on the derived pa-
rameters. For the Bayesian method, as for the LS method, the
results are consistent for αCO and Kdark but differ for GDR with
smaller values found for the β = 2 dust maps. This is expected
as the β = 2 maps has hight dust surface densities, particularly
at higher radii.

Fig. 11. Comparison of rapid and full errors-in-variables Bayesian sim-
ulations. The solid line represents the equality of the two quantities and
the dashed (resp. dotted) lines are constant ratios of 0.25 (resp. 0.5).

Fig. 12. Results of Bayesian analysis with a 3σ cut in CO and no cap
on GDR. Top row is Kdark (left) and uncertainty in Kdark (right), both
with the color scale to the right and in units of M�/pc2. The second row
is XCO (left) and uncertainty in XCO (right), both with the color scale
to the right and in units of M�/pc2 per K km s−1. Bottom row is GDR
(left) and uncertainty in GDR (right), both with the color scale to the
right. As with the other figures, we have adopted the variable-beta dust
surface density shown in Fig. 2.

Figures 16 (result) and 17 (radial) show the same as Figs. 12
and 13 but when GDR cannot take values above 500. This es-
sentially avoids finding an optimal result at extremely high GDR
and Kdark. Where the CO is present in a significant number of
pixels (Fig. 14), the limitation (of GDR) is unnecessary but when
the equation really only equates GDR and Kdark then they are
highly degenerate.
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Fig. 13. Radial variation of Kdark, αCO, and GDR for the simulation with
a cut at 3σ for the CO but no cap on GDR. The value is computed using
the maps in Fig. 12 and weighting each macropixel according to is area
within a given radial annulus. The error bars indicate the dispersion
within this ring. A divergence of Kdark and GDR can be seen in the
outer part.

Fig. 14. Maps of the number of pixels in each macropixel for the 0σ
(left) and 3σ (right) CO cuts.

Fig. 15. Average values for Kdark, XCO, and GDR derived for 0.5 kpc
radial bins using the Bayesian method. The black histogram shows re-
sults derived with the variable beta of Tabatabaei et al. (2014) and the
red uses the standard β = 2 to determine dust temperatures.

Figures 18 (result) and 19 (radial) show the radial varia-
tion of Kdark, XCO, and GDR for the 0σ and 3σ CO cuts. The
similarity shows that when GDR is not allowed to take unphysi-
cal values, the CO cut is not critical.

Fig. 16. As for Fig. 12 but with a 500 cap on GDR. The differences
can be seen in the outer parts where some of the high GDR pixels from
Fig. 12 which were white because they had values over 500.

Fig. 17. Radial variation of Kdark, αCO, and GDR for the simulation with
a cut at 3σ for the CO and GDR capped at 500. The value is computed
using the maps in Fig. 16 and weighting each macropixel according to is
area within a given radial annulus. The error bars indicate the dispersion
within this ring.

The values of GDR we find in the outer regions using the
variable-β approach are actually consistent with the GDR found
by Gordon et al. (2014) in the Large Magellanic Cloud. The
LMC is a useful comparison as it is only slightly smaller, less
massive, and less metallic than M 33 but the LMC is much more
irregular.

Several interesting features are present. First of all, even
though GDR increases with radius, Kdark decreases. This shows
that the increase in Kdark seen without the limit on GDR was
only due to the divergent pixels. The XCO shows no clear ra-
dial trend. This is probably unlike large spirals like our own,
where a number of works have suggested the XCO increases
with radius (Sodroski et al. 1995; Braine et al. 1997), with a
particularly low value in the central regions. However, large spi-
rals also show systematic decreases in the CO(2–1)/CO(1–0)
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Fig. 18. Results of Bayesian analysis with a 0σ cut in CO and GDR
limited to 500. Top row is Kdark (left) and uncertainty in Kdark (right),
both with the color scale to the right and in units of M�/pc2. The second
row is XCO (left) and uncertainty in XCO (right), both with the color scale
to the right and in units of M�/pc2 per K km s−1. Bottom row is GDR
(left) and uncertainty in GDR (right), both with the color scale to the
right. As with the other figures, we have adopted the variable-beta dust
surface density shown in Fig. 2.

Fig. 19. Radial variation of Kdark , αCO, and GDR for the simulation with
a cut at 0σ for the CO and GDR capped at 500. The value is computed
using the maps in Fig. 18 and weighting each macropixel according to is
area within a given radial annulus. The error bars indicate the dispersion
within this ring. The comparison with the preceding figures shows that
the cap on GDR is critical to avoid diverging values of GDR and Kdark.

ratio whereas M 33 does not (Druard et al. 2014). The value of
XCO is only 10% greater than the Galactic value, indicated by a
horizontal line in Figs. 13, 17, and 19. This may appear surpris-
ing as the XCO factor is expected to increase as the metallicity
decreases.

The XCO factor derived here is not directly comparable to the
values for the Galactic XCO derived using dust and/or gamma-
ray observations because these calculations did not allow for
dark gas and thus attributed all gas (including any CO dark gas)
not identified as H i to H2 in order to calculate XCO. In order to

Fig. 20. H2 surface density derived from CO and Kdark derived from the
Bayesian analysis. The continuous curve shows ΣH2 based on Fig. 10 of
Druard et al. (2014) corrected to a XCO factor of 1.1 Galactic and un-
corrected for inclination and helium content. The histograms show the
CO dark gas surface density. The solid histogram shows Kdark as derived
assuming that all positions have the same dark column as the positions
where CO is detected above the threshold. The dashed and dotted his-
tograms represent Kdark assuming that the dark column only is present
where CO is detected above the 0σ and 3σ thresholds respectively.

calculate a comparable ratio, we can add the CO dark gas to the
H2 column computed as ICO×XCO. While typically modeled as a
constant, Kdark is not physically expected to be constant as (a) H i
is expected to be optically thick only over very small areas and
(b) GMC edges, where H is molecular but CO photodissociated,
are only expected to be associated with GMCs, which occupy
a very small fraction of the disk (Druard et al. 2014). Thus, we
can either take the value of Kdark derived for the CO detected (0
or 3σ) positions in the macropixel as representative of all posi-
tions, or we can assume that the value of Kdark derived for the
CO detected pixels are only valid for those pixels and assume
zero elsewhere. In this way, we may be able to place upper and
lower limits to the total XCO values in M 33, including dark gas.

We thus consider Fig. 10 from Druard et al. (2014) and un-
correct for inclination, uncorrect for He, and rescale to a XCO
value of 1.1 Galactic – this is equivalent to dividing their values
by 1.24. To this, we can add the Kdark as computed either in (a)
or (b) above.

Expressing the CO-emitting H2 and Kdark as surface den-
sities in Fig. 20, it is interesting to note that they are very
comparable for a XCO = 1.1Xgal where Xgal is taken to be
2 × 1020 cm−2/K km s−1. If we assume that the dark gas is ac-
tually molecular gas, then the two columns should be added in
order to compare with the Galactic XCO factors based on dust
or gamma-rays. Depending on whether Kdark is assumed to be
present everywhere at the level derived from the positions re-
specting the CO threshold or only for those positions, the to-
tal XCO (dark H2 + CO-emitting H2 divided by ICO) is about
twice Galactic with very little radial variation (except for the
case where the only pixels with Kdark are those above 3σ in CO).
The uncertainties increase dramatically beyond 4.5 kpc so we
have not been able to derive constraints for the very outer disk
of M 33.

Although we initially expected Kdark to increase (at least with
respect to CO) with galactocentric distance as in Pineda et al.
(2013, Fig. 15), is not surprising the Kdark decreases with
radius because the UV field decreases much more quickly
than the metallicity. As for the expected increase of XCO
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with galactocentric radius as is observed in large spirals
(Sodroski et al. 1995; Braine et al. 1997), it is not seen in M 33.
This was initially a surprise but the constant CO line ratios (2–
1/1–0 and 3–2/1–0) support this. In large spirals we see clear
decreases in these line ratios (and increases in XCO), but this is
not the case in M 33. We did not initially expect Kdark to follow
the CO column density variation – that came out of the analysis.
However, it is natural if the CO dark gas is in the outskirts of
GMCs. This implies that there is no large population of diffuse
H2 clouds (unrelated to GMCs) without CO emission.

Our findings are in apparent disagreement with Pineda et al.
(2013). However, Pineda et al. (2013) computed H column den-
sities assuming a constant ratio. Introducing a radially decreas-
ing would at least reduce the difference in our findings. Our
findings are in agreement with Mookerjea et al. (2016) who find
more CO dark gas near the center than in the BCLMP302 region,
although it is very difficult to generalize from a small number of
regions. While we describe Kdark as decreasing with radius, that
is only true in an absolute sense, just like many other quantities
decrease with radius (galactocentric distance). Assuming that
Kdark is not attributable to optically thick H i, a roughly constant
mass fraction of molecular material is CO dark, independent of
radius. This is in agreement with the findings of Wolfire et al.
(2010) where they model the dark gas as the region surrounding
molecular clouds where the CO is photo-dissociated but not the
H2. This is in excellent agreement with our observations.

It is worth noting that there is no reason to think that
the amount of gas not traced by CO or H i should be con-
stant. Figure 21 shows the dust surface density as a function of
the H i column density for 3 macropixels near the center and
3 macropixels between 4 and 5 kpc from the center. Examin-
ing the central pixels, it is immediately apparent that the inter-
cept (Kdark), varies significantly from one pixel to another, even
for neighboring regions. Comparing with the lower panel, we see
that Kdark tends to be lower in the outskirts although for exam-
ple, for the brown dots the distribution is rather flat (moderate
Kdark, infinite GDR) at least when only the H i is plotted. As-
suming no CO is present at low H i column density, it is also
immediately apparent that there is more dust per unit gas near
the center, which is the equivalent of a radially increasing GDR.
The low (high) GDR is a factor common to all three pixels at
small (large) radii.

6. Conclusions

In order to investigate how GDR, XCO, and Kdark vary in M 33,
the first step was to take a published estimate of the gas col-
umn density N(H)dust based on the Herschel dust observations
and plot N(H)dust − N(H i) versus ICO. The systematically posi-
tive intercept (Fig. 2) suggests that there is low-column density
gas traced by dust but not CO or H i, which we refer to as Kdark
(Tielens & Hollenbach 1985; Planck Collaboration XIX 2011).

The next step is to construct a map of the dust surface
density. Two methods were used – the classical β = 2 dust
emissivity (Fig. 1, left panel) and the variable-β (same figure,
right panel) developed by Tabatabaei et al. (2014). We adopt the
second method because in other subsolar metallicity galaxies
(Galliano et al. 2011) the classical approach yields too large a
dust mass, presumably due to a change in grain properties with
respect to Milky Way dust. Using β = 2 for M 33 also yields a
very high dust mass and Tabatabaei et al. (2014) show that β = 2
is a poor approximation for M 33.

We then look for optimal values of GDR, XCO, and Kdark
to relate the dust surface density to the H i and CO intensities.

Fig. 21. Top: link between H i column density and dust surface density
for 3 macro-pixels near the center of M 33. Each color represents the
pixel values of N(H i) and Σdust for a single macro-pixel. Bottom: same
as above but for 3 macro-pixels between 4 and 5 kpc from the center.

Except where the S/N is high, major degeneracies are present
between these parameters (Fig. 3) such that they all increase (or
decrease) simultaneously with similar scatter in log(GDR).

Using simulated data with noise, a similar effect is seen
in that the deduced solutions generally have lower GDR, XCO,
and Kdark than the input values (Figs. 5–7). Setting GDR to the
correct (input) value yields reasonably accurate results. Solving
only for GDR and XCO, implicitly assuming Kdark = 0 when the
input value was Kdark = 5 M�/pc2, yields results for GDR and
XCO that strongly depend on the amount of CO with respect to
H i. The degeneracies are illustrated by Figs. 8 and 9.

An extremely computation-intensive simulation using the
Bayesian errors-in-variables approach was used to obtain “true”
values of the parameters. Fortunately, a very similar result can
be obtained using the Bayesian formalism but without the errors-
in-variables approach, as shown from the comparison in Fig. 11.
The main difference is the slightly lower uncertainty with the
errors-in-variables approach. The degeneracies present using the
other methods are (almost) no longer an issue (Fig. 22).

There is a radial increase in GDR from ∼200 near the center
to nearly 400 in the outer disk. The XCO ratio remains constant
with galactocentric distance, as does the CO(2−1)/CO(1−0) line
ratio (Druard et al. 2014) and CO(3−2)/CO(2−1) line ratio (in
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Fig. 22. Search for degeneracies between the GDR, XCO, and Kdark in
the Bayesian approach. Top panel: XCO (αCO) and Kdark as a function
of GDR. Bottom panel: link (or absence) between XCO (αco) and Kdark.
Each point represents a pixel in the maps shown in Fig. 16.

prep.), unlike what is observed in large spirals. The surface den-
sity of dark gas, Kdark, decreases from the center (10 M�/pc2) to
the outer parts (roughly zero) in the same way as the CO emis-
sion such that the dark gas represents close to half of the H2
assuming that the dark gas is in fact H2. As a result, the ratio
of all H2 (dark gas plus the H2 traced directly by CO), is about
twice the local value of 2 × 1020 cm−2/K km s−1.

Some traces of the degeneracies between Kdark and GDR are
still present in that some macropixels with little CO find optimal
values that are physically unrealistic (typically GDR ∼ 5000

with a corresponding divergence of Kdark). Limiting the GDR to
values less than 500 (5 times the Milky Way value) avoids the
problem.

Overall, our results argue for a fairly high GDR in M 33
(GDR ≥ 200), a radially decreasing Kdark roughly proportional to
the amount of CO emission, and a fairly constant XCO conversion
both of the H2 directly traced by CO and the total H2 content
including the dark gas (whose radial distribution is similar to
that of the CO).

The results presented here on the link between CO and total
molecular gas mass (and/or any optically thick H i) confirm the
earlier estimates of the H2 mass of M 33. As a result, either the
H2 is converted into stars more quickly than in large spirals or the
star-formation rate is overestimated due to for example a change
in IMF in this environment.
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