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The development of new aeronautical combustor concepts relies on the best pos-
sible knowledge of combustion phenomena, such as ignition and extinction, flame 

structure, combustion instabilities or pollutant emissions. Numerical simulation, and in 
particular the Large Eddy Simulation approach, is a powerful tool to understand, pre-
dict and control the coupled physics involved in turbulent combustion in both academic 
and applied configurations. Thanks to reliable physical models, accurate numerical 
methods and high efficiency on massively parallel computers, numerical simulation is 
now able to produce robust and reliable solutions in complex geometries, taking into 
account all technological and physical effects. Today, it is a research tool that contri-
butes to improving our knowledge of turbulent reacting flows and in particular the 
interaction between turbulence and combustion chemistry. It is also an efficient tool 
for the design of aeronautical combustors, guiding test benches and possibly reducing 
their number.

Introduction

In recent years, numerical simulation has gained considerable impor-
tance in the understanding and prediction of combustion phenomena 
in both academic and applied configurations. It is a challenging do-
main that requires suitable descriptions of the turbulent flow and the 
chemistry, as well as their strong interaction and other coupled phy-
sics such as spray injection, heat transfer and acoustic resonances 
with the system modes, etc. The numerical simulation of turbulent 
reacting flows relies on the accurate modeling of the underlying phy-
sics, which has been developed by a large community in the past 50 
years and is still the focus of intense research [1]. Its capabilities to 
address large, transient and multi-physics problems have been pro-
moted by the development of High Performance Computing (HPC), 
that has considerably improved the fidelity of the results and opened 
new fields of research [2]. HPC also plays a key role in the implemen-
tation of numerical simulation in the industrial context, making it an 
efficient design tool capable of taking into account complex geome-
tries with an increasing number of technological details.

Models and numerics for advanced simulation 
of aeronautical combustors

In the field of turbulent - inert or reacting - flows, numerical simulation 
techniques can be classified depending on their level of accuracy. 
Direct Numerical Simulation (DNS) consists in solving the turbulent 
flow equations without any modeling, which implies that the full 
range of turbulent scales must be resolved. This requires the number 
of discretization points N to increase as Re3/4 in each direction, so 
that the total number of nodes in the grid increases as Re9/4, where   
Re = U L/v is the Reynolds number. In reacting flows, the very thin 
reaction zone requires even smaller grid cells. In contrast, the Rey-
nolds-Averaged Navier Stokes (RANS) relies on the statistical mo-
ments (mean and rms) of the flow, solving ensemble-averaged flow 
equations with various closures for the turbulent Reynolds stresses 
and fluxes, and dropping out the description of the various scales of 
the turbulent flow. Due to their computational cost, DNS calculations 
are exclusively dedicated to academic, simple-geometry, small-scale 
configurations with a moderate Reynolds number, with the aim of 
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accurately describing the complex structure of turbulence and its 
interaction with a flame front. On the other hand, the fast RANS 
approaches are most suitable for industrial application, although 
their fidelity and capacity to represent complex non-linear physics 
are limited. It is known, for example, that RANS methods do not 
provide an adequate representation of rotating flows of the type in-
duced by swirl injectors. In recent years, the Large Eddy Simulation 
(LES) technique has emerged as a good compromise between DNS 
and RANS, keeping high accuracy and fidelity at a reasonable CPU 
cost. This is achieved by applying a low-pass spatial filter to the flow 
equations, eliminating the smaller scales that are easily modeled. 
LES therefore still solves for physical variables, keeping their time 
and space scales down to the filter cut-off scale. Contrary to DNS, 
where high-order numerical schemes impose simple geometries, 
LES may rely on  3rd or even 2nd order non-dissipative schemes, 
which are still useable at a reasonable CPU cost in complex geome-
tries. Lower order schemes, which are commonly used in RANS, are 
however not appropriate for LES where the subgrid scale turbulent 
viscosity is much smaller than in RANS.

Combustion chemistry must also be described, since it drives all 
flame characteristics and behaviors of interest within the framework 
of burner design: ignition and extinction, flame structure, burnt gas 
state, pollutant emissions, etc., are all strongly dependent on che-
mistry and of primary importance for the burner performances. For 
standard kerosene or jet fuels, combustion chemistry involves hun-
dreds of chemical species and thousands of reactions, which stron-
gly raise the CPU cost if directly computed. Many approaches exist 
to account for complex fuel chemistry and its interaction with the tur-
bulent flow in the thin flame regime, which corresponds to the situa-
tion prevailing in engines [3, 4, 5, 6, 7]. One strategy is then to pre-
tabulate the detailed chemistry flame structure as a function of one or 
two parameters (typically the progress variable and the mixture frac-
tion), later introduced into the simulation via the Probability Density 
Function (PDF) of the tabulation parameters, or via the Flame Surface 
Density concept. Another strategy is to reduce the chemical scheme 
to a limited number of species and reactions, still guaranteeing the 
correct flame characteristics and behaviors. The flame structure can 
then be computed directly, modeling its interaction with turbulence 
through an additional model, such as the Thickened Flame model in 
the LES context (TFLES). Global chemical schemes, reduced down 
to 1 to 4 steps, are usually built with a fitting procedure, and are valid 
only under the fitting range conditions. More sophisticated methods 
are used to analytically derive reduced schemes [8], involving 10 to 
25 species depending on the fuel, which reflect the main chemical 
paths and reproduce the correct system behavior under a wide range 
of conditions.

Ignition and extinction

From one sector to full burner ignition

Ignition constitutes a critical phase in aerospace propulsion. It must be 
completed in a safe and reliable way, i.e., always leading to a stabilized 
flame, while producing a minimum pressure peak, even under unfavo-
rable conditions at high altitude, where rapid relight in case of acci-
dental extinction of the combustor is required for engine certification. 
New combustion technologies currently developed to reduce pollutant 
emissions, make the ignition process even more critical.

The experimental characterization of ignition has been extensively stu-
died on single burner ignition problems. One of the key issues is to 
predict the survival of the generated flame kernel in the turbulent flow 
field. Indeed, depending on the local flow conditions that are encoun-
tered by the kernel, it can either develop towards a turbulent flame or 
extinguish, leading to a measurable probability of ignition. Computing 
a full probability map numerically demands important computational 
resources, since many ignition events must be simulated. This has 
been achieved in recent work [9], where a good agreement between 
the numerical and experimental probability maps has quantitatively 
validated the predictability of LES. Such simulations also enabled a 
better physical understanding of the stochasticity of the ignition pro-
cess to be achieved and a low-order predictive model that can be used 
repeatedly at the industrial design stage [10, 11] could be provided. 

Applying LES to the full ignition process has been the next important 
challenge. Following the pioneering work of Boileau et al [6], Barré 
et al  [12] performed a joint analysis of experiments and numerical 
simulation of ignition in a gaseous non-premixed multi-injectors bur-
ner, in order to study the effects of spacing between injectors on the 
ignition process and the mechanisms driving the flame propagation 
from burner to burner. More recently, a novel experimental device na-
med MICCA [13] has been simulated [14, 15] with the AVBP solver, 
a code jointly developed by CERFACS and IFPEN [16]. This system 
comprises 16 swirling injectors in an annular geometry allowing full 
optical access to the flame. It is fed with a lean mixture of air and 
propane while a single spark igniter initiates the flame. In the simu-
lation, the turbulent combustion is described with either the Filtered 
Tabulated Chemistry LES model F-TACLES [7] or the TFLES model 
[17]. With a mesh of 310 million tetrahedra, the simulation required 
1.5 million CPU hours on TGCC-Curie thin nodes and was efficiently 
run on 6144 CPU cores. For both F-TACLES and TFLES models, 
numerical results closely match experimental data, as illustrated in 
Fig. 1. The flame brush at the largest scales is similar to that obser-
ved experimentally; the instantaneous flame configurations resemble 
those recorded by the camera. Transit times from one injector to the 
next match the measured ones, and the duration of the light-round of 
the order of 50 ms is also correctly predicted.

Extinction limits

The design of gas turbine burners requires the characterization of 
their operability, and in particular their lean blow-off limits (LBO) in 
terms of Fuel-Air Ratio (FAR). Flame extinction is however a complex 
transient process, driven by the two-phase flow, flame structure and 
their response to varying operating conditions.  Experimentally, LBO 
is usually characterized by reducing the FAR gradually until extinction. 

The same methodology has been applied to predict the LBO limit with 
LES for a variety of SAFRAN combustors and operating conditions 
(pressure and temperature). Simulations were performed with the 
AVBP solver, using the TFLES model [17] combined with a two-step 
kinetic mechanism for the kerosene chemistry [18]. For confidenti-
ality reasons, extinction limits presented in Fig. 2 are normalized by 
the FAR at take-off power. A very good agreement between numeri-
cal and experimental results is obtained for the FAR extinction limit 
of real burners. In such a diagram, overall absolute errors are lower 
than ± 2 thousandths. The various configurations and operating 
conditions are also correctly ranked, validating the use of LES for 
LBO operability issues.
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Figure 2 - LBO limit prediction (LES) vs. experimental data for 
a set of SAFRAN combustors under various operating conditions. 
Values are normalized by the fuel-air ratio at take-off power.  
Dotted lines correspond to the absolute error zone of ± 2 thousandths.

Figure 3 - Example of a straight-through combustion chamber 
and its exit plane location.

Combustor performances

Temperature distribution at the combustor exit

One of the uses of LES within the framework of combustion chamber 
design concerns the prediction of the temperature level and its spatial 
distribution at the combustor exit which is an input for high pressure 
turbine designers. Figure 3 shows a typical example of a straight-
through combustion chamber geometry from SAFRAN along with the 
associated exit plane position.

Figure 1 - Five instants in an ignition sequence of the MICCA chamber. Top row: Experimental views showing light intensity emitted by the fame during the light-
round process, and represented in false colors to improve visualization. Middle and bottom rows: Respectively F-TACLES and TFLES simulations. Flame fronts 
are represented by an isosurface of progress variable c=0.9 for F-TACLES, corresponding to an isosurface of temperature T= 1781 K for TFLES. 
Both are colored by axial velocity levels (light yellow: -30ms-1; black: +15ms-1). Blue isosurfaces correspond to the velocity field U = 25ms-1 (from [15]).

For analysis and exchange of information with the turbine designers, 
a dimensionless temperature 1D profile (azimuthal average) is usually 
extracted from the LES field, leading to the so-called RTDF profile. Se-
veral LES calculations were carried out on about ten combustors, using 
exactly the same simulation set-up in terms of models and numerics. 
In Fig. 4, results are compared to measurements at various radii across 
the vane. They are normalized for confidentiality reasons by the maxi-
mum of the RTDF profile. There is a relatively good agreement between 
numerical results and measurements in the hot part of the vane, since 
the error lies within the ± 2 point tolerance zone (not shown).
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Figure 5 - Unstable modes for three different real scale combustors. 
Comparaison between LES and experiments in terms of frequency (left) and normalized amplitude (right).

A monotonic trend is also observed confirming that the hottest zones 
are well positioned. The largest differences are found near the walls, 
where temperature levels are not well captured. At this point, it should 
be noticed that effusion cooling at the combustor walls was described 
with a homogeneous approach [19], which is suspected to underes-
timate mixing in the liner vicinity. Improvement of the near wall beha-
vior is expected with heterogeneous descriptions such as the one 
recently developed by CERFACS and SAFRAN TURBOMECA [20].

Combustion instabilities

Combustion instabilities are a major concern in the design process 
of industrial combustion chambers. They are characterized by strong 
pressure and heat release oscillations in the flame tube and can alter 
the integrity of the system. Compressible LES is an appropriate tool 
to study combustion instabilities, because it takes into account the 
main processes involved: flame dynamics, acoustics, turbulence and 

Figure 4 - Dimensionless temperature (RTDF) at various radii for a set of 
SAFRAN combustors.  RTFD values are normalized by the maximum of the 
1D profile.

Measurements
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various dissipation mechanisms. LES of three industrial configura-
tions from SAFRAN have been carried out for operating points fea-
turing a strong acoustic response characterized by pressure oscilla-
tions at a particular frequency and amplitude. The acoustic mode 
appears naturally in the simulation after a transient phase, growing 
until it reaches a limit cycle. Comparisons between experimental and 
numerical frequencies are shown in Fig. 5 for the three combustion 
chambers. Two of them feature longitudinal acoustic modes that were 
obtained on a single sector of the combustion chamber [21, 22]. The 
third one features an azimuthal mode and can only be obtained by 
considering the full annular combustor [23].

The frequencies obtained in the simulations are quite close to those 
observed experimentally, showing that the acoustics and the com-
bustion response are sufficiently well resolved. Some differences are 
observed for the amplitude, though the order of magnitude is cor-
rect. Current investigations rely on the complementary development 
of acoustic tools and reduced models to incorporate the action of the 
flame on the acoustic stability of an engine. In parallel, the question of 
the flame response to acoustic solicitations is naturally raised and the 
subject of dedicated LES-based studies [24].

Pollutants and soot

Prediction of NOx in aero-engines

Environmental constraints, and in particular Nitrogen oxides (NOx) 
and CO emissions, are also an important part of aeronautical burner 
design.  NOx are mainly produced in a thermal pathway where both hot 
temperature and oxygen are present [25], complemented by a prompt 
pathway in the fuel oxidation layer of the flame front [26]. The time 
scale of the thermal NOx chemical pathway being far longer than that 
of kerosene oxidation in the flame front [27, 28], it requires dedicated 
modeling. Within the framework of tabulated chemistry models [29, 
30], Pecquery et al recently proposed the NOMANI model (Nitrogen 
Oxide emission model with one-dimensional MANIfold) [31], which 
relies on two different progress variables to take into account both the 
thermal and prompt NOx pathways, as well as the dilution of the burnt 
gases by effusion holes after the primary zone of the combustor. In 
order to generate the 1D premixed laminar flames of the table for the 

Frequency measurement [Hz]

   45°

+10%

 - 10%

   45°

+10%

 - 10%

Normalized amplitude measurement [-]

Fr
eq

ue
nc

y 
si

m
ul

at
io

n 
[H

z]

No
rm

al
ize

d 
am

pl
itu

de
 s

im
ul

at
io

n 
[-

]

0                                        0,5                                        1	
                                                

0                   200                 400                  600                800	
                                                

800

700

600

500

400

300

200

100

0

1

0,9

0,8

0,7

0,6

0,5

0,4

,3

0,2

0,1

0



Issue 11 - June 2016 - Advanced Simulation of Aeronautical Combustors
	 AL11-06	 5

full range of operating conditions of aeronautical burners in terms 
of pressure, inlet temperature and equivalence ratio, a parallel table 
generator based on the Cantera software [32] has been designed. 
The tool called MUTAGEN (MUlticore TAble GENerator) relies on pre-
existing flame repositories, used as initial conditions to converge new 
flames, and allows look-up tables to be obtained, in the worst case 
within 2 to 3 hours on 16 cores for the reduced Luche mechanism 
[33, 34], which contains 92 species and 694 reactions.

The NOMANI model was implemented in the YALES2 solver deve-
loped at CORIA [35, 36]. The YALES2 code is dedicated to the LES of 
turbulent reactive flows on unstructured grids at low-Mach number. 
YALES2 has been specifically tailored for exploiting massively parallel 
computers and the handling of meshes with billions of cells [37]. 
The YALES2 code and the NOMANI model were recently applied at 
SAFRAN TURBOMECA to a low-NOx burner. These simulations count 
380 million tetrahedra for a sector of two injectors and run on 2048 
cores of the Airain machine at the TGCC center of the CEA. Instanta-
neous temperature and NO mass fraction fields at the center of the 
burner are represented in Fig. 6, illustrating the strong correlation 

Figure 8 - Instantaneous dimensionless temperature and soot volume fraction fields in a SAFRAN TURBOMECA  helicopter  model  combustor.

between the two fields. In the primary zone, hot temperatures and 
high NO mass fractions appear in the same regions: in the central 
recirculation zone of each injection system and also to a less extent 
in the recirculation zones between the injection systems. The same 
methodology was applied to various operating conditions, combus-
tion chambers and injector technologies at Safran. A reduced set of 
results is illustrated in Fig.7, where the numerical, normalized NOx 
emission indices are compared with experimental values. The results 
are consistent with the experimental data, and mostly within expe-
rimental uncertainties. These calculations pave the way for a better 
understanding of NO emissions in gas turbine combustors and the 
ability to optimize the air split in the burner for reduced NO production.
 
Soot

Soot participates in the energy balance in the production chamber, 
modifying the burnt gas temperature. It can cause a significant loss 
of efficiency of aeronautical combustors, due to soot deposits and 
wall deterioration. In addition, when emitted to the atmosphere, soot 
aggregates have a negative impact on health and the environment. 

Figure 6 - Instantaneous fields of temperature and NO mass fraction at the 
center of the burner. Injection is on the right side.

Figure 7 - LES normalized NOx emission index as a function of the experi-
mental ones for various operating conditions and combustion chamber tech-
nologies.The dashed lines outline the experimental strong confidence zone.
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Soot production is the result of a complex heterogeneous chemical 
process, where gaseous precursors trigger the formation of solid par-
ticles that may aggregate and react on their surface. Like combustion, 
this chemical phenomenon is quite sensitive to turbulent transport and 
mixing, which makes soot highly intermittent and strongly dependent 
on the temporal and spatial evolution of the flow. Therefore, LES is 
the most adequate numerical method to investigate soot production in 
aircraft engines. To do so simplified soot models are used, and cou-
pled to temperature and species fields, as well as thermal radiation.

Coupled LES-radiation simulations have been recently presented in 
[38, 39] to evaluate soot particles in a helicopter engine. The solid 
phase has been described by a phenomenological two-equation 
model [40], where acetylene is the only soot precursor and soot oxi-
dation is due to OH and O2. A hybrid chemical description has been 
proposed by [38], combining a two-step global chemistry for the 
gas phase combustion [18] and a tabulated chemistry for the minor 
species involved in soot production but not present in the reduced 
chemistry.  Finally, a Discrete Ordinates Method approach with opti-
mized spectral models has been used to compute radiation [41]. It 
was shown that soot is produced and grows in the rich zones of the 
primary premixed flame, and is then consumed in a secondary diffu-
sion flame (Fig. 8). Very few soot particles are found at the burner exit. 

Comparing an adiabatic uncoupled and a non-adiabatic LES-radiation 
simulation, the radiation effect appeared to be rather weak in the gas 
phase (a difference of a few percent in the mean temperature field), but 
much larger in the soot volume fraction (around 35%), due to slower 
kinetics for the reactions responsible for the soot particle evolution.

Conclusions

The accuracy and reliability of numerical simulation, and in particular 
of the LES approach, have been demonstrated by considering some 
difficult combustion phenomena, such as ignition, combustion ins-
tabilities or pollutant emissions, in either well-controlled academic 
experiments or realistic, complex-geometry applications. The com-
plementarity with experiments is clearly established and numerical 
simulation has now become an essential tool for research, as well as 
industrial design. Current and future challenges are to include even 
more physics, in a parallel coupled solver strategy and to extend com-
putational domains to all elements of aeronautical gas turbines, from 
the compressor down to the turbine. Such objectives will be achie-
ved with the next generation of massively parallel computers and will 
require important efforts on the solvers to keep them at the highest 
HPC standards 
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Acronyms

HPC	 (High Performance Computing)
DNS	 (Direct Numerical Simulations) 
RANS		 (Reynolds Average Navier Stokes) 
LES	 (Large Eddy Simulations) 
PDF	 (Probability Density Function)
TFLES	 (Thickened Flame model in the LES context) 
F-TACLES	(Filtered TAbulated Chemistry for Large Eddy Simulation)
LBO	 (Lean Blow-Off limits)
FAR	 (Fuel-Air Ratio) 
NOMANI	 (Nitrogen Oxide emission model with one-dimensional MANIfold) 
NOx	 (Nitrogen Oxides) 
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