
HAL Id: hal-01365936
https://hal.science/hal-01365936v1

Submitted on 13 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Work Distribution to Clouds
Lan Wang, Olivier Brun, Erol Gelenbe

To cite this version:
Lan Wang, Olivier Brun, Erol Gelenbe. Online Work Distribution to Clouds. IEEE 24th International
Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS 2016), Sep 2016, Londres, United Kingdom. �hal-01365936�

https://hal.science/hal-01365936v1
https://hal.archives-ouvertes.fr

Online Work Distribution to Clouds
Lan Wang

Imperial College London
Email: lan.wang12@imperial.ac.uk

Olivier Brun
LAAS/CNRS

Email: brun@laas.fr

Erol Gelenbe, FIEEE
Imperial College London

Email: e.gelenbe@imperial.ac.uk

Abstract—Cloud systems include both locally based servers at

user premises and remote servers and multiple Clouds that can

be reached over the Internet. This paper describes a smart dis-

tributed system that combines local and remote Cloud facilities.

It operates with a task allocation system that takes decisions

to allocate tasks dynamically to the service that offers the best

overall Quality of Service and a routing overlay which optimizes

network delay for data transfer between clouds. Experimental

results are conducted at the global intercontinental level, both to

collect data for decision making and to illustrate the effectiveness

of our approach.

Index Terms—Cloud Computing, Adaptive Networked Sys-

tems, Quality of Service, Performance Management, Global Inter-

net, World-Wide Experiments, Smart Intercontinental Networks

I. INTRODUCTION

Cloud computing enables the consolidation of an increasing
number of applications from the general public or enterprise
users which generate diverse sets of workloads in terms
of resource demands and performance requirements [1]. For
example:

• Web requests usually demand fast response and produce
loads that may vary significantly over time [2];

• Scientific applications are commonly computation in-
tensive and might undergo several phases with varied
workload profiles [3];

• MapReduce jobs consist of different tasks of various sizes
and resource requirements [2], [4].

Moreover, the heterogeneity in the hardware configuration of
physical servers or virtual machines in terms of the specific
speeds and capacities of the processor, memory, storage, and
networking subsystems further complicates the matching of
applications to available machines.

Therefore, it is really challenging for Cloud service
providers to dispatch incoming tasks to servers with the
assurance of the quality and reliability of the job execution
required by end users while also improving efficiency in the
usage of resources.

Furthermore, the wide-spread usage of IP networks allows
large-scale Cloud providers such as Amazon EC2[5], Mi-
crosoft Windows Azure[6] and Google Compute Engine[7] to
build Cloud infrastructures at a global scale which facilitates
the deployment of applications spanning multiple regions
around the world for improving reliability and provisioning
services with lower latency and a better experience for the end
users. This enables service providers to distribute workloads
across multiple Clouds for balancing load and offering better

Quality of Service(QoS) to all the requests it receives. The
selection of a Cloud for an end user also relies on other
considerations such as security, cost, and energy consumption.
For example, cloud bursting is “an application deployment
model in which an application runs in a private cloud (on
local servers) and bursts into a public cloud when the demand
for capacity spikes”[8].

Using the Internet as the network medium between Cloud
regions is the default choice offered by many Cloud providers.
It is known that the routes set up by IP do not necessarily
result in the best performance [9], and that IP connections
may have lower reliability than other paths [10], [11], [12],
[13]. The Cloud processing latency is affected by workload
distribution inside the Cloud; this not always easy to assess due
to the heterogeneity in both workload and machine hardware,
and the dynamic changes of load conditions over time. Much
research on the solutions to these issues require sophisticated
optimisation algorithms with relatively high computational
complexity [14], [15], [16], [17]. Some approaches are also
based on substantial performance measurements resulting in
traffic overhead [18], [19], [20], [21], [22] and potential
overhead in the Cloud. Such approaches can be difficult to
put into practice due to scalability problems for large systems
and the need for computational efficiency when one must make
real-time and on-line decisions.

A. Approach of the current paper

In recent work [23] we have examined how a task allocation
platform (TAP) that is internal to a Cloud can be used
to dynamically make task allocation decisions to optimise
QoS, and have suggested both model based and learning
based approaches. In other recent work [24] we have shown
that a limited amount of re-routing over an overlay network
using a measurement and big data approach can substantially
average end-to-end delay for internet traffic and also reduce
the perceived packet loss.

Here we combine these two ideas. In this paper we focus on
the QoS that tasks receive, in particular the overall response
time which is determined by the network latency to access,
forward data and programs, retrieve results and data, and
which includes the local or remote Cloud processing delay.
In particular, we propose a practical system for adaptive
workload distribution across multiple Clouds over wide area
networks. The system includes a TAP deployed in each Cloud
that optimises user perceived QoS and exploits the routing

overlay SMART over Clouds [24] for improving network
delay incurred by data transfer.

In this approach, user’s requests are routed to a designated
local Cloud, which may well be the geographically closest
one, provided that it has enough available capacity to handle
the request. When the workload at the local Cloud increases,
the TAP at the local Cloud can decide to forward requests to
remote Clouds. In the process, TAP will consider the effect of
both the data transfer delay and Cloud processing delay, each
being weighted for their relative importance. The estimate of
data transfer delay used in our system also takes into account
the measured packet loss which will result in extra network
delay for applications that use TCP for data transmission.

In order to optimise Cloud delay and network latency, our
approach is meant to be easily deployable over a large popu-
lation of machines, and it should be able to make fast online
decisions resulting in good quality of service (QoS) with low
computational overhead. Although it requires measurement
and monitoring both of network characteristics and of local
and remote Cloud delays, we limit the frequency and overhead
related to the monitoring effort, and also limit the compu-
tational complexity of decision making using reinforcement
learning [25].

We therefore propose an approach, applied both in TAP and
to the routing overlay, which uses Reinforcement Learning
[25] with the random neural network [26], [27], [28], [29]
to make fast, judicious and efficient decisions based on the
knowledge learned from the past observations, while adapt-
ing to changes in workload and on-going performance of
the Cloud environment. Our approach benefits from limited
measurement overhead as it probes the performance of sub-
systems which provide better QoS, while still exploring less
frequently a wider range of alternative systems that can in the
future prove to provide improved QoS if the current set of
frequently used subsystems result in poor QoS.

Experiments were conducted on a real large scale system
operating on the Internet at a global scale and we empirically
evaluate the potential of our proposed algorithms when there
is great diversity both in the types of jobs, the class of QoS cri-
teria and the resources they request. The experimental results
that we obtain, validate the adaptiveness and effectiveness of
our proposed system for dynamic environments.

II. LEARNING USING RANDOM NEURAL NETWORK

In this section, we present the algorithm designed for
making optimized routing decisions used both in TAP and
the routing overlay. A Random Neural Network (RNN) com-
prises N fully connected neurons [29], where each neuron i
(i = 1, 2, ...N) is characterised by an integer k

i

(⌧) � 0 which
is its “level of excitation”, ⌧ represents time. A neuron fires
at time ⌧ , if k

i

(⌧) > 0. Each neuron can receive positive and
negative signals (spikes) either from other neurons or from
the outside world, which increase or decrease the k

i

of the
receiving neuron. It has been proved [27], [30] that, at the

equilibrium state, the probabilities:

q
i

= lim
⌧!1

Prob[k
i

(⌧) > 0], (1)

are uniquely obtained from the expression:

q
i

=
⇤(i) +

P
N

j=1 qjw
+(j, i)

r(i) + �(i) +
P

N

j=1 qjw
�(j, i)

, (2)

where the w+(j, i) and w�(j, i) are the excitatory and in-
hibitory weights from neuron j to neuron i (w+(i, i) =
w�(i, i) = 0), and ⇤(i) and �(i) are the inputs of external
excitatory and inhibitory signals to neuron i, while the firing
rate at a neuron:

r(i) =
NX

j=1

[w+(i, j) + w�(i, j)] (3)

In TAP, a distinct RNN corresponds to a job class which
has a distinct goal function G defined based on user desired
QoS. Each neuron of a RNN corresponds to the choice of a
machine in a cluster for accommodating jobs.

A given RNN is initialised by setting all the inter-neuron
weights w+(i, j) = w�(i, j) = 1/2(N � 1), so that r(i) = 1
for all i, and ⇤(i) = 0.25 + 0.5�(i). In particular we can
choose �(i) = 0 so that all ⇤(i) = 0.25. This of course results
in q

i

= 0.5 for all i. Then, the value of q
i

is changed using
(2) with the successive updates of the weights based on the
measured value of the goal function.

Suppose TAP receives a value Gt

i

of the goal function that
was measured at time t at host i, the inverse of the goal
function is defined as the reward Rt

i

= 1
G

t
i
. The RNN weights

are updated as follows:
• We first update a decision threshold T as

T ↵T + (1� ↵)Rt

i

(4)

where 0 < ↵ < 1 is a parameter used to vary the relative
importance between “past history” and the most recent
measurement.

• Then, if Rt

i

> T , it is considered that the previous
decision made by the RNN was successful and the
weights are updated as follows:

w+(j, i) w+(j, i) +Rt

i

w�(j, k) w�(j, k) +Rt

i

/(N � 2), if k 6= i

• else if Rt

i

< T

w+(j, k) w+(j, k) +Rt

i

/(N � 2), if k 6= i

w�(j, i) w�(i, j) +Rt

i

,

After the weights are updated, the q
i

are computed using (2)
iteratively until it is converged. The algorithm tends to increase
the value of q

i

to neuron i, i = 1, ... , N which corresponds
to a host that has a smaller measurement value of G, so that
each time TAP selects the host corresponding to the largest
q
i

, resulting in the minimizing of the QoS goal.
In SMART (the routing overlay we designed) [24], the

algorithm uses the RNN to choose a subset of paths to probe

at each successive time slot, and measures the sum of edge
delays in the probed paths. The algorithm then selects the
minimum latency path among those it has probed.

III. TASK ALLOCATION PLATFORM FOR A SINGLE CLOUD

In our early work[23], We developed a practical Task
Allocation Platform (TAP), which is a Linux based portable
software module and can be easily installed on a machine
with Linux OS, to accommodate the distinct static or dynamic
allocation algorithms and perform online measurement. To
use TAP, users only need to declare QoS goals such as
fastest job execution or optimising cloud provider’s profit
while maintaining service level agreements (SLAs). TAP ac-
cepts these directions and carries out constant monitoring and
measurement in order to keep awareness of the state of cloud
environment and service performance related to the QoS goals.
With the knowledge learned from these observations, the task
allocation algorithms hosted in the TAP make online decisions
to achieve the best possible QoS requested by users, while
adapting to conditions that vary over time.

The TAP (as shown in Figure 3) has a centralized con-
troller accommodating the online task allocation algorithms
and running on a dedicated host. It penetrates into the cloud
infrastructure by embedding measurement agents into each
machine to conduct self-observation that are relevant to the
required QoS.

We conducted experiments to evaluate the adaptiveness and
effectiveness of our proposed approach using the RNN-based
algorithm described in section II and the sensible algorithm
which is also an on-line and adaptive strategy which direct a
incoming job to a host with the probability which is inversely
proportional to the value of a goal function updated by the
most recent measurement.

Experiments were conducted on a multiple host test-bed
including three hosts for processing jobs. The choice of the
test-bed in the small scale is in that we can easily vary the
load of the system by varying arrival rates of tasks.

Actually, TAP is scalable because it only makes a limited
measurement effort by focusing on the monitoring of better
performed servers, and it explores the other machines with
lower probability (e.g. 10%). The job used in the first set
of experiments is a “prime number generator” which is de-
ployed in advance on the host, so that it actually provides
the prime number generating services which generate CPU
intensive workload. The QoS goal initially considered was the
minimisation of the execution time on the host.

To build a heterogeneous server environment, we introduce
a background load on each host which stresses the CPU
distinctly on the three host i = 1, 2, 3 with relative processing
speeds of 2 : 4 : 1 for the CPU intensive services we
provided. The experiment was repeated for a range of average
task arrival rates �, in order to evaluate performance under
load conditions that vary from light to heavy load, including
saturation.

The results in Figure 1 show that our proposed algorithm,
the RNN and the sensible algorithm, benefits from their

potential to detect the performance differences between the
servers by leaning from the measurements, and direct tasks to
the hosts which provide a better performance, outperforming
Round Robin and equal probability task allocation which
are commonly-practiced schemes. The RNN-based algorithm
clearly outperforms the others (in Figure 1(b)), confirming that
it is a fine-grained QoS-aware online task allocation algorithm.

0 5 10 15 20 25 30
50

100

150

200

250

300

350

400

450

500

Incoming Job Rate(per second)

Av
era

ge
 Jo

b E
xe

cu
tio

n T
im

e(m
s)

Average Job Execution Time under Varied Incoming Job Rates

Random Neural Network(ET)
Sensible Decision
Round Robin
Equal Probability

(a)

0 2 4 6 8 10 12
60

70

80

90

100

110

120

130

140

150

Incoming Job Rate(per second)

Av
era

ge
 Jo

b E
xe

cu
tio

n T
im

e(m
s)

Zoom−in

Random Neural Network(ET)
Sensible Decision
Round Robin
Equal Probability

(b)

Fig. 1. Average execution time experienced in a cluster composed of hosts
with distinct processing capacities.

To investigate the potential of our proposed algorithms when
there is greater diversity both in the types of jobs, the class
of QoS criteria and the resources they request, we introduce
a web browsing workload generated using HTTPerf which is
a web server performance tool. It originates HTTP requests
which retrieve files from web server, such as Apache 2 HTTP
server, thereby generating I/O bound workload on the web
server without much CPU consumption.

We introduce a background load which stresses I/O dis-
tinctly on each host, resulting in relative processing speeds
of 6 : 2 : 1 with respect to I/O bound services, while a
background load which stresses CPU differently, resulting in
the relative processing speed of 2 : 3 : 6 for the CPU bound
services.

The results in Figure 2 show that the RNN based algorithm
performs particularly better due to its potential to make more
accurate decisions (compared with Sensible) which direct I/O
bound tasks to the hosts which provide better I/O capacity
and transfer CPU intensive tasks to the hosts with higher
processing speed. In the experiments, we also reduced the
background load in terms of both CPU and I/O stress on the
Host 2 to the lowest level as compared with the Hosts 1, 3.
The RNN based algorithm was found to be able to detect
the load changes and dispatch the majority of subsequent
tasks of both classes to Host2, which also shows the host

1 2 3 4
0

20

40

60

80

100

120

140

160

180

200

The average job rate (jobs/s)

Ave
rag

e jo
b re

spo
nse

 tim
e (s

ecs
)

CPU Intensive Services

RNN algorithm
Sensible algorithm
Round Robin

(a)

1 2 3 4
0

20

40

60

80

100

120

140

160

180

200

The average job rate (jobs/s)

Ave
rag

e jo
b re

spo
nse

 tim
e (s

ecs
)

I/O Bound Services

 RNN algorithm
Sensible algorithm
Round Robin

(b)

Fig. 2. Average response time experienced by CPU intensive services and
I/O bound services in a heterogeneous cluster. We compare Round-Robin with
RNN based Reinforcement Learning and the Sensible Algorithm.

which is heavily loaded in terms of CPU can still offer
good performance to I/O bound tasks, thereby improving the
resource utilization.

IV. TASK ALLOCATION PLATFORM FOR MULTIPLE CLOUDS

In this section, we present an extension of the TAP designed
for workload distribution across multiple clouds over wide area
networks. As shown in Figure 3, users web requests are routed
to the local, which is perhaps the geographically closest cloud,
if the cloud has enough capacity. The dispatcher at the local
cloud receives the incoming workload and adaptively selects
the best possible server based on the user-defined QoS (e.g.
the response time).

If the workload in the local cloud increases, the dispatcher
could decide whether to forward the subsequent requests to
the remote clouds in order to balance the load and offer better
QoS to all the requests it receives. The decision would rely
on a variety of considerations, such as security, cost, QoS and
energy consumption.

We currently only concern ourselves with the QoS that
tasks receive, in particular the response time observed by
tasks. Obviously this response time will be determined by the
network delay incurred by the access to local or remote clouds,
which includes the network delay to process the request, the
network delay to forward the task with its possible code and
data, plus the time it takes to return the results to the sender
after execution, plus the waiting time and service time inside
the clouds. That is to say, the dispatcher would select a remote
cloud (say the j-th cloud) to share the workload of the local
cloud by considering the response time (denoted by Dj

job

)
which consists of the data transfer latency (denoted by Dj

n

)

ControllerTARA OC

 TAP RNN

Proxy 1
Proxy 2

Proxy 3
Proxy 4

London
(UK)

Singapa

Virginia
(US)

Ireland
Proxy 5

Proxy 6
RNN

 TAP RNN

 TAP RNN

 TAP RNN

Jobs

Fig. 3. The Architecture of the TAP for workload distribution across multiple
clouds over wide area networks

which depends on the traffic conditions on the connections to
the remote clouds and the proximity of the remote cloud to
the local cloud as well as the response time within the cloud
(denoted by Dj

e

) which is related to the viability or health
state of the cloud. Hence, a goal function for the decision can
be presented as,

Dj

job

= aDj

n

+ bDj

e

(5)

where a and b are the relative importance being placed
on the data transfer latency on network connections and the
processing delay inside the cloud. It should be noted that the
data transfer latency for the local cloud, though not zero, may
be negligible. We assume that each cloud will report its health
state regularly, including the response time within the cloud.
In the following section, we present the approaches we used
to predict the data transfer latency via measuring the network
delay on the connections to all the external clouds. This of
course is easier said than done because it depends on the nature
of the transfers and on the other traffic in the connections.

A. Data transfer delay estimation

To simplify matters, we measure the round-trip delay (de-
noted by T j

p

(t) for the j-th cloud at time t) and the packet loss
(denoted by Lj(t)) on each connection via pinging every
a certain time interval (e.g. 1 second) thereby obtaining the
network delay. A weighted average of the measurements for
the round-trip delay is used as

T j

p

= ↵T j

p

+ (1� ↵)T j

p

(t) (6)

where 0 < ↵ < 1 is a parameter which reflects the relative
importance between the past values and the most recent
measurement.

The packet loss needs to be considered because some
applications (e.g. HTTP requests) utilize TCP to transfer the
data and require retransmissions for the lost packets, which
results in extra delay. The loss is measured as follows:

Lj(t+ 1) =
↵tLj(t) + (1� ↵)t1[loss on the t�th ping]

t+ 1
(7)

It should be noted that there is a loss on the connection to the
j-th cloud if the pinging delay at the j-th cloud T j

p

is larger
than some fixed value T

timeout

.
Therefore, the network delay on the connection to the j-th

cloud considering packet loss can be expressed as

Dj

p

= Lj(Dj

p

+ T j

p

) + (1� Lj)T j

p

(8)

where Dj

p

appears on both sides of eq. (8) because the
retransmission of a lost packet might on the average surfer
the same network delay Dj

p

.
Therefore, we finally get

Dj

p

=
T j

p

1� Lj

(9)

The data transfer time of a request to a remote cloud and its
response traveling back to the local cloud can be approximated
using the corresponding network delay which is obtained from
the ongoing measurements on the same connection:

Dj

n

= (
S

M
)Dj

p

=
ST j

p

M(1� Lj)
(10)

where M is the maximum packet size (bytes), and S is the
total data size (bytes).

Upon the arrival of each job at TAP, the allocation decision
is made using the simple greedy algorithm which selects the
cloud offering the minimal response time.

argmin
j

(a
ST j

p

M(1� Lj)
+ bDj

e

) (11)

B. Routing Overlay for Improving Data Transfer Performance
To improve data transfer performance on the connections

between a local cloud and remote clouds, we proposed a
routing overlay, “SMART”[24], which is a self-healing, self-
optimizing and highly scalable routing overlay that accepts
customized routing policies formulated by distributed applica-
tions according to their own needs. It can be widely deployed
over a sizable population of routers.

The overlay we designed is based on a set of proxies (Figure
3) installed at different Cloud servers, or they may be in
other servers across the network, it operates by monitoring
the quality of Internet paths (latency, bandwidth, loss rate)
between overlay nodes and rerouting packets along an alternate
path when the primary becomes unavailable or suffers from
congestion, while the flow of packets between proxies travels
in conventional IP mode.

The routing decisions are made on-line at each proxy of the
overlay network based on adaptive learning techniques using
the random neural network (RNN). By using this algorithm,
probing does not cover all possible paths but only a few
paths which have been observed in previous probing steps to
provide low overall forwarding delay for packets, so that it
uses a limited monitoring effort but achieves asymptotically
the same average (per round) end-to-end latency as the best
path. Therefore, it can be widely deployed over a sizable
population of routers.

C. Experimental results

To validate our proposed system, we built an experimental
system at the global intercontinental level which includes the
local cloud in the test-bed of Imperial College London and the
three remote clouds located in Ireland, Virginia and Singapore
provided by Amazon AWS.

The web requests are originated using Httperf for retrieving
a file of size 128K from the web servers, which generates
I/O bound workload on the web servers. In the local cloud,
the TAP is deployed for optimizing the web request allocation
across the three web servers with distinct I/O capacity. In the
remote clouds, there are other web servers deployed for load
balancing. Between the local and remote clouds, the routing
overlay–SMART–is used for routing the web requests and
responses with the optimized network delay.

The measurement of the network delay on the connections
to all the remote clouds is carried out every one second and
the average response time for the Httperf requests inside each
cloud is also reported every one second. As shown in Figure
4, the network connection to the cloud located in Ireland has
the lowest network delay because this cloud is closer to the
local cloud in London than the others, and the traffic on the
connection appears to be low.

Time (ms) ×105
0 2 4 6 8 10

Ne
two

rk
de

lay
 (m

s)

260

260.5

261

261.5

262

262.5
Remote cloud 1 (Singapore)

(a)

Time (ms) ×105
0 2 4 6 8 10

Ne
two

rk
de

lay
 (m

s)

76.6

76.8

77

77.2

77.4
Remote cloud 2 (Virginia)

(b)

Time (ms) ×105
0 2 4 6 8 10

Ne
two

rk
de

lay
 (m

s)

11.5

12

12.5

13

13.5
Remote cloud 3 (Ireland)

(c)

Fig. 4. The weighted average network delay over time on the connections to
the three remote clouds; it is derived from the measurement of the round-trip
delay and loss via pinging.

The web browser requests were originated from a client
inside the local cloud at the rate of 0.5 requests per second. We
varied the background workloads, which consume I/O capacity
on the web servers in the local cloud over time in order to
observe whether our TAP is able to adapt to the changing
load conditions. Therefore, the local cloud is loaded lightly,
modestly, heavily and finally lightly during 200 seconds for
each of these successive conditions.

As shown in Figure 5, the incoming web requests were

dispatched to the local cloud when it was under light and
modest load conditions. Our autonomic TAP learned the
optimal request allocation based on the online measurement
and directed the requests to the web server which provided the
fastest response. As the workload in the local cloud increased
to a certain high level which resulted in a response time that
was significantly greater than that of one of the remote clouds
(including network delays), the TAP selected the remote cloud
for the subsequent web requests until it detected that the local
clouds time had dropped significiantly due to the offloading
of workload from background tasks.

Time (ms) ×105
0 1 2 3 4 5 6 7 8 9

Th
e

re
sp

on
se

 ti
m

e
(m

s)

0

50

100

150

200

250

300
Local cloud (London)
Remote cloud (Ireland)

Fig. 5. The measured response time from our experiment, measured for
each web request as time elapses; the different colours represent the different
clouds where the requests are allocated and processed.

The improvement of network performance achieved using
our overlay network is shown in Figures 6 and 7. We deployed
our overlay network across Europe, Asia, North and South
America, and Australia using 19 overlay nodes. The RTT
observed between Japan and Chile using the direct IP route
was roughly 400 ms, whereas the RTT of the minimum latency
path obtained with our overlay based adaptive routing was
approximately 250 ms.

As can be seen, the RNN-based overlay routing algorithm
learns very quickly which path has the minimum latency path,
and tracks it throughout the 5-day experiment. Similarly, the
available throughput between Sydney (Australia) and Virginia
(USA) using the direct IP route was 8.5 Mbps, whereas the
average throughput of the optimal path turned out to be 55.3
Mbps.

!"#$

!%$$

!%#$

!&$$

!&#$

!#$$

!$!' !" !% !& !#

!"
"#$%

&'

()*+!,-./01

2345-!67)8!6)*+0!9.8.5:;<)=+!3>+7!#!-./0

?8()*.=!734(+
 !!734(+

?>+7=./!734(+

Fig. 6. RTD in milliseconds measured for the Japan-Chile connection in an
experiment lasting 5 successive days.

!"

!#"

!$"

!%"

!&"

!'"

!("

!)"

!" !"*' !# !#*' !$!$*' !% !%*' !&

!"#
$%&

"'%
()*+

,'-
.

+,-.!/01234

56789:6;9+!<78-!=,7:,>,1!+8!?20>.2

 ;+,-1!!789+.
"#!789+.

 $.7!12!789+.

Fig. 7. Throughput (Mbps) measured from Virginia (USA) to Sydney
(Australia) over 4 consecutive days.

V. CONCLUSIONS

This paper proposes a practical system for adaptive work-
load distribution across multiple clouds over wide area net-
works. It uses a Random Neural Network (RNN) based
adaptive learning algorithm with Reinforcement Learning to
optimize the cloud processing and network delay to adaptively
distribute workload based on both cloud delay and data
transfer latency which is estimated using network delay.

Experiments conducted on a real large scale system op-
erating across the Internet at a global scale validate the
adaptiveness and effectiveness of our proposed system in
dynamic environments. In future work, we will also take into
account the energy consumption of jobs to take descisons for
load distribution among local and remote Clouds.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of
the EC 7th Framework Programme’s PANACEA Project
(www.panacea-cloud.eu) under Grant Agreement No. 610764.

REFERENCES

[1] C. Delimitrou and C. Kozyrakis, “Qos-aware scheduling in
heterogeneous datacenters with paragon,” ACM Trans. Comput.
Syst., vol. 31, no. 4, pp. 12:1–12:34, Dec. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2556583

[2] J. Zhan, L. Wang, X. Li, W. Shi, C. Weng, W. Zhang, and X. Zang,
“Cost-aware cooperative resource provisioning for heterogeneous work-
loads in data centers,” Computers, IEEE Transactions on, vol. 62, no. 11,
pp. 2155–2168, Nov 2013.

[3] A. Iosup, S. Ostermann, M. Yigitbasi, R. Prodan, T. Fahringer, and
D. H. J. Epema, “Performance analysis of cloud computing services
for many-tasks scientific computing,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 22, no. 6, pp. 931–945, June 2011.

[4] B. Palanisamy, A. Singh, and L. Liu, “Cost-effective resource provision-
ing for mapreduce in a cloud,” Parallel and Distributed Systems, IEEE
Transactions on, vol. PP, no. 99, pp. 1–1, 2014.

[5] “Amazon ec2,” http://aws.amazon.com/ec2/.
[6] “Windows azure,” http://www.windowsazure.com/.
[7] “Google compute engine,” https://cloud.google.com/compute/.
[8] “cloud bursting,” http://searchcloudcomputing.techtarget.com/definition/cloud-

bursting.
[9] V. Paxson, “End-to-end routing behavior in the internet,” in in Proc.

ACM SIGCOMM’96, Stanford, CA, USA, August 1996, pp. 25–38.
[10] C. Labovitz, R. Malan, and F. Jahanian, “Internet routing instability,”

IEEE/ACM Transactions on Networking, vol. 6, no. 5, pp. 515–526,
1998.

[11] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed
internet routing convergence,” SIGCOMM Comput. Commun. Rev.,
vol. 30, no. 4, pp. 175–187, Aug. 2000. [Online]. Available:
http://doi.acm.org/10.1145/347057.347428

[12] M. Dahlin, B. Chandra, L. Gao, and A. Nayate, “End-to-end wan service
availability,” in In Proc. 3rd USITS, 2001, pp. 97–108.

[13] J. Han and F. Jahanian, “Impact of path diversity on multi-homed and
overlay networks,” in In Proceedings of IEEE International Conference
on Dependable Systems and Networks, 2004.

[14] H. Topcuouglu, S. Hariri, and M. you Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.
[Online]. Available: http://dx.doi.org/10.1109/71.993206

[15] S. Pandey, W. Linlin, S. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” in Advanced Information Networking
and Applications (AINA), 2010 24th IEEE International Conference on,
April 2010, pp. 400–407.

[16] S. Zaman and D. Grosu, “A combinatorial auction-based dynamic vm
provisioning and allocation in clouds,” in Cloud Computing Technology
and Science (CloudCom), 2011 IEEE Third International Conference
on, Nov 2011, pp. 107–114.

[17] E. Hou, N. Ansari, and H. Ren, “A genetic algorithm for multiprocessor
scheduling,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 5, no. 2, pp. 113–120, Feb 1994.

[18] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris,
“Resilient overlay networks,” in Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles, ser. SOSP ’01. New
York, NY, USA: ACM, 2001, pp. 131–145. [Online]. Available:
http://doi.acm.org/10.1145/502034.502048

[19] L. Peterson, S. Shenker, and J. Turner, “Overcoming the internet impasse
through virtualization,” in in Proceedings of the 3rd ACM Workshop on
Hot Topics in Networks (HotNets-III), November 2004.

[20] J. Touch, Y. Wang, L. Eggert, and G. Finn, “A virtual internet architec-
ture,” ISI, Tech. Rep. ISI-TR-2003-570, March 2003.

[21] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. van der
Merwe, “The case for separating routing from routers,” in Proceedings
of the ACM SIGCOMM workshop on Future directions in network
architecture, A. Press, Ed., 2004.

[22] M. Beck, T. Moore, and J. Plank, “An end-to-end approach to globally
scalable programmable networking,” in in Proceedings of the ACM
SIGCOMM workshop on Future directions in network architecture,
A. Press, Ed., 2003.

[23] L. Wang and E. Gelenbe, “Adaptive dispatching of tasks in the cloud,”
IEEE Transactions on Cloud Computing, vol. PP, no. 99, pp. 1–1, 2015.

[24] O. Brun, L. Wang, and E. Gelenbe, “Big data for autonomic interconti-
nental overlays,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 3, pp. 575–583, March 2016.

[25] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[26] E. Gelenbe and S. Timotheou, “Random neural networks with synchro-
nized interactions,” Neural Computation, vol. 20, no. 9, pp. 2308–2324,
2008. [Online]. Available: http://dx.doi.org/10.1162/neco.2008.04-07-
509

[27] E. Gelenbe, “Stability of the random neural network model,” Neural
Computation, vol. 2, no. 2, pp. 239–247, 1990.

[28] ——, “Random neural networks with negative and positive signals and
product form solution,” Neural Computation, vol. 1, no. 4, pp. 502–510,
Dec 1989.

[29] E. Gelenbe and J. Fourneau, “Random neural networks with multiple
classes of signals,” Neural Computation, vol. 11, no. 4, pp. 953–963,
1999.

[30] E. Gelenbe and S. Timotheou, “Synchronized interactions in spiked
neuronal networks,” The Computer Journal, vol. 51, no. 6, pp. 723–
730, 2008.

