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ABSTRACT 

In this work, we study the impact of thermal damage on the physical and mechanical properties of ultrahigh-performance 

fiber-reinforced concrete (UHPFRC), especially on their cracking process under compressive loading. Four mixtures of 

UHPFRC were prepared using identical composition but reinforced with different types of fibers: mineral fibers (Steel or 

Wollastonite) or organic fibers (PP or PVA) and compared with that without fibers (UHPC). To induce a thermal damage 

on UHPFRC, the samples were subjected to temperatures ranging from 150 to 400 °C. After each degradation stage, the gas 

permeability and the P-wave velocity were measured. The mechanical behavior under loading has been studied using a 

uniaxial compression test which combines the gas permeability and the acoustic emission measurement. The results show 

that the melting of organic fibers at approximately 180 °C builds a tunnel across the cement paste and increases brutally the 

gas permeability. At 400 °C treatment, a decrease of compression strength by 30 % and of Young modulus by approximately 

60 % was observed. However, we can see that the thermal damage results a decrease in the threshold of initial cracking (rk-

ci) and that of unstable cracking (rk-pi), and this can be explained by the initiation of new cracks and their coalescence. 
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Introduction 

In the past years, ultrahigh-performance fiber-reinforced concretes (UHPFRC) have become a subject of interest for 

engineers. This interest is due to the fact that the fibers can improve various characteristics of normal ultrahigh-performance 

concretes (UHPC) [1]. The UHPC is made of a very dense cementitious matrix that makes it more resistant and more durable 

than normal concrete but this results in a brittle behavior [2]. The incorporation of fibers reduces shrinkage and cracking 

and provides ductility both under tension as well as compression load [3–7]. 

It should be noted that fiber-cement paste interface and aggregate-cement paste interface have a key role in the mechanical 

performances of concretes, especially in their cracking under external solicitations. Indeed, concrete microcracking 

generally occurs firstly in those interfaces or in the cement paste around them, due to their weakness and to stress 

concentration [8, 9]. 

A lot of published data indicate that the fiber’s impact on concrete is modified by elevated temperature. For example, if 

organic fiber (polypropylene fiber ‘‘PP’’) is used to reinforce concrete, the melting of the fiber at 170 °C builds tunnels that 

can reduce significantly the internal gas pressure in concrete and then decrease the thermal cracking of concrete [10–12]. 

Even if fibers resist high temperatures (for example steel fibers or mineral fibers), the fiber-cement paste interface (interfacial 

transition zone) degrades rapidly when concrete is exposed to high temperatures. This is due to the fact that the CSH crystals 

that mainly constitute this interface decompose around 180 °C and accelerate the concrete thermal degradation [13–15]. In 

addition, the thermal expansion difference between the fibers and the cement paste may cause important thermal stresses 

and lead to thermal cracking at high temperature [16]. For example, the coefficient of thermal expansion at 20 °C is about 

3 9 10-6 K-1 for limestone aggregate, 13 9 10-6 K-1 for steel fiber, 6.5 9 10-6 K-1 for Wollastonite fiber, and 15.5 9 10-6 K-1 for 

cement paste [17]. 

The main objective of this study is to evaluate the impact of elevated temperatures on the physical characteristics and the 

mechanical behavior of four UHPFRC. The thermal damage is induced by heating the concrete samples up to temperatures 

ranging from 150 to 400 °C. The physical properties of the specimens were examined by measuring the apparent 

permeability and the P-wave velocity. The mechanical behavior under loading has been studied using a uniaxial compression 

test which combines the gas permeability and the acoustic emission (AE) measurement. The P-wave velocity test provides 

an accurate estimation of the total damage on the material, while the permeability measurement gives indications on the 

connections of the porous network. This network constitutes a possible pathway for aggressive solutions penetration. The 

mechanical test accompanied with the gas permeability and the AE measurement allows us to follow the cracking process 

under mechanical loading. 

Material and experimental procedure 

Material and mixtures 

The reference specimens in this work were UHPC. The first type of UHPFRC specimens was reinforced with 1 % volume 

of mineral fibers (steel or wollastonite). The second type of UHPFRC was reinforced with 1 % volume of organic fibers 

(Polypropylene ‘‘PP’’ or Polyvinyl alcohol ‘‘PVA’’). The concrete was prepared using European cement (CEM I 52.5N) 

containing 1.2 % mass of limestone filler and 4.9 % mass of siliceous filler. The aggregate used is normalized silica sand 

having 1,730 kg m-3 bulk density and 2.65 specific gravity. The water/cement ratio was 0.27. The fibers characteristics are 

reported in Table 1. The experimental investigations were performed on cylindrical specimens (40 x 60) mm. The top and 

lower surfaces of the specimens were properly polished before the test to ensure two sufficiently smooth and parallel 

surfaces. Three specimens were prepared for each composite and each test in order to calculate their average. 
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Table 1 Fibers properties 

Fibers L (mm)  (µm) Melting pt. (°C)  (kg/m3)  (10-6K-1)  (GPa) E (GPa) 

Steel 50 600 1370 7800 13 1–3 200 

Wollastonite 3 100 1540 3000 6.5 2.7–4.1 303–

530 

PP 6 28 130–171 915 100 0.03–0.04 0.9–1.5 

PVA 12 100 150–190 1300 75 1.23 29.5 

 is the Thermal expansion coefficient 

Heat treatment 

The concrete specimens were heated in a furnace at a rate of 1 °C min-1 until the maximum temperature is reached (Fig. 1). 

This low rate of heating ensured that cracking would result only from the temperature increase and not due to thermal 

gradients within the sample. 

The specimens were heated up to 150, 200, 300, or 400 °C, and held at these temperatures for 4 h. They were then cooled 

down to room temperature at a rate of -0.3 °C min-1. All the treated specimens were kept in a desiccator during the period 

preceding the test. 

 

Figure 1 Thermal degradation of concrete samples (heating process). 

Gas permeability test 

In this study, an inert gas (helium) was used for the permeability measurement. The pore water was removed from the 

specimen by drying them at 105 °C to obtain a constant mass then keeping them in a desiccator for 24 h prior to the 

measurement [18, 19]. The test was performed using a gas-flow method keeping a constant percolating gas pressure at the 

bottom of the samples. The steady-state gas flow was considered established when the variation of outflow gas flux 

measured was less than 2 % during a period of 10 min. 

The apparent permeability coefficient Ka (m2) was then calculated by the Darcy relationship [20] for the laminar flow of 

a compressible fluid through a porous body under steady-state conditions using Eq. 1: 

 
where Ka (m2) is the apparent gas permeability of the specimen; Q (ml min-1) is the outflow gas flux measured; P1 is the 

constant percolate gas pressure (we have chosen 0.6 MPa); P2 is the atmospheric pressure (P2 = 0.1 MPa); µ is the dynamic 
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viscosity of helium gas = 2 x 10-5 (Pas) at 20 °C; S is the crosssectional area of the specimen; and L is the length of the 

specimen. 

P-wave velocity test 

P-wave velocity measurement is a very convenient method for the nondestructive testing of a given material [21–23]. P-

wave velocity VP is calculated using the transmission travel time of an acoustic pulse along the axial direction of the samples. 

The experimental setup includes a waveform generator, two piezoelectric transducers (with a resonant frequency of 500 

kHz) mounted on the sample holder, and a numerical oscilloscope board connected to a computer. A constant pressure is 

systematically applied using a constant mass to ensure a tight contact between the concrete specimen and the transducers. 

We have chosen water as the coupling agent between the sample and the transducers in order to transmit the ultrasonic 

energy to the sample and also not to affect the gas permeability measurement with the use of other more viscous coupling 

agents. The travel time was measured using a program developed under the LABVIEW system with a resolution of 50 ls. 

Tests under mechanical loading 

Deformation measurement 

The cylindrical concrete specimens with the dimensions of 40 mm diameter and 60 mm length were loaded with a uniaxially 

applied stress in the direction of the longer axis of the specimens, at a loading rate of 150 N s-1. The axial and circumferential 

strains in the sample were measured using two strain gauges directly bonded to the specimen: the first one parallel to the 

specimen longitudinal axis and the second one along the circumference. In order to calculate the volumetric strain (ev), the 

following equation has been used (2): 

  

where a and t are the axial and the transverse (lateral) strains, respectively. 

Permeability changes and AE measurement 

In this study, strains, changes in permeability, and acoustic emission (AE) were simultaneously measured during the uniaxial 

compressive test. To perform these measurements we have used a specific cell, a stress-flow-AE cell, that is based on a 

modified triaxial cell design (Fig. 2) with a special loading piston to enable the flowing of gas along the core axis during 

tests [22]. The percolated gas is uniformly distributed over the full face of the sample. The experiment began when all the 

cracks were filled with the gas and the steady-state flow was reached, which typically required between 15 min to an hour 

depending on the performance of the concrete specimen. During the experiment, once all the cracks were filled, a slight 

stress was found to cause an instantaneous and stable flow-rate change particularly at high gas pressure. Preliminary tests 

were performed to determine a proper loading rate. Since the flow rate is proportional to the apparent permeability, we have 

used this parameter to represent the data obtained. 

The AE transducer [24] was positioned on the top plate of the cell. The transducer position is not very important in our 

investigation. Butt [25] showed that positioning the transducer in line with the axes of the loading piston and the core sample 

enables the recording of the direct AE waves generated in the sample, as opposed to the fully or partially reflected waves 

where the transducer positioned on the side of the loading piston or on the bottom plate of the cell. The recording of direct 

AE waves is important for the full-waveform analysis and, in conjunction with a source transducer, for velocity and 

attenuation measurements. The AE signals were first amplified and then sampled at 20 MHz. In this study, analysis of the 

AE signals was performed using a simple approach based on estimation of cumulative events energy (event rate during a 

period of 100 ms). 
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Figure 2 Tests under mechanical loading. 

Mechanical and cracking behavior under compressive stress 

Permeability measurement is highly sensitive to crack development in materials because it is directly dependent on the 

geometry of the porous network and its interconnectivity. For this reason, it is interesting to use it to characterize the failure 

process in materials under mechanical test. Therefore, in this study, we have chosen to measure the deformations, the 

permeability changes, and the acoustic emission (AE) simultaneously during the uniaxial compressive test. To explain the 

different phases under the compressive stress, we have presented in Fig. 3a and b, the curves of stress–strain and the curves 

stress-gas flow of a reference specimen. We can reveal four phases during the specimen loading [26–28]; they provide the 

comparison keys between the different concretes studied. 

Phase 1: (k-s): phase of the closing of pre-existing cracks 

Crack closure occurs at the initial stage of loading. During this stage, the permeability decreases by a value of K (from K0 

to Ks), and this is mainly due to the decrease in the volume accessible to the fluid of percolation. Indeed, the loading causes 

a reduction of the micropores size as well as changes in the geometry and the connectivity of cracks and their closure. 

Phase 2: (k-s < k-ci): phase of permeability stabilization 

During this stage, the volumetric gas flow rate remains constant during mechanical loading. We consider that there is a 

combination of crack initiation, crack growth, and crack closure. The recorded AE, in this phase, reveals quasicontinuous 

bursts of microbruits of low intensity reflecting the frictions between the grains of the material and the lips of closed cracks. 

During this phase, the longitudinal strain is linear; transverse deformation ceases to be linear and tends to increase. 
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Figure 3 Curves of stress–strain (a) and stress-gas flow (b) of a reference specimen under the compressive stress. 

 

Phase 3: (k-ci < k-pi): phase of stable microcracking 

The third phase indicates an increase of permeability (K); it corresponds to the extension of existing cracks and the creation 

of new microcracks; it is caused by the increase and concentration of stress. The microcracking produced during this phase 

generates short and isolated microbruits that become progressively more frequent as loading increases. During this phase, 

the longitudinal deformation remains quasilinear and does not reflect in any way the irreversible transformation 

demonstrated by permeability change and acoustic signal. The transversal deformation shows a sharp increase of Poisson’s 

ratio and the volumetric behavior becomes dilatant. 

Phase 4: (k-pi): phase of unstable crack propagation 

During the last phase permeability increases rapidly. This increase corresponds to the development and the multiplication 

of cracks. The cracks propagate in an unstable manner under the effect of stress concentrations or due to the coalescence of 

the neighboring cracks. During this phase, the intensity of the isolated noises increases along with their frequency of 

occurrence. The transversal strain grows simultaneously with the volume expansion of the specimen. 

Results and discussion 

Effects of thermal damage on gas permeability 

The apparent gas permeability values of UHPC and UHPFRC specimens are given in Table 2. The experimental results 

reveal that at 105 °C the specimens reinforced with fiber UHPFRC have a higher gas permeability (about 10-17) compared 

to the UHPC specimens (about 10-18). These results may be attributed to the quality of interface fibers/cement paste. 

In order to compare the different mixtures at different temperatures and illustrate the relevant 

changes, the gas permeability values after the heat treatment have been normalized with respect to the initial value measured 

at 105 °C as shown in Fig. 4. 

The permeability curves show two kinds of distinct behavior according to whether the incorporated fibers are mineral or 

organic: 
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– For mineral fiber specimens, firstly, permeability decreases slightly when temperature is increased from 105 to 150 °C. 

This could be due to the closure of certain cracks, or the carbonation of some portlandite or to some complementary 

hydration of the cement grain in contact with the evaporating water. Other authors [29] have reported similar 

observations. 

Secondly, permeability slightly increases when temperature is increased from 150 to 300 °C and even more significantly 

between 300 and 400 °C. These evolutions can be explained by the modification of the hydrated phases of the cement paste 

as concrete temperature increases [30]. In fact, above 170 °C the dehydration of calcium silicate hydrate (CSH) begins, and 

continues its progressive decomposition particularly when temperature exceeds 300 °C. The decomposition of the 

portlandite and limestone crystals occurs later at 460 and 800 °C, respectively. Consequently, in the case of this study, since 

the temperature did not exceed 400 °C, we can state that the main degradation mechanisms in the concrete are due to the 

dehydration of CSH, and this can produce a discontinuity and a cracking in the cement paste and therefore increase 

permeability. 

– For organic fiber specimens: permeability increases significantly when temperature exceeds 150 °C. This is due to the 

melting of the organic fibers that left tunnels for the gas flow as shown in Fig. 5. 

Table 2 Apparent permeability (m2) of intact and heated concrete samples 

Concretes 105 °C 150 °C 200 °C 300 °C 400 °C 

UHPC 9.89E-18 ± 11.26 % 7.97E-18 ± 7.23 % 1.52E-17 ± 0.82 % 5.20E-17 ± 2.71 % 2.10E-16 ± 1.82 % 

UHPFRC 

Steel 1.19E-17 ± 0.92 % 8.65E-18 ± 2.71 % 1.97E-17 ± 3.59 % 8.86E-17 ± 4.88 % 2.76E-16 ± 2.73 % 

Wollastonite 1.08E-17 ± 7.35 % 7.09E-18 ± 11.69 % 1.47E-17 ± 10.88 % 6.62E-17 ± 5.49 % 2.15E-16 ± 8.46 % 

PP 1.51E-17 ± 10.49 % 3.14E-17 ± 13 % 4.54E-15 ± 9.71 % 1.76E-14 ± 2.4 % 3.56E-14 ± 8.04 % 

PVA 4.35E-17 ± 2.01 % 7.43E-17 ± 12.92 % 4.02E-16 ± 11.94 % 4.40E-15 ± 4.8 % 1.51E-14 ± 4.88 % 
 

 

 

Figure 4 Gas permeability of the specimens after the heat treatment. 
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 100 µm 100 µm 

 UHPC specimen after heating at 300°C UHPC specimen reinforced with PP fibers after  heating at 300°C 

Figure 5 Melting of PP fiber at 300 °C. 

Effects of thermal damage on P-wave velocity 

The P-waves velocity in UHPC and UHPFRC specimens are summarized in Table 3. The values after the heat treatment 

have been normalized with respect to the initial value measured at 105 °C and presented in Fig. 6. 

The results show that the P-wave velocity of all mixtures at 105 °C is around the same order of magnitude (around 5000 m 

s-1). As expected, there is a negative correlation between P-wave velocity curves and the damage induced by the heat 

treatment. All the samples tested show that P-wave velocity is less affected by temperature elevation from 105 to 150 °C. 

Above 150 °C, samples showed a decrease in velocity (about 6 % at 200 °C). Velocity decrease becomes even more 

important between 200 and 400 °C (more than 28 % at 400 °C). These results are in agreement with the permeability 

measurements presented in the previous section since an elevated temperature induces an increase in global porosity. 

However, only a minor difference exists between mineral and organic fibers. This can be explained as P-wave velocity is 

directly impacted by the overall damage and the global porosity increase. But it does not give indications on the 

interconnection of this porosity, and it does not take into account the creation of bridges caused by the organic fibers melting 

as the case of the permeability. Therefore, we can not show a significant difference between organic and mineral fiber. 

 

Table 3 P-wavevelocity(m/s) of intact and heated concrete samples 

Concretes 105 °C 150 °C 200 °C 300 °C 400 °C 

UHPC 5058 ± 0.83 % 5005 ± 0.35 % 4792 ± 0.20 % 4336 ± 0.19 % 3675 ± 1.67 % 

UHPFRC 
Steel 5198 ± 0.70 % 5121 ± 0.2 % 4857 ± 0.05 % 4376 ± 0.18 % 3771 ± 0.85 % 

Wollastonite 5042 ± 0.98 % 5085 ± 0.37 % 4850 ± 0.19 % 4418 ± 0.72 % 3799 ± 1.08 % 

PP 4881 ± 0.06 % 4838 ± 0.06 % 4614 ± 0.74 % 3998 ± 0.29 % 3359 ± 0.80 % 

PVA 5001 ± 0.22 % 4939 ± 0.36 % 4676 ± 0.21 % 4192 ± 0.40 % 3598 ± 1.50 % 
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                                                                 Temperature (°C) 

Figure 6 P-wave velocity in the concrete specimens after heat treatment. 

 

Effects of thermal damage on mechanical behavior 

General behavior under compressive load 

Figure 7a represents the stress–strain curves of intact and thermally damaged PP-concretes at 400 °C. The evolutions are 

practically the same for all other concretes. 

The following observations can be removed on the stress–strain curves: 

– The stress–longitudinal strain curve ( - L) shows that heat treatment induces a sharp decrease of Young’s modulus and 

a much greater strain at failure (comparison L and L-400 °C). 

– On the stress–transversal strain curve (- T), we can see that the heat treatment of sample induces a greater 

deformability and a significant and early increase in Poisson’s ratio (comparison T and T-400 °C). 

– The stress–volumetric strain curve (- V) is even more telling. It particularly reveals a contracting phase more 

pronounced on the sample heated to 400 °C. The beginning of mechanical loading serves mainly to close the cracks 

created during heating (comparison V and V-400 °C). 

Figure 7b reproduces the evolution of the gas flow rate recorded simultaneously with the stress-strain curves. 

The main observations are as follows: 

– After heating to 400 °C, the initial flow before loading is clearly higher than that of intact concrete: Q400 °C of 23.15 

ml min-1 versus Q intact of 3.28 ml min-1. 

– On the curve of concrete heated to 400 °C, the tightening phase (up to k-s) is characterized by a greater decrease of the 

gas flow, corresponding to the closing of the cracks created during heating (more convex curve, Q greater). 

– The constraints at the microcracking threshold k-ci and at the propagation threshold k-pi are significantly lower than the 

unheated concrete: 41.7 versus 83.2 MPa for rk-ci and 58.3 versus 106 MPa for rk-pi. 

– During the phase of unstable crack propagation 

( >  k-pi), we can observe that the intensity of the bruits and their occurrence frequency increases significantly in the 

specimen heated to 400 °C. 
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(a) (b) 

Figure 7 Curves of stress–strain (a) and stress-gas flow (b) of PP-concrete before and after the thermal degradation at 400 °C. 

Compressive strength and elastic modulus 

Figures 8 and 9 show the evolution of compressive strength and Young’s modulus of intact and thermally damaged concretes 

at 400 °C. 

We find that before thermal treatment, the fiber influences hardly the compressive strength and the elastic modulus of the 

UHPC specimens, except for the steel fiber which itself has a high resistance. The PP mixtures present a decrease in the 

mechanical properties which can be explained by a weak adherence between the PP fibers and the cementitious matrix. 

As shown in Table 4, after heating at 400 °C, the compressive strength decreases by about 30 % for all the specimens. 

There is no clear difference between organic and mineral concretes. These decreases are expected because heating causes 

cracks in the cement paste and separation at the interfaces between the cement paste and the aggregates or the fibers. 

Consequently, when the heated samples are mechanically loaded, stresses concentrate on these defaults and induce early 

brittle failure of the concrete. 

The influence of the heating is more significant if the Young modulus is considered. The relative variation reaches 60 %. 

This means that the heating causes also a loss of stiffness in the cement paste. It is likely to be a consequence of the 

decomposition and the degradation of the CSH gel in the cement paste. 

 

Figure 8 Compressive strength (MPa) of intact and thermally damaged concretes at 400 °C. 
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Figure 9 Elastic modulus (GPa) of intact and thermally damaged concretes at 400 °C. 

 

Table 4 Mechanical properties of intact and thermally damaged concretes at 400 °C 

 

Concretes Initial state After 400 °C Relative degradation (%) 

 c (MPa) E (GPa) c (MPa) E (GPa) r E 

UHPC 141 ± 0.25 % 45.3 ± 8.44 % 98.5 ± 1.17 % 18.5 ± 9.43 % 30.1 59.2 

UHPFRC 

Steel 173.2 ± 1.32 % 51.8 ± 14.17 % 116.5 ± 2.13 % 18.4 ± 3.16 % 32.7 64.4 

Wollastonite 145.5 ± 0.75 % 47.5 ± 3.23 % 101.2 ± 0.91 % 18.4 ± 2.12 % 30.4 61.3 

PP 116.5 ± 1.52 % 35.9 ± 9.39 % 79 ± 2.01 % 14.8 ± 0.38 % 32.2 58.8 

PVA 137.7 ± 4.26 % 38.8 ± 2.41 % 91.5 ± 0.82 % 20.5 ± 2.19 % 33.6 47.2 
 

 

Evolution of cracking thresholds 

As shown in Figs. 10 and 11, we find that the use of fibers increases the threshold of initial cracking (k-ci) and that of 

unstable cracking (k-pi). Therefore, the fibers clearly restrain the cracking process in concrete under the mechanic loading, 

because they contribute to block the brutal propagation and the coalescence of cracks [31–33]. 

However, we can see that the thermal damage results a decrease in the initiation threshold of the stable crack (k-ci) and 

in the propagation threshold of the unstable crack (k-pi). This can be explained by the fact that the heating generates a greater 

number of stress concentration points, which can induce the initiation of new cracks and their coalescence. 
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Figure 10 Initial cracking threshold (rk-ci) in MPa of intact and thermally damaged concretes at 400 °C. 

 

Figure 11 Unsteady cracking threshold (rk-pi) in MPa of intact and thermally damaged concretes at 400 °C. 

Conclusion 

The effects of thermal damage on physical and mechanical properties of UHPFRC have been investigated by measuring gas 

permeability, P-wave velocity, compressive strength, elastic modulus, and cracking behavior. 

We find that the fibers incorporation increases the amount of interfaces between the cement paste and the aggregates. 

Consequently, if the fiber-reinforced concretes are subjected to temperature increase, the damage occurred not only in the 

cement paste (overall damage) but also at the interfaces (located damage). In addition, when the melting of the organic fibers 

occurs, it creates interconnections between the pores and causes a considerable increase of gas permeability. This behavior 

has a good interest when a fire occurs in a concrete-based structure since the melting of the fibers allows the exhaust of the 

steam and reduces the risk of explosion. The degradation of the cement paste and the fibers interfaces can also be estimated 

by P-waves velocity measurement, but this technique does not take into account the interconnections of the porous network; 

thus, we can not show a significant difference between organic and mineral fiber. 

The study of mechanical behavior showed that the heat treatment at 400 °C causes a decrease in the compressive strength 

(about 30 %). These could be explained by the creation of new cracks in the cement paste and the loss of cohesion matrix-

aggregates/fibers under the effect of high temperature. The decrease in the mechanical properties is more significant if the 
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Young modulus is considered (about 60 %). This means that the heating causes also a loss of stiffness in the cement paste. 

It is likely to be a consequence of the decomposition and the degradation of the CSH gel in the cement paste. 

However, we can see that the thermal damage results a decrease in the threshold of initial cracking 

(rk-ci) and that of unstable cracking (rk-pi). This can be explained by the fact that the heating generates a greater number of 

stress concentration points, which can induce the initiation of new cracks and their coalescence. 
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