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Abstract

Motivated by cloud-based computing resources operating with relative priorities, we investigate the strategic
interaction between a fixed number of users sharing the capacity of a processor. Each user chooses a payment,
which corresponds to his priority level, and submits jobs of variable sizes according to a stochastic process.
These jobs have to be completed before some user-specific deadline. They are executed on the processor
and receive a share of the capacity that is proportional to the priority level. The users’ goal is to choose
priority levels so as to minimize their own payment, while guaranteeing that their jobs meet their deadlines.
We fully characterize the solution of the game for two classes of users and exponential service times. For an
arbitrary number of classes and general service times, we develop an approximation based on heavy-tra�c
and we characterize the solution of the game under the heavy-tra�c assumption. Our experiments show
that the approximate solution captures accurately the structure of the equilibrium in the original game.

1. Introduction

We are interested in the equilibria that arises in queueing games where a common resource is shared
among multiple concurrent users. The study of strategic behavior in queueing systems has a long history
and there is by now a broad literature, cf. [1] and [2] for monographs. A particular problem who has
received a lot of attention deals with the strategic behavior of users in parallel servers, see for example
[3, 4, 5]. In recent years, motivated by the rise of paid resource sharing systems like in cloud computing,
researchers have investigates pricing schemes, where capacity of the server is shared simultaneously by all
jobs present in the system, see for example [6] or [7]. For the case in which the underlying queueing model
has no priorities we refer to [8] and [9]. Another related work is [10], where the authors study of the spot
price history of Amazon and they introduce a model where a cloud provider with fixed capacity can update
the spot price dynamically according to market demand. They present a pricing mechanism to study the
provider’s revenue maximization and they give the optimality conditions.

In this paper we analyse the equilibria in a scenario where a fixed number of users share the capacity
of a processor. Each user submits jobs of variable size that need to be completed before some user-specific
deadline. Motivated by cloud-based computing resources, we propose a model with relative priorities, where
each user chooses a payment (per job) that corresponds to his relative priority level. The share of the
capacity that a job gets is proportional to its priority level. More precisely, we assume that the capacity is
shared according to the Discriminatory Processor Sharing (DPS) discipline. Introduced by [11], the DPS
model is a versatile multi-class generalization of the egalitarian Processor Sharing (PS) queue that captures
the essential features of a system that implements service di↵erentiation (see [12] for a survey). The users’
goal is to select the minimum possible payment for its jobs, while guaranteeing that their performance is
satisfactory. This is distinctive feature of our model, since most of the literature deals with a situation in
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which users’ objective is to maximize their net utility, measured as the di↵erence between performance and
cost.

Our pricing mechanism captures some of the fundamental properties arising when sharing a common
resource among selfish users with potential applications in cloud-computing and networking. A possible
application domain is in Infrastructure-as-a-Service (IaaS) cloud-computing platforms that are based on
priority level di↵erentiation. For instance, in the Amazon EC2 cloud users can bid for unused capacity using
the so-called Spot Instances, see [13]. Amazon fixes the Spot Price which depends on the capacity demand
of the users and the available resources. As an application in networking we can mention file hosting web
providers where the upload/download speed depends on the subscription price and also information-centric
networking, a problem that has been recently modelled using the DPS queue, see [14]. We observe that in
these instances a higher payment leads to a higher speed of service and that our model also satisfies this
property.

The main goal of the paper is to study the properties of the non-cooperative game that arises from
the interaction of the various users. We are interested not only in characterizing the prices paid by users
in the Nash Equilibrium, but also in understanding the equilibrium performance perceived by users. A
central di�culty in the analysis of the game comes from the absence of a closed-form expression for the
mean processing times of the jobs in a DPS system. For example, the mean unconditional sojourn time in
a DPS queue is only known in the case of two classes with exponentially distributed service requirements,
see [15]. This explains partly why results on strategic behavior of users in systems with relative priorities
are so scarce. Two exemptions are [16] and [17]. In [16] the authors consider two types of applications in
a DPS queue that compete to be served and they analyse how optimal prices can be found. A more recent
work is [17], where the authors define a game for the DPS queue where each user seeks to minimize the
sum of the expected processing cost and payment. Given the di�culty in analysing the model, the authors
propose a heavy-tra�c approximation, i.e. when the system is critically loaded, of the problem. Indeed,
in the heavy-tra�c limit the analysis of DPS simplifies considerably, see for example [18] and [19], which
renders the analysis of the game more tractable. Even though we also assume the DPS model for the sharing
of the capacity, the problem we consider is very di↵erent from [16] and [17], since in our formulation each
user aims at minimizing its payment while ensuring its jobs to be served before a certain deadline.

The main contributions of the article are summarized in Table 1. We give the necessary and su�cient
conditions for the existence of the equilibrium of the game for exponential service times and arbitrary number
of classes. For general service times and two classes of users, we show that the equilibrium is unique and that
the Price of Anarchy is one. When the number of classes is two and exponential service times, we characterize
the unique equilibrium of the game. We prove that the dynamics of best-response (BR) converge in two
settings: (i) for two users, exponential service times and any initial point and (ii) arbitrary number of users,
general service times and feasible initial point. For the rest of the cases, given the di�culty of this model,
we use heavy-tra�c results for DPS from [18] and [19] to obtain tractable expressions for the mean response
time in the system. Even though of approximate nature, we believe that the heavy-tra�c approach allows
to derive interesting insights into the performance of the system. Using the heavy-tra�c approximation, we
characterize the su�cient and necessary conditions for the game to have a Nash equilibrium, and then show
that this equilibrium is unique and fully characterize it. Interestingly, we show that classes can be ordered
in a decreasing order with respect to the ratio between the mean size requirement and their constraints
on the response time and that in equilibrium, the prices that users pay decrease as this ratio decreases.
Furthermore, we prove that the Price of Anarchy of the heavy-tra�c game is always one. We then explain
how the heavy-tra�c solution can be used to obtain an approximate solution to the original problem. The
numerical experiments illustrate that when the various users have a similar ratio between the mean size
and response time constraint, then the heavy-tra�c approximation predicts satisfactorily the outcome (both
in terms of equilibrium prices and performance) of the original game. However, when the disparity of the
users increases the error in predicting the equilibrium prices can be very significant, but in spite of this, the
heavy-tra�c approximation remains quite accurate regarding the performance. The numerical results show
that the dynamics of the best-response also converge outside the two settings described above.

The rest of the paper is organized as follows. In Section 2 we describe the model. We present the
game with constraints on the mean response time in Section 3. In Section 4 we analyse the game for the
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Contributions Original Game Heavy-Tra�c Game

N. Classes Serv. Times Result N. Classes Serv. Times Result
Feasibility Arbitrary Exponential Sec. 3.1 Arbitrary General Sec. 4.1

Existence of NE Arbitrary General Sec. 3.2 Arbitrary General Sec. 4.2
Uniqueness of NE 2 General Sec. 3.3 Arbitrary General Sec. 4.3

NE Characterization 2 Exponential Sec. 3.4 Arbitrary General Sec. 4.3
Price of Anarchy 2 General Sec. 3.5 Arbitrary General Sec. 4.4

BR Convergence (feasible point) Arbitrary General Sec. 3.2 Arbitrary General Sec. 4.2
BR Convergence (any point) 2 Exponential Sec. 3.4 2 General Sec. 4.3

Table 1: Summary of the main contributions of the article.

heavy-tra�c regime and in Section 5 we study the game for an arbitrary load of the system. We discuss
the accuracy of our approximation using the numerical experiments of Section 6. Finally, in Section 7 we
summarize the main conclusions of this paper.

2. Game description

Consider a game in which a single server of unit capacity is shared among R classes (or users). Let
C = {1, 2, . . . , R} be the set of classes. We assume that the arrival process of jobs of each class i is Poisson
with rate �i and that the service requirements of jobs are i.i.d. and have an arbitrary distribution with
mean E(Bi) and second moment E

�
B

2

i

�
. For the case of exponential service time distributions, we will

use the notation E(Bi) = µ

�1

i and E
�
B

2

i

�
= 2/µ2

i . We define the total incoming tra�c of the system by

� =
PR

i=1

�i. Let ⇢i = �iE(Bi) be the load of class i and the total load of the system be ⇢ =
PR

i=1

⇢i.

The processing capacity of the server is shared amongst jobs according to the DPS discipline, that is,
all jobs present in the system are served simultaneously at rates controlled by a vector of weights g =
(g

1

, . . . , gR). If there are Ni jobs of class i present in the system, then class-i jobs are served at rate

ri(N1

, . . . , NR) =
giPR

j=1

gjNj

. (1)

In the case of identical weights gi, the DPS queue is equivalent to the well-known egalitarian PS, which has
been thoroughly studied, see for example [20] or [21]. By changing the weights, one can e↵ectively control
the instantaneous service rates of di↵erent job classes. For example, by setting the weight of a class close
to infinity, one can give preemptive priority to this class. The possibility of providing di↵erent service rates
to users of various classes makes DPS an appropriate model to study the performance of heterogeneous
time-sharing systems.

The payo↵ function of the game that we analyse depends on the response time of jobs under the DPS
discipline. Given the complexity of this queueing model, before describing the game in Section 2.2, we briefly
mention the main results on DPS that we need in this paper.

2.1. Main results on DPS

We denote by Ti(g; ⇢) the random variable corresponding to the response time of a class-i job in a DPS
queue for the vector of weights g = (g

1

, . . . , gR) when the load in the system is ⇢ < 1. The mean response
time is denoted by T i(g; ⇢) = E(Ti(g; ⇢)).

In a seminal paper, Fayolle et al. proved that for exponential service time distributions, the mean response
time is the solution of a system of equations. For completeness we state their result:
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Proposition 1 ([15]). In the case of exponentially distributed required service times, the unconditional
average response times satisfy the following linear system of equations:

T k(g; ⇢)

0

@1�
RX

j=1

�jgj

µjgj + µkgk

1

A�
RX

j=1

�jgjT j(g; ⇢)

µjgj + µkgk
=

1

µk
, withk = 1, . . . , R (2)

A solution to this system of equations is only known for the case R = 2. In this case the solution is:

T

1

(g; ⇢) =
1

µ

1

(1� ⇢)

✓
1 +

µ

1

⇢

2

(g
2

� g

1

)

µ

1

g

1

(1� ⇢

1

) + µ

2

g

2

(1� ⇢

2

)

◆
, (3)

T

2

(g; ⇢) =
1

µ

2

(1� ⇢)

✓
1 +

µ

2

⇢

1

(g
1

� g

2

)

µ

1

g

1

(1� ⇢

1

) + µ

2

g

2

(1� ⇢

2

)

◆
. (4)

For general service time distributions the results are scarce. In [15] the authors showed that the derivative
of the mean conditional (on the service requirement) response time of the various classes satisfies a system
of integro-di↵erential equations. Unfortunately a closed-form solution of this system of equations has been
obtained only in the case of exponential distributions. To the best of our knowledge, there is no known
tractable results on the distribution of the response time Ti(g; ⇢).

To overcome this di�culty, in our approach we will approximate Ti(g; ⇢) using a heavy-tra�c character-
ization. It turns out that the scaled response time (1� ⇢) Ti(g; ⇢) has a proper distribution as ⇢ ! 1. The
DPS queue in heavy-tra�c was first considered in [18] (see also [19] and [22]). The result we require reads:

Proposition 2 ([18]). When scaled with 1 � ⇢, the response time of class-i jobs has a proper distribution
as ⇢ ! 1.

(1� ⇢) Ti(g; ⇢)
d! Ti(g; 1) = X · E(Bi)

gi
, i 2 C, (5)

where
d! denotes convergence in distribution and X is an exponentially distributed random variable with

mean

E(X) =

P
k �kE

�
B

2

k

�
P

k �kE (B2

k)
1

gk

. (6)

Proposition 2 implies that for su�ciently high load, the response time distribution in a DPS queue can be
approximated by an exponential random variable, that is,

Ti(g; ⇢) u
Ti(g; 1)

1� ⇢

d
=

E(Bi)

gi(1� ⇢)
X, (7)

and for the mean response time we obtain that

T i(g; ⇢) ⇡
E(Bi)

gi(1� ⇢)

P
k �kE

�
B

2

k

�
P

k �kE (B2

k)
1

gk

. (8)

In the above derivation, we have ignored a technical subtlety. Indeed, in order for (8) to be valid, one needs
to establish that the heavy-tra�c limit and expectation can be interchanged, namely, lim⇢!1

T i(g; ⇢) =
E(lim⇢!1

Ti(g; ⇢)). In [22] the authors performed numerical experiments to validate the validity of this
interchange. In the rest of the paper we will assume that the interchange is valid. In particular, for PS, it
holds that T i(g; ⇢) = E(Bi)/(1� ⇢). Thus, from (5) and (6) we get T i(g; 1) = E(Bi), and it follows that the

approximation T i(g; ⇢) =
T i(g;1)
1�⇢ is exact.
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2.2. Game formulation

We assume that the service provider (or the server) proposes to each class i 2 C the choice of its weight gi
in exchange of a payment per-unit-of-work proportional to the chosen weight. The quality-of-service metric
of class i is the probability of its jobs missing a given deadline di. Class i then wants to ensure that this
probability is below a certain threshold ↵i 2 (0, 1) while paying as little as possible for this service. Formally,
class-i solves the problem

min
gi�✏

⇢igi (OPT-P)

subject to P (Ti(g; ⇢) > di)  ↵i.

The quantity ✏ is the minimum price a class has to pay in order to get access to the service. It follows from
(1) that the service rate every class gets for a vector ✓ g is independent of the common factor ✓ > 0 and
as a direct consequence of this, we have that at least one user pays ✏ in the Nash Equilibrium (if it exists).
We emphasize that the constraint in (OPT-P) is a soft constraint on the deadlines. In other words, even
if some jobs miss their deadlines, these jobs stay in the system until completion, but in the long term at
most a fraction ↵i of class-i jobs will miss their deadline. As explained in Section 2.1 the probability of jobs
missing a deadline in a DPS queue has no easy-to-compute closed-form expression. One could then consider
a game in which the constraints are based on the mean response time of tasks. The optimization problem
above then gets modified as follows

min
gi�✏

⇢igi (OPT-M)

subject to T i(g; ⇢)  ci.

The modified game (OPT-M) is not completely unrelated to the original game (OPT-P) as we shall argue
next. Assuming the load is high enough, we invoke the heavy-tra�c approximation

P (Ti(g; ⇢) > di) = P (Ti(g; 1) > (1� ⇢)di) = e

� (1�⇢)di
Ti(g;1)

,

implying that

P (Ti(g; ⇢) > di)  ↵i () � (1� ⇢) di
T i(g; 1)

 log↵i.

Since ↵i 2 (0, 1), we have log↵i < 0 and, hence, we obtain the following equivalent constraint T i(g; 1) 
c̃i = � (1�⇢)di

log↵i
.

We propose to use the heavy-tra�c result of Proposition 2 as an approximation to (OPT-P) and (OPT-M).

min
gi�✏

⇢igi (OPT-HT)

subject to T i(g; 1)  c̃i.

In the case c̃i = � (1�⇢)di

log↵i
we will be approximating (OPT-P), and if c̃i = (1� ⇢)ci we will approximate

(OPT-M). Our hope is that the solution of the game (OPT-HT) will give useful insights into the equilibrium
properties of (OPT-P) and (OPT-M). We emphasize that the benefit of the heavy-tra�c approximation
is that the mean response time formulae have a nice closed-form expressions even for general service time
distributions whereas (OPT-M) has a simple structure only in case of exponentially distributed service times,
while (OPT-P) does not appear to be tractable even for that case. In Section 6 we investigate the accuracy
of the approximation, and show that it always gives us the structure of the equilibrium and our approach is
accurate when the users have similar mean size and mean service time characteristics. Before going further,
we give some definitions.

Definition 1 (Achievability). A vector t of mean response times is said to be achievable if there exists a
vector of weights g > 0 for which the vector of mean response times is t, i.e., ti = T i(g; ⇢), for all i 2 C.
Let T = {t : t is achievable} denote the set of achievable vectors.
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Definition 2 (Deadline feasibility). A vector of deadlines c 2 RR
+

is feasible if and only if 9t 2 T such
that t � c, where � is the componentwise order.

In the following, we say that a game is feasible if its vector of deadlines is feasible. We will also use the
notion of a feasible weight vector, as defined below.

Definition 3 (Weight feasibility). A vector of weights g 2 RR
+

is feasible if and only if T i(g, ⇢)  ci for
all i 2 C.

Definition 4. A class i will be considered fair if E(Bi)/ci  (1�⇢), i.e., if the response time it would obtain
under PS, E(Bi)/(1� ⇢), would satisfy its own constraint on the mean performance ci.

It is known, see [12], that T i(g; ⇢) is decreasing with gi and increasing in gj for j 6= i. This implies that
for the particular case when c 2 T , the unique performance point that satisfies all the constraints is c. To
see this, observe that if c is achievable then T i(g, ⇢) = ci for all i, and that reducing T i(g, ⇢) for one user
implies that T j(g, ⇢) increases for another user j. It can similarly be shown that if the game is feasible and
c /2 T , then the number of performance vectors satisfying all the constraints is always larger than one.

Without loss of generality, when studying (OPT-M) we assume that the classes are ordered in decreasing
order of E(Bk)/ck, i.e., if i < j, then E(Bi)/ci � E(Bj)/cj . We observe that the ratio E(Bk)/ck is the
minimum acceptable throughput of a class-k job with a service requirement equal to the mean. In the case
of exponential service time distribution, it becomes c

1

µ

1

 c

2

µ

2

 · · ·  cRµR. Equivalently, when studying
(OPT-HT) we will assume that classes are ordered in decreasing order of E(Bk)/c̃k.

3. Solution of (OPT-M)

This section is devoted to the analysis of the game (OPT-M). We first establish in Section 3.1 a necessary
and su�cient condition for the game (OPT-M) to be feasible. Assuming that the game is feasible, we then
prove in Section 3.2 that there exist at least one Nash equilibrium, that is a point where no user has an
incentive to unilaterally deviate and change his weight. We then study the uniqueness of the Nash equilibrium
in Section 3.3. We provide an explicit characterization of the Nash equilibrium for the two-player game in
Section 3.4. Finally, we address the question of the ine�ciency of the Nash equilibrium from a user’s
perspective in Section 3.5. The proofs of this section are in Appendix A.

3.1. Feasibility of the Game

For fixed tra�c conditions, the game is feasible if the vector c of deadlines is such that there is an
achievable vector t of performances such that ti  ci for all i 2 C. For exponential service times, the set of
achievable vectors for the DPS queue was characterized in [23]. In order to present their result, we first need
to introduce some notations. Let R = P(C) \ ;, where P(C) is the power set of C, be the set of all subsets
of C except the empty set. We define ⇢r =

P
i2r ⇢i, and

Wr =
1

1� ⇢r

X

i2r

⇢i

µi
, (9)

for all r 2 R. With these notations, the result reads as follows. A vector t of performances is achievable if
and only if

X

i2C
⇢iti = WC , (10)

X

i2r

⇢iti � Wr, 8r 2 R \ {C} . (11)

The following result gives a necessary and su�cient condition for the game (OPT-M) to be feasible.
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Theorem 1. Assuming exponential service times, the game (OPT-M) is feasible if and only if
X

i2r

⇢ici � Wr, 8r 2 R. (12)

Observe that the achievability and feasibility conditions are similar, the di↵erence being that the con-
straint on the whole set has to be satisfied as an equality for achievability, whereas it can hold as a strict
inequality for feasibility.

3.2. Existence of Nash Equilibrium

Assuming that the game is feasible, a vector of weights gNE = (gNE
1

, . . . , g

NE
R ) is a Nash equilibrium (NE)

for the game (OPT-M) if each class is paying the least possible amount while ensuring that its mean response
time does not exceed its deadline. Thus, we can say that a vector of weights gNE is a Nash equilibrium if
g

NE
i = argmin

�
gi � ✏ : T i(gi, gNE

�i ; ⇢)  ci

 
, for all i 2 C, where gNE

�i =
�
g

NE
1

, . . . , g

NE
i�1

, g

NE
i+1

, . . . , g

NE
R

�
.

Using that T i(g; ⇢) is decreasing with gi and increasing in gj for j 6= i, it follows that, for a given i,

g

NE
i > ✏ ) T i(gNE ; ⇢) = ci, (13)

g

NE
i = ✏ ) T i(gNE ; ⇢)  ci. (14)

Since T i(g; ⇢) is decreasing in gi, a class which is paying more than ✏ is necessarily satisfying its constraint
with equality. Otherwise, if it were to be satisfying the constraint with strict inequality, then it could pay
less and still satisfy its deadline. On the other hand, a class which is paying the least possible price could
be satisfying its deadline with strict inequality.

We notice that the dynamics of best-response are given by increasing the weight of class i when T i(g; ⇢) >
ci and decreasing the weight of class i when T i(g; ⇢) < ci and gi > ✏. Assume that we start the best-response
dynamics from a feasible point g. If all constraints T i(g; ⇢)  ci are satisfied as equality constraints (implying
that the deadline vector c is achievable), then g is clearly a Nash equilibrium since no class can unilaterally
decrease its weight and still satisfy its constraint. If on the contrary there is a nonempty subset A ⇢ C such
that T i(g; ⇢) < ci for all classes i 2 A, then we have either gi = ✏ for all i 2 A or there are some classes i 2 A
such that gi > ✏. In the former case, g is again an equilibrium since clearly no class can decrease its weight.
In the latter case, the best-response for each class i 2 A such that gi > ✏ is to decrease its weight. Moreover,
after each best-response, the current vector of weights remains feasible because by decreasing its weight a
class can only improve the mean response times of the other classes. Thus, in that case the best-response
dynamics generate a sequence of feasible weight vectors which is strictly decreasing in the lexicographic
order. Since feasible weight vectors belong to the set [✏,1)R which is closed on the left, we can conclude
that the dynamics of best-response converge to a Nash Equilibrium when started from a feasible point. As
a direct consequence, we immediately obtain the following corollary which holds whatever the service time
distributions of the users.

Proposition 3. With general service time distributions, if the game is feasible, then there exists a Nash
Equilibrium, and the dynamics of best-response converge to a Nash Equilibrium if the starting point is feasible.

3.3. Uniqueness of the Nash Equilibrium

If the game (OPT-M) is feasible, there exists at least one Nash equilibrium. In the following result we
summarize the main results of this section that hold for general service times:

Proposition 4. For an arbitrary number of classes, if c 2 T , then there is an infinite number of equilibria.
For a two-player feasible game such that c /2 T , there is a unique Nash equilibrium.

We recall that the case c 2 T is very particular, since it implies that c will be the only performance point
that satisfies all the constraints.
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3.4. Characterization of the Equilibrium

Explicit expressions of the mean response times in a DPS queue are known only in the case of two classes
and exponential service times (see (3) and (4)). This restricts the set of cases in which an explicit solution
to the game can be computed.

Proposition 5. For the two-player game with exponential service times and c

1

µ

1

 c

2

µ

2

, if the game is
feasible and c /2 T , then the unique equilibrium is g

NE = (✏, ✏) if class 1 is fair and, otherwise, g

NE =

(gNE
1

, ✏), where g

NE
1

= ✏

�µ1⇢2+µ2(1�⇢2)[µ1c1(1�⇢)�1]

�µ1⇢2�µ1(1�⇢1)[µ1c1(1�⇢)�1]

.

We explain briefly the structure of the Nash equilibrium. Assuming feasibility, at least class 2 is fair. If class
1 is also fair, then (g

1

, g

2

) = (✏, ✏) is the equilibrium; however, if the mean response time of class 1 for PS
weights exceeds its deadline c

1

, the class 1 must pay g

1

> ✏ per unit-of-work to ensure that its time constraint
is satisfied. We also show that the dynamics of the best-response converge to the Nash Equilibrium if starting
from any point.

Proposition 6. For the two-player game with exponential service times, if the game is feasible and c /2 T ,
the best-response dynamics converge to the Nash Equilibrium for any starting point.

We now study how the equilibrium of (OPT-M) changes with the total load in the system. For an arbitrary
number of users, we define ⇢E and ⇢F as the threshold values such that if ⇢  ⇢E then all classes are paying
the minimum price ✏, if ⇢E < ⇢  ⇢F the game is feasible and there is at least one class paying more than ✏

and if ⇢ > ⇢F the game is not feasible.

3.4.1. Characterization of ⇢E

From the ordering of the classes, it follows that if class 1 is fair, that is if E(B1)

c1
 1 � ⇢, then all the

users are fair and the equilibrium is (✏, . . . , ✏). We observe that the minimum value ⇢E such that at least one

user pays more than ✏ is obtained when E(B1)

c1
= 1� ⇢E , that is for ⇢E = 1� E(B1)

c1
. We emphasize that this

expression of ⇢E holds for general services times. We also note that if E(B
1

)/c
1

is close to 0, then ⇢E is close
to 1, implying that the PS solution (✏, . . . , ✏) corresponds to the equilibrium for a large range of utilization
rates.

3.4.2. Characterization of ⇢F

We present the value of the system load that makes the game not feasible. For exponential service times,
we use the result of Theorem 1 to state that ⇢F is the minimum value of the system load verifying that
9r 2 R such that

P
i2r ⇢ici < Wr.

3.4.3. Identical minimum acceptable throughput

A particular case of interest is obtained when all classes have the same minimum acceptable throughput.
In this case, we characterize the equilibrium of the game and the value of ⇢F for general service times.

Proposition 7. If E(Bi)/ci = k < 1 for all i 2 C, then the unique equilibrium of the game is the PS solution
(✏, . . . , ✏) for ⇢  1� k, and the game is not feasible for ⇢ > 1� k.

We thus have that for identical minimum acceptable throughput ⇢E = ⇢F = 1� k.



9

3.5. Price of Anarchy

In this section, we address the following question: if the users were coordinating, could each one pay less
than at the Nash equilibrium while still satisfying his constraint? We define the social welfare (or social
optimum) of the system as the strategy of the users such that the total payment is minimum. It is the vector
of weights that solves the following minimization problem:

min
(g1,...,gR)

RX

i=1

⇢igi (SOC-M)

subject to Ti(g; ⇢)  ci, for all i = 1, . . . , R,

and gi � ✏, for all i = 1, . . . , R.

The main di↵erence with respect to the game is that in the latter each user minimizes its own payment while
in the social optimum the users coordinate to choose the weights that minimize the total payment. By its
very definition, the total payment at the social optimum cannot be larger than that at a Nash equilibrium.

The sub-optimality of the game (OPT-M) can be measured using the notions of Price of Stability (PoS)
and Price of Anarchy (PoS) which are defined as:

PoS = min
g2GM

PR
i=1

⇢igiPR
i=1

⇢ig
SOC
i

, (15)

PoA = max
g2GM

PR
i=1

⇢igiPR
i=1

⇢ig
SOC
i

, (16)

where GM denotes the set of Nash equilibria of (OPT-M) and gSOC is any vector of weights that is socially
optimal. From these definitions, it follows that PoA � PoS � 1, and PoA = PoS in particular when the
Nash equilibrium is unique. Even more, when the vector c is achievable we have that PoA = 1 since in this
case there is an infinite number of equilibria, see Proposition 4.

Let gSOC be a social optimum. If it would exist i such that g

SOC
i > ✏ and T i(gSOC ; ⇢) < ci, then it

would be possible to decrease gSOC
i while still satisfying the constraint T i(gSOC ; ⇢)  ci, implying that gSOC

would not be the solution of (SOC-M). We thus conclude that any social optimum is a vector of weights
gSOC such that each component verifies one of the following equations:

if gSOC
i > ✏, ) T i(gSOC ; ⇢) = ci, (17)

if gSOC
i = ✏, ) T i(gSOC ; ⇢)  ci. (18)

Equations (17) and (18) give the necessary conditions for a vector to be the social optimum. They are, in
fact, the same as (13) and (14) which are the necessary and su�cient conditions for a vector to be a Nash
equilibrium. It then follows that a social optimum is also a a Nash Equilibrium. An immediate consequence
of this result is that the PoS is 1 for the DPS game. Moreover, from Proposition 4 it follows that:

Corollary 1. If the Nash Equilibrium is unique, then the PoA=1. In particular, for a two-player game with
general service times such that c /2 T , PoA = 1.

4. Solution of (OPT-HT)

In this section we investigate the solution of the the game (OPT-HT). Even though some of the results
follow using the same arguments as in Section 3, we emphasize that the results of this section hold for general
service times and an arbitrary number of players. In Section 4.1 we give a necessary and su�cient condition
for the feasibility of the game (OPT-HT). Assuming this condition hold, we focus on the existence of a Nash
equilibrium in Section 4.2. We then consider the uniqueness of the equilibrium and explicitly characterize it
when it is unique in Section 4.3. Finally, we study the ine�ciency of the equilibrium using the concept of
Price of Anarchy in Section 4.4. The proofs of this section are in Appendix B.
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4.1. Feasibility of the Game

Before presenting our results on the feasibility of the game (OPT-HT), let us first characterize the
achievability in heavy-tra�c. A vector of performance t is achievable in heavy-tra�c if there exists a vector
of weights g > 0 for which T i(g; 1) = ti, for all i 2 C, where T i(g; 1) is the mean response time in heavy-tra�c
of a class-i job which is given by

T i(g; 1) =
E(Bi)

gi

P
k �kE

�
B

2

k

�
P

k �kE (B2

k)
1

gk

. (19)

We denote by T HT the set of all the performance vectors that are achievable in heavy-tra�c. The following
proposition characterizes the achievability of a vector of mean response times:

Proposition 8. A vector of performances t 2 T HT if and only if

RX

k=1

�k
E(B2

k)

E(Bk)
tk =

RX

j=1

�jE
�
B

2

j

�
. (20)

We now give a su�cient and necessary condition for the game (OPT-HT) to be feasible.

Proposition 9. The game (OPT-HT) is feasible if and only if
P

i �iE
�
B

2

i

� ⇣
c̃i

E(Bi)
� 1
⌘
� 0.

We observe that a su�cient condition for the game to be feasible is that in heavy-tra�c all classes be fair.
Note that T i(gPS ; 1) = E(Bi), thus from Proposition 9 if T i(gPS ; 1)  c̃i, 8i, then the game is feasible.

4.2. Existence of the Nash Equilibrium

A vector gNE is a Nash equilibrium for (OPT-HT) if gNE
i = argmin

�
gi � ✏ : T i(gi, gNE

�i ; 1)  c̃i

 
, for

all i 2 C, where gNE
�i =

�
g

NE
1

, . . . , g

NE
i�1

, g

NE
i+1

, . . . , g

NE
R

�
. We observe from (19) that the mean response time

in heavy-tra�c of a class-i job is decreasing with gi and increasing with gj , for all j 6= i. Using the same
reasoning as in Section 3.2 we conclude that each component of the equilibrium of this game satisfies (13)
or (14). With exactly the same arguments as in Section 3.2 for the game (OPT-M), we can also prove that
the best-response dynamics converge to a Nash equilibrium for the game (OPT-HT). We thus conclude to
the existence of an equilibrium for this game.

Corollary 2. If the game is feasible, there exists a Nash equilibrium for (OPT-HT) and the dynamics of
best-response converge to a Nash Equilibrium if the starting point is feasible.

4.3. Characterization of the Nash Equilibrium and Uniqueness

In this section, we assume that the game (OPT-HT) is feasible and we study the equilibrium of this

game. We recall that it is assumed that the classes are ordered in decreasing order of E(Bi)

c̃i
. Again, with the

same arguments as in the proof of Proposition 4, we can show that if c 2 T HT , there is an infinite number
of equilibria. We shall thus assume that c is not achievable, i.e., c /2 T HT . Under this assumption, the
following theorem provides a complete characterisation of Nash equilibria.

Theorem 2. If the game is feasible and c /2 T HT , the unique Nash equilibrium is

g

NE
i = ✏

˜
tm/E(Bm)

c̃i/E(Bi)
, for all i < m,

g

NE
i = ✏, for all i � m,
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where m 2 C is the minimum value such that there exists a value ˜
tm  c̃m verifying

˜
tm

E(Bm)
=

PR
k=1

�kE
�
B

2

k

�
�
Pm�1

k=1

�k
E(B2

k)
E(Bk)

c̃k
PR

k=m �kE (B2

k)
. (21)

In the particular case where all classes are fair, we notice that m = 1 and thus the equilibrium is g

NE =
(✏, . . . , ✏). The following corollary shows that the price paid by classes at the Nash equilibrium decreases as
the ratio E(Bk)/c̃k decreases and follows from Theorem 2 and our assumption on the ordering of the classes.

Corollary 3. If the game is feasible and c /2 T HT , let gNE = (gNE
1

, . . . , g

NE
R ) be the vector of weights at

equilibrium. We have
g

NE
1

� g

NE
2

� · · · � g

NE
R�1

� g

NE
R = ✏

It is interesting to observe that the ordering of classes at equilibrium do not depend on the arrival
or second moment of the distributions. Instead, the key parameter is the ratio E(Bk)/c̃k, which can be
interpreted as the throughput of a class k. Thus, classes will deviate from the minimum weight in decreasing
order with respect to the throughput they expect to obtain from the system.

With the same arguments as in Proposition 6, we can prove that the dynamics of the best-response
converge to the equilibrium for two classes with general service time distributions and any starting point.

4.4. Price of Anarchy

We can also define the social optimum of the system for (OPT-HT):

min
(g1,...,gR)

RX

i=1

⇢igi (SOC-HT)

subject to Ti(g; 1)  c̃i, for all i = 1, . . . , R,

and gi � ✏, for all i = 1, . . . , R.

Assuming the game is feasible, the Price of Anarchy is defined as the ratio between the maximum payment of
the users in the equilibria and the payment of the users in the social optimum. Again, if c /2 T HT , we know
that there is an infinite number of equilibria and we can conclude that in this case PoA = 1. We shall thus
assume in the following that c /2 T HT . Since we have shown in Theorem 2 that the equilibrium is unique,

it follows that PoA =
PR

i=1 ⇢ig
NE
iPR

i=1 ⇢igSOC
i

, where gNE is the unique Nash equilibrium of (OPT-HT), while gSOC is

any optimal solution of (SOC-HT). Using the same arguments as in Section 3.5 for the game (OPT-M), we
can prove that any social optimum is also a Nash equilibrium for (OPT-HT). An immediate consequence
of the uniqueness of the equilibrium is that the PoA is 1 for the DPS game in heavy-tra�c, whatever the
number of classes.

Proposition 10. If the game is feasible and c /2 T HT , PoA = 1 for the game (OPT-HT).

5. Approximating (OPT-M)

In this section we explain how the results of Section 4 can be used to obtain insights into the solution
of games (OPT-P) and (OPT-M). As explained in Section 2.2, provided that ⇢ is su�ciently large for the

approximation T i(g; ⇢) =
T i(g;1)
1�⇢ to be valid, the results established for game (OPT-HT) can be applied to

approximate the solution of (OPT-P) by setting c̃i = �(1 � ⇢)di/ log↵i and the solution of (OPT-M) by
setting c̃i = (1� ⇢)ci. We will focus on (OPT-M). This choice allows to evaluate numerically the accuracy
of the approximation using the formulas of Section 2.1. The proofs of this section are in Appendix C.
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5.1. Feasibility and existence when ⇢ < 1

As we said above, using the relation T i(g; ⇢) =
T i(g;1)
1�⇢ , we can define an instance of (OPT-HT) approxi-

mating the original game (OPT-M). This approximation allows us analyze the (approximated) equilibrium
with an arbitrary number of classes and general service time distributions.

We first study the feasibility of the approximation. Assuming exponential service times, the charac-
terization of the feasibility of (OPT-M) is given in Theorem 1. However, for general service times, we
can characterize the (approximate) feasibility. It follows directly from Proposition 9 that a necessary and
su�cient condition for the (approximate) feasibility of (OPT-M) is

X

i

�iE
�
B

2

i

�✓
ci

E(Bi)/(1� ⇢)
� 1

◆
� 0. (22)

This implies that if all users are fair, then the game is feasible. Besides, using (22), we can approximate the

value of ⇢F , as defined in Section (OPT-M), for general service times by ⇢F =
PR

i=1 �iE(B2
i )

⇣
ci

E(Bi)
�1

⌘

PR
i=1 �i

E
(

B2
i )

E(Bi)
ci

.

We now focus on the existence of the approximated equilibrium. We observe that the characterization of
existence of the equilibrium of the previous games also holds for the approximated game. Thus, we say that
there exists an approximated equilibrium if the approximated game is feasible.

5.2. The Nash Equilibrium for ⇢ < 1

Extending Theorem 2 to the case ⇢ < 1 with c̃i = ci(1� ⇢) and t̃i = ti(1� ⇢), we obtain that the Nash-

Equilibrium of (OPT-M) can be approximated by g

NE
i = ✏

tm/E(Bm)

ci/E(Bi)
, for all i < m, and g

NE
i = ✏, for all i �

m, where m = 1, . . . , R is the minimum value such that there exists a value tm  cm verifying

tm

E(Bm)
=

PR
k=1

�kE(B2
k)

(1�⇢) �
Pm�1

k=1

�k
E(B2

k)
E(Bk)

ck
PR

k=m �kE (B2

k)
. (23)

Note that if class 1 is fair, then all users are fair. In this case, the right-hand side of (23) is upper-bounded by

(1�⇢)�1, implying that c
1

� E(B1)

1�⇢ � t

1

, so that m = 1. Thus, if class 1 is fair, the approximate equilibrium

corresponds to the PS solution g

NE
i = ✏ for all i, which is clearly the exact equilibrium.

It is interesting to compare the above approximate characterization of the Nash equilibrium with the
exact result given in Proposition 5 in the case of two users and exponential service time distributions. As
discussed above, if class 1 is fair, then the approximate and exact equilibria coincide and correspond to the
PS queue. Otherwise, the equilibrium in both cases have the same form, i.e., gNE = (gNE

1

, ✏), with g

NE
1

> ✏.

5.3. The Price of Anarchy for ⇢ < 1

We measure the sub-optimality of the approximated equilibrium using the Price of Stability and Price
Anarchy, as defined in (15) and (16). We observe that a social optimum is the Nash equilibrium in the
approximated game. Hence, we claim that the PoS of the approximated game is always one. Besides, it
follows from the uniqueness of the approximated equilibrium that the Price of Anarchy is also one.

6. Numerical Experiments

In this section, we numerically study the most important properties of the results of this paper. We first
present several numerical experiments to compare the equilibrium of the game (OPT-M) (which we call the
original problem) with that of the heavy-tra�c approximation (OPT-HT). We then show that the dynamics
of the best-response converge to the Nash Equilibrium of (OPT-M) from any starting point.
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Figure 1: Comparison of equilibrium
weights (above) and the corresponding per-
centage relative error (below) as a function
of the total system load. R = 2 and expo-
nential service time distribution.
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Figure 2: Comparision of equilibrium weights
(above) and the corresponding percentage relative
error (below) as a function of the total load, and the
deadlines of the two classes are scaled by (1� ⇢)�1.
R = 2 and exponential service time distribution.

6.1. Validation of the Approximation

We analyse numerically the accuracy of the approximated equilibrium. Our main observation from the
experiments that we conducted is that while in certain cases the error in weights can be substantial, the
proposed heavy-tra�c approximation is good at predicting the set of classes that pay a higher price than
minimum price at the equilibrium, and the mean response times of the classes paying the minimum price.
Without loss of generality, the minimum weight ✏ is set to 1 in all the following experiments.

6.1.1. Exponential service time distribution

First, we present the results for exponentially distributed service times. In the first set of experiments,
there are two players with deadlines c

1

= 5 and c

2

= 6, and the mean service times µ

1

= 2 and µ

2

= 3.
Note that c

1

µ

1

= 10 < c

2

µ

2

= 18. We now vary the total system load starting from 0.8 until the system
becomes unfeasible while maintaining ⇢

1

= 0.3⇢ and ⇢

2

= 0.7⇢. For each value of load, the equilibrium is
computed using the best-response algorithm. In order to compute the best-response of a class for the original
problem, the mean response time is computed from the system of equations presented in Proposition 1. In
the top subfigure of Figure 1, we plot the equilibrium weights for both the original problem and the HT
approximation as a function of the total system load. The percentage relative error1 between the two is
shown in the bottom subfigure of the same figure. Both problems become unfeasible for ⇢ > 0.93, so the
data is restricted to ⇢  0.93. When the load of the system is between 0.9 and 0.93 we observe in Figure 1
(above) that the equilibrium of the heavy-tra�c result approximates very well the equilibrium of the original
problem. In particular, the heavy-tra�c approximation follows the same increasing trend of the equilibrium
weight of class 1 as that of the original problem. The error of class 1 users is small, while there is no error
for the users of class 2. We see in Figure 1 (below) that the maximum percentage relative error is 9%.

In the second set of experiments, we present a scenario where the approximation becomes accurate when
⇢ is close to 1. We scale the deadlines by (1� ⇢)�1, that is, the deadline of user i, ci =

c̃i
(1�⇢) for some fixed

c̃i. This reflects that class i is aware that the performance worsens as ⇢ increases, and is willing to adjust
its deadline correspondingly. When the deadlines are scaled with (1 � ⇢)�1, the constraint on the mean
response time of player i for the original problem becomes T i(g; ⇢)  c̃i

1�⇢ , and that for the heavy-tra�c

approximation becomes T i(g; 1)  c̃i. Note that the latter constraint does not change with ⇢. We set the

1The percentage relative error for class i is given by

����
gSY S
i �gHT

i
gSY S
i

����⇥ 100, where gSY S
i (resp., gHT

i ) is its equilibrium weight

for the original problem (resp. HT approximation).
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R = 4 and exponential service time distribution.
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parameters to : µ
1

= 2 and µ

2

= 3, ⇢
1

= 0.3⇢, and ⇢

2

= 0.7⇢, with the scaled deadlines being c̃

1

= 0.3 and
c̃

2

= 0.7. In Figure 2, we present the accuracy of the heavy-tra�c approximation as ⇢ ! 1. We observe that
the error in the weight of class 1 reduces as the load tends to 1 which means that in heavy-tra�c.

In the next set of experiments, we look at a four-player game with exponential service times. In Figure 3
the users have similar value of throughput, i.e., similar cµ, and in Figure 4 they are more heterogeneous. The
parameters of the users of each case are listed below each figure. In both figures, the equilibrium weights are
plotted in the top subfigure, the corresponding error is plotted in the middle subfigure, and in the bottom
subfigure we plot the error in the mean response times of the classes. The trend in the four-player plots is
similar to that of the two-player example in which the deadlines are not scaled, i.e., the payment of all the
classes is ✏ if ⇢  ⇢E , at least one class pays more than ✏ if ⇢E  ⇢  ⇢F and if ⇢ � ⇢F the problem is not
feasible, where ⇢E and ⇢F are as defined in Section 3. We observe that the error in the weights is acceptable
when the users are homogeneous (see middle subfigure of Figure 3) and the error in the weights can increase
when the disparity of the users increases (see middle subfigure of Figure 4). A similar observation on the
negative impact of heterogeneity on the error was also made in [17]. However, we conclude that, in both
instances, the approximation captures correctly the set of users that pay more than ✏ and the prediction in
the mean response times is acceptable.

6.1.2. Hyper-exponential service requirements

Finally, in this subsection, we compare the approximation for a two-player game with hyper-exponentially
distributed service times. While there is no explicit expression for mean response time in DPS with service
time distributions other than the exponential distribution, for the hyper-exponential distribution, a simple
trick can be used to compute the mean response times using those of the exponential distribution. For
example, consider a two-class DPS queue with hyper-exponential distribution of two phases each. The
service rates of the phases are (µ

1

, µ

2

) for class 1 and (µ
3

, µ

4

) for class 2, and the arrival rates to these
phases are (�

1

,�

2

) for class 1 and (�
3

,�

4

) for class 2. In order to compute the mean response time in this
queue when the weights are g = (g

1

, g

2

), one first computes the mean response time in a four-class DPS queue
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Figure 5: Comparison of equilibrium weights (above) and the corresponding percentage relative error (below)
as a function of the total system load. R = 2 and hyper-exponential service time requirements.

with exponential distribution and weights g = (g
1

, g

1

, g

2

, g

2

). The arrival rate of class i in this queue is �i,
and the rates of the exponential distribution of class i is taken to be µi. The mean respone time of class i in

the DPS queue with hyper-exponential distribution is then T

HEXP
1

(g; ⇢) = �1
�1+�2

T

1

(g; ⇢) + �2
�1+�2

T

2

(g; ⇢),

and T

HEXP
2

(g; ⇢) = �3
�3+�4

T

3

(g; ⇢) + �2
�3+�4

T

4

(g; ⇢).

Using the above trick, the equilibrium weights were computed for the two-player DPS game with param-
eters: µ

1

= 1, µ
2

= 3, µ
3

= 5, µ
4

= 7, and deadlines c
1

= 5 and c

2

= 7. The fraction of the load of class 1
was (⇢

1

, ⇢

2

) = (⇢
6

,

⇢
3

), and for class 2 it was (⇢
3

, ⇢

4

) = (⇢
4

,

⇢
4

). In Figure 5 we depict variation of the weights
and the relative error when the total load of the system changes. Finally, we observe that the error on the
equilibrium is similar to that of the exponentially distributed service times.

6.2. Convergence to the Nash Equilibrium

In this section, we analyse the convergence to the Nash Equilibrium of the game (OPT-M). In particular,
we focus on the dynamics of the users under the best-response algorithm. We consider exponential service
times and three classes of users with the following parameters: the load of each class is (⇢

1

, ⇢

2

, ⇢

3

) =
(0.1, 0.5, 0.2), the mean job sizes are given by (µ

1

, µ

2

, µ

3

) = (1, 2, 3) and the deadlines are (c
1

, c

2

, c

3

) =
(2, 2.5, 100). As before, we fix the value of ✏ to 1. We are interested in observing the dynamics of the
best-response for di↵erent not feasible starting points. In the left column of Figure 6 the best-response
starts from the point g = (1, 1, 1), in the middle column from g = (3, 4, 5) and in the right column from
g = (1, 15, 15). In the top subfigure of each column we depict the evolution of the weights over time and
in the bottom subfigure the evolution of the mean response times over time. The x-axis of all the figures
is in the logarithmic scale for a more clear illustration of the dynamics of the best-response algorithm. We
observe that in all the instances the best-response algorithm convergences in at most 200 iterations to the
point (13.4, 2.5, 1) which is the Nash Equilibrium. We leave the proof of the convergence for future work.

7. Conclusions

We presented a priced model that studies the strategic behaviour of users that share the capacity of a
processor with relative priorities. Each user chooses a price which corresponds to priority level and receives
a share of the capacity that increases with its payment. The objective of a user is to choose its priority level
so as to minimize its own payment, while guaranteeing that its jobs are served before its deadline. We fully
characterized the solution of this game when the number of users is two and the service time distribution is
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Figure 6: The evolution of the weights (up) and the mean response times (down) with the Selfish Priority
Adaptation Algorithm for three di↵erent starting points: g = (1, 1, 1) (left column), g = (3, 4, 5) (middle
column) and g = (1, 15, 15) (right column). X-axis in logarithmic scale.

exponential. Besides, we defined a game in the heavy-tra�c regime which we solved for the general instance
and we use it as an approximation of the original problem. We performed several numerical experiments
to study the accuracy of the approximated equilibrium. On the one hand, we observed the approximation
is accurate when the minimum acceptable throughput of the users is similar. On the other hand, if the
heterogeneity of the throughput expectation of the users increases, we concluded that the accuracy of the
approximation can diminish. However, we derived that, in all the instances, the heavy-tra�c approximation
captures the correct structure of the equilibrium and gives us a negligible error in the mean response time
prediction.
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A. Proofs of the Section 3

A.1. Proof of Theorem 1

As in Definition 1, we let T be the set of achievable vectors. Define the set

U =

(
c 2 RK

+

:
X

i2r

⇢ici � Wr, 8r 2 R
)
.

Before giving a formal proof of Theorem 1, we briefly explain the main arguments behind the proof. It is
easy to see from (10)-(11) and Definition 2 that if c is a feasible vector, then c 2 U . However, the converse
is less clear. In order to show that each element c of U is a feasible vector, the idea is to construct from c
a vector t 2 U such that t � c and for which WC 

P
i2C ⇢iti holds as an equality (whereas the inequality

can be strict for c). This vector t is obtained as the limit of a strictly decreasing sequence
�
c(n)

 
n�0

which, starting from c(0) = c, converges in a finite number of steps. The key argument to generate this
sequence is that, unless c(n) 2 T , there always exists at least one component of c(n) that appears only in
inequalities. By decreasing this component, we can obtain a vector c(n+1) 2 U such that c(n+1) � c(n) and

0 
P

i2C ⇢ic
(n+1)

i � WC <

P
i2C ⇢ic

(n)
i � WC , which implies the convergence to an achievable vector. We

shall first prove that if c is not an achievable vector, then there is at least one of its components which is
involved only in inequalities. Our first step in this direction is stated in Lemma 1.

Lemma 1. If r ✓ s then Wr  Ws.

Proof. From (9),

Ws =
1

1� ⇢s

X

i2s

⇢i

µi
� 1

1� ⇢s

X

i2r

⇢i

µi
� 1� ⇢r

1� ⇢s
Wr � Wr.

For c 2 U , let us define the sets S= =
�
r :
P

i2r ⇢ici = Wr

 
and S> =

�
r :
P

i2r ⇢ici > Wr

 
. We have

omitted the dependence of the sets on c. The second result we need is the following.

Lemma 2. If r
1

, r

2

2 S=, then r

1

[ r

2

2 S=.

Proof. Let s = r

1

[ r

2

and v = r

1

\ r

2

. In order to prove the desired result, we shall show that if r
1

, r

2

2 S=

then Ws �
P

i2s ⇢ici. Since c 2 U , we know that Ws 
P

i2s ⇢ici. Therefore, the only possible outcome is
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Ws =
P

i2s ⇢ici. From (9),

Ws =
1

1� ⇢s

X

i2s

⇢i

µi

=
1

1� ⇢s

 
X

i2r1

⇢i

µi
+
X

i2r2

⇢i

µi
�
X

i2v

⇢i

µi

!

=
1

1� ⇢s
((1� ⇢r1)Wr1 + (1� ⇢r2)Wr2 � (1� ⇢v)Wv)

= Wr1 +Wr2 +
1

1� ⇢s
((⇢s � ⇢r1)Wr1 + (⇢s � ⇢r2)Wr2 � (1� ⇢v)Wv)

=
X

i2r1

⇢ici +
X

i2r2

⇢ici +
1

1� ⇢s
((⇢s � ⇢r1)Wr1 + (⇢s � ⇢r2)Wr2 � (1� ⇢v)Wv)

=
X

i2s

⇢ici +
X

i2v

⇢ici +
1

1� ⇢s
((⇢s � ⇢r1)Wr1 + (⇢s � ⇢r2)Wr2 � (1� ⇢v)Wv)

�
X

i2s

⇢ici +Wv +
1

1� ⇢s
((⇢s � ⇢r1)Wr1 + (⇢s � ⇢r2)Wr2 � (1� ⇢v)Wv)

�
X

i2s

⇢ici +
1

1� ⇢s
((⇢s � ⇢r1)Wr1 + (⇢s � ⇢r2)Wr2 � (⇢s � ⇢v)Wv)

In order to complete the proof it is su�cient to show that the second term on the RHS is non-negative,
which will then imply that Ws �

P
i2s ⇢ici. Since v = r

1

\ r

2

, from Lemma 1, it follows that Wr1 � Wv and
Wr2 � Wv. Thus,

(⇢s � ⇢r1)Wr1 + (⇢s � ⇢r2)Wr2 � (⇢s � ⇢r1 + ⇢s � ⇢r2)Wv = (⇢s � ⇢v)Wv,

where the last inequality follows from the fact that ⇢r1 + ⇢r2 = ⇢s + ⇢v.

Corollary 4. The set S= is closed under finite unions.

We are now in position to prove Theorem 1.

Proof of Theorem 1.

If c is feasible then it is easy to see that c 2 U . We now prove that if c 2 U , then c is feasible. Towards this
end, for every c, we shall construct a finite sequence of vectors c = c(0) � c(1) � . . . � c(n), with n  R,
c(i) 2 U , 8i and c(n) 2 T . Also, n will depend upon c. The vector c(n) is then an achievable vector which
makes c feasible.

Consider the vector c(n) obtained at step n. Define the corresponding sets S=

n and S>
n which contain the

indices of the equalities and the strict inequalities that define c(n). Also, define En =
S

r2S=
n
r,

the set of classes that appear in at least one equality. We shall show that the sequence of En associated to
the componentwise decreasing vectors will eventually contain C, and this will happen in a finite number of
steps.

If En = C, it follows from Corollary 4 that C 2 S=

n , and that c(n) is achievable. Otherwise, take some
i 2 C \ En, that is, a class which appears only in inequalities.

Define

c

(n+1)

i = max
s : i2s

Ws �
P

j2s,j 6=i ⇢jc
(n)
j

⇢i

c

(n+1)

j = c

(n)
j , 8j 6= i.
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Note that c(n+1)

i � W{i}/⇢i > 0, and that c(n)i > c

(n+1)

i . Therefore c(n) � c(n+1).

With this definition class i will appear in at least one equality, and this class will be added to En.
Therefore, En ⇢ En+1

, and S=

n ⇢ S=

n+1

. Since there are R classes, after at most R steps all the classes will
appear in at least one equality, that is, there is an n  R such that En = C. From Corollary 4, it follows
that C 2 S=

n , and c(n) is an achievable vector such that c(n) � c.

A.2. Proof of Proposition 4

If c is achievable, there exists a weight vector g such that T i(g; ⇢) = ci for all i 2 C. This weight vector
is an equilibrium since no class can decrease its weight and still satisfy its constraint. To conclude the proof,
it is enough to observe that the weight vector ✓ g is such that T i(✓ g; ⇢) = ci for all i 2 C and is thus an

equilibrium for any value of ✓ � min
⇣

✏
g1
, . . . ,

✏
gR

⌘
.

We now focus on the case where If c is not achievable. Assume that there exist two equilibria g and
h 6= g. If h

1

= g

1

, then we can assume without loss of generality that h

2

< g

2

. This implies that
g

2

> ✏, and thus, according to (13), that T
2

(g; ⇢) = c

2

. Since T

2

(g; ⇢) is strictly decreasing in g

2

, it yields
T

2

((h
1

, h

2

); ⇢) = T

2

((g
1

, h

2

); ⇢) > c

2

. Hence, h is not a feasible point for class 2 and thus cannot be an
equilibrium. This is a contradiction, and therefore we cannot have two di↵erent equilibria g and h such that
h

1

= g

1

.

Assume therefore that h
1

< g

1

. This implies that g
1

> ✏, and thus, from (13), that T
1

(g; ⇢) = c

1

. Since
T

1

(g; ⇢) is strictly decreasing in g

1

, h
1

< g

1

implies that T
1

(g; ⇢) = c

1

< T

1

((h
1

, g

2

); ⇢). However, for h to
be an equilibrium, we need to have T

1

((h
1

, h

2

); ⇢)  c

1

< T

1

((h
1

, g

2

); ⇢). Since T

1

(g; ⇢) is increasing in g

2

,
it yields h

2

< g

2

, which in turn implies that g

2

> ✏. The equilibrium g is therefore such that g

1

> ✏ and
g

2

> ✏. However, since we have assumed that c is not achievable, we know that there exists i 2 {1, 2} such
that T i(gNE ; ⇢) < ci. According to (13), this implies that gi = ✏. This is a contradiction. We thus conclude
that we cannot have two di↵erent equilibria.

A.3. Proof of proposition 5

According to the order of the classes, if class 1 is fair, then c

2

µ

2

� c

1

µ

1

� (1 � ⇢)�1. Therefore the
Processor Sharing weights satisfy both time constraints. The point gNE = (✏, ✏) is clearly the unique Nash
equilibrium since both classes have the minimum weight possible and the time constraints are satisfied.

If class 1 is not fair, i.e., c
1

µ

1

< (1�⇢)�1, then the feasibility of the game implies that (1�⇢)�1  c

2

µ

2

.
In this case, the equilibrium is achieved in g = (g

1

, ✏), where g
1

is such that T
1

(g; ⇢) = c

1

and T

2

(g; ⇢)  c

2

.
Indeed g

1

is the minimum weight satisfying class-1 time constraint and ✏ is the minimum weight possible for
class 2 whose time constraint is satisfied.

From (3), it results that

T

1

(g; ⇢) = c

1

() g

2

g

1

=
�µ

1

⇢

2

� µ

1

(1� ⇢

1

) [µ
1

c

1

(1� ⇢)� 1]

�µ

1

⇢

2

+ µ

2

(1� ⇢

2

) [µ
1

c

1

(1� ⇢)� 1]
,

which yields the desired result since g

2

= ✏.

A.4. Proof of Proposition 6

We first note from (10) and (12) that for any weight vector g it holds that

⇢

1

T

1

(g; ⇢) + ⇢

2

T

2

(g; ⇢)  ⇢

1

c

1

+ ⇢

2

c

2

. (A.1)

Let g0 = (g0
1

, g

0

2

) be the starting point of the Best-Response algorithm. If this point satisfies that
T i(g0; ⇢)  ci for i = 1, 2, then, as we said in Section 3.2, best-response convergences to the equilibrium.
Otherwise, (A.1) implies that we have either T

1

(g0; ⇢) > c

1

or T
2

(g0; ⇢) > c

2

, but not both.



21

Assume that T
1

(g0; ⇢) > c

1

. Then, the best response of class 1 is to increase its weight to a value g1
1

such
that at point g1 = (g1

1

, g

0

2

) its constraint T

1

(g1; ⇢)  c

1

is satisfied as an equality. At this point, we have
from (A.1) that ⇢

1

T

1

(g1; ⇢) + ⇢

2

T

2

(g1; ⇢) = ⇢

1

c

1

+ ⇢

2

T

2

(g1; ⇢)  ⇢

1

c

1

+ ⇢

2

c

2

and thus that T
2

(g1; ⇢)  c

2

.
We conclude that the weight vector g1 is feasible. Hence, using Proposition 3, we can claim that the
best-response algorithm converges to the equilibrium.

B. Proofs of Section 4

B.1. Proof of Proposition 8

It can be easily proven that if a vector of performance t is achievable in heavy-tra�c then it satisfies
(20). For the other implication, we show that a vector t 2 RR

+

satisfying (20) is achievable in heavy-tra�c,
i.e., there exists a vector of weights g such that T i(g; 1) = ti for all i 2 C. Let g be a weight vector such

that gi
gj

= tj/E(Bj)

ti/E(Bi)
for all i 6= j. With (19), we have

T i(g; 1) = E(Bi)

P
k �kE

�
B

2

k

�
P

k �kE (B2

k)
gi
gk

= E(Bi)

P
k �kE

�
B

2

k

�
P

k �kE (B2

k)
tk/E(Bk)

ti/E(Bi)

= ti

P
k �kE

�
B

2

k

�

P
k �k

E(B2
k)

E(Bk)
tk

= ti,

for all i 2 C, where the last inequality follows from (20). We thus conclude that the vector t is achievable.

B.2. Proof of Proposition 9

If the problem is feasible in heavy-tra�c there exists an achievable vector in heavy-tra�c t = (t
1

, . . . , tR)

such that ti  c̃i, for all i. Then, since ti  c̃i for all i, it follows from Proposition 8 that
P

i �i
E(B2

i )
E(Bi)

c̃i �P
k �kE

�
B

2

k

�
.

We now focus on the other implication of the proposition. Given a vector of deadlines c̃ = (c̃
1

, . . . , c̃R)

such that
P

k �k
E(B2

k)
E(Bk)

c̃k �
P

k �kE
�
B

2

k

�
, we show that there exists a vector of performances t achievable in

heavy-tra�c. Let t = (t
1

, . . . , tR) be such that

ti = c̃i

P
k �kE

�
B

2

k

�

P
k �k

E(B2
k)

E(Bk)
c̃k

,

for all i. We observe that ti is positive for all i and from
P

k �k
E(B2

k)
E(Bk)

c̃k �
P

k �kE
�
B

2

k

�
we derive that

ti  c̃i for all i. Moreover

X

k

�k
E
�
B

2

k

�

E(Bk)
tk =

X

k

�k
E
�
B

2

k

�

E(Bk)
c̃i

P
i �iE

�
B

2

i

�

P
i �i

E(B2
i )

E(Bi)
c̃i

=
X

i

�iE
�
B

2

i

�
,

and we thus conclude with Proposition 8 that the vector t is achievable.

B.3. Proof of Theorem 2

Let us first introduce some results that will be used to prove Theorem 2. Let gm be a vector of the form

g

m = (gm
1

, g

m
2

, . . . , g

m
m�1

, ✏, . . . , ✏), (B.1)

where g

m
i > ✏, if i < m. We now show the following property of the vector gm.

Lemma 3. If Tm(gm; 1)  c̃m, then, for all j > m, T j(gm; 1)  c̃j.
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Proof. From (19) and Tm(gm; 1)  c̃m, we obtain for all j > m,
P

k �kE(B2
k)P

k �kE(B2
k)/gk

 c̃mg

m
m/E(Bm) =

c̃m ✏/E(Bm)  c̃j ✏/E(Bj), where the last inequality holds since the ordering of the classes we assume. We

now notice that the result follows directly from (19) since
P

k �kE(B2
k)P

k �kE(B2
k)/gk

 c̃j ✏/E(Bj) () T j(g; 1)  c̃j .

We are now in position to proof the result of theorem 2.

Proof of theorem 2.

Let m be the minimum value such that Tm(gm; 1)  c̃m, where gm is as defined in (B.1). According to
Lemma 3, we have that T k(gm; 1)  c̃k, for k � m. On the other hand, we choose gk such that T k(gm; 1) = c̃k

for all k < m. It then results that gm is the equilibrium since in case any of the first m � 1 coordinates of
gm diminishes its weight its time constraint is not satisfied and the rest of the coordinates of gm are ✏.

We now characterize the first m � 1 components of the equilibrium. From (19), it follow that gm
i

gm
j

=

T j(g
m
;1)/E(Bj)

T i(gm
;1)/E(Bi)

for all i 6= j. Since T i(gm; 1) = c̃i for all i < m, we can state that for all i < m

g

m
i

g

m
m

=
˜
tm/E(Bm)

c̃i/E(Bi)
() g

m
i = ✏

˜
tm/E(Bm)

c̃i/E(Bi)
.

Finally, we prove that Tm(gm; 1) = ˜
tm  c̃m is equivalent to (21). Using (19), we obtain

c̃m � ˜
tm = E(Bm)

PR
k=1

�kE
�
B

2

k

�
PR

k=1

�kE (B2

k)
gm
m

gm
k

= E(Bm)

PR
k=1

�kE
�
B

2

k

�
Pm�1

k=1

�kE (B2

k)
c̃k/E(Bk)

˜tm/E(Bm)

+
PR

k=m �kE (B2

k)

And rearranging both sides of the equation we derive the expression (21)

˜
tm

E(Bm)
=

PR
k=1

�kE
�
B

2

k

�
�
Pm�1

k=1

�k
E(B2

k)
E(Bk)

ck
PR

k=m �kE (B2

k)
.

We now show this equilibrium is unique proving that if the equilibrium is gm, then g

m+i is not the equilib-
rium, for i = 1, . . . , R�m. We thus consider that there exists a value m satisfying

c̃m

E(Bm)
� tm

E(Bm)
=

PR
k=1

�kE
�
B

2

k

�
�
Pm�1

k=1

�k
E(B2

k)
E(Bk)

c̃k
PR

k=m �kE (B2

k)

which is equivalent to

tm

E(Bm)

RX

k=m

�kE(B2

k) =
RX

k=1

�kE
�
B

2

k

�
�

m�1X

k=1

�k
E
�
B

2

k

�

E(Bk)
c̃k (B.2)

We will see that for any i = 1, . . . , R�m, gm+i that satisfies (21) is not the equilibrium. To do so, we show
that there is no vector gm+i with weights as defined in theorem 2 that verifies

We suppose that there exist a value i = 1, . . . , R�m such that

˜cm+i

E(Bm+i)
� tm+i

E(Bm+i)
=

PR
k=1

�kE
�
B

2

k

�
�
Pm+i�1

k=1

�k
E(B2

k)
E(Bk)

c̃k
PR

k=m+i �kE (B2

k)
(B.3)

is verified.

It thus follows that ˜cm+i

E(Bm+i)
� tm+i

E(Bm+i)
=

PR
k=1 �kE(B2

k)�
Pm�1

k=1 �k

E(B2
k)

E(Bk) c̃k�
Pm+i�1

k=m �k

E(B2
k)

E(Bk) c̃k
PR

k=m+i �kE(B2
k)

.
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Taking into account the equality of (B.2) and that
˜tm

E(Bm)

 ˜cm
E(Bm)

 c̃k
E(Bk)

for all k > m, we derive

tm+i

E(Bm+i)
=

tm
E(Bm)

PR
k=m �kE(B2

k)�
Pm+i�1

k=m �k
E(B2

k)
E(Bk)

c̃k
PR

k=m+i �kE (B2

k)


˜cm
E(Bm)

PR
k=m+i �kE(B2

k)
PR

k=m+i �kE (B2

k)
=

c̃m

E(Bm)

From the relation gk
gj

= T j(g;⇢)/E(Bj)

Tk(g;⇢)/E(Bk)
and using that Tm(gm+i; ⇢) = c̃m and Tm+i(gm+i; ⇢) = tm+i if

gm+i is an equilibrium, we obtain that

tm+i

E(Bm+i)
 c̃m

E(Bm)
() g

m+i
m+i � g

m+i
m

which is not possible since g

m+i
m+i = ✏ and g

m+i
m > ✏ if gm+i is an equilibrium.

C. Proofs of the Section 5

C.1. Proof of Proposition 7

If all users had the same weights (so the equilibrium were PS), we would have that E(Bi)/ci = 1 � ⇢,
for all i. Since E(Bi)/ci = k < 1, we conclude that if ⇢  1 � k then (✏, . . . , ✏) is the unique equilibrium.
When ⇢ = 1� k we have ci = E(Bi)/(1� ⇢), 8i, that is, the vector (c

1

, . . . , cR) is achievable and as soon as
⇢ increases further the game becomes infeasible.
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