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EXACT BAYESIAN RESTORATION IN NON-GAUSSIAN
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Telecom SudParis / CITI department & CNRS UMR 5157
9, rue Charles Fourier, 91011 Evry, France
(e-mail: {noemie.bardel,francois.desbouvries}@it-sudparis.eu)

ABSTRACT. Multiresolution signal and image analysis and multiscale algorithms are of interest in
many fields. In particular, efficient Bayesian restoration algorithms have been proposed for some tree-
structured Markovian models. In this paper we show that Bayesian filtering and prediction can be per-
formed exactly, with complexity linear in time index, in a particular class of Triplet Markov Trees.

1 INTRODUCTION

Multiresolution signal and image analysis and multiscale algorithms are of interest in many
fields (Daubechies et al. (1992), Krim et al. (1999) and Starck and Bijaoui (1998)). In par-
ticular, efficient restoration algorithms in statistical models defined on Hidden Markov trees
(HMT) have been developed (see e.g. Chou et al. (1994), Laferté et al. (2000) or Willsky
(2002)).

Let us first briefly recall the definition of a Markov Tree (MT). Let S be a finite set
of indices and let us consider a tree with nodes indexed by S . Let us consider a partition
S = {S1,S2, ...,SN}, where Sn are the generations of the tree : S1 is the root node r, S2 is the
set of its children, and so on. Each node s except the root node r has exactly one parent s−, the
set of the children of s is denoted by s+, the set of all descendants of s by s++ and the set of
all ancestors of s by s−−. We also denote by a(s) the set of all ancestors of s and s itself (i.e.
a(s) = {s−−,s}).Without loss of generality we consider here the case of dyadic trees: each
node s /∈ SN has exactly two children s1 and s2 (i.e. s+ = {s1,s2})(see Fig. 1). Each node s
is associated with a random variable x(s). Also we introduce the notation xS = {x(s),s ∈ S}.
The tree is a Markov one if

p(xS ) = p(xr) ∏
s∈S\S1

p(xs|xs−). (1)

Let now xS = {x(s),s ∈ S} and yS = {y(s),s ∈ S} be two sets of variables defined on the
same set S . Variables x(s) (resp. y(s)) are hidden (resp. observed). (xS ,yS ) is an HMT if their
joint distribution satisfies:

p(xS ,yS ) = p(xr) ∏
s∈S\S1

p(xs|xs−)∏
s∈S

p(ys|xS ), (2)

i.e. x is an MT and p(yS |xS ) = ∏s∈S p(ys|xS ). HMT have been extended to Pairwise
Markov Trees (PMT) (see Pieczynski (2002) and Desbouvries et al. (2006)) defined by:

p(zS ) = p(zr) ∏
s∈S\S1

p(zs|zs−),



in which zs = (xs,ys) and zS = (xS ,yS ). Any HMT is a PMT, but the converse is not true,
since in a PMT, xS is not necessarily an MT.

We now introduce a third latent process rS taking its values in a finite set Ω = {ω1, ...,ωt}
which can monitor for example the change of characteristics of the model. We will say that
(xS ,rS ,yS ) is a Triplet Markov Tree (TMT) if it is an MT. Bayesian restoration of a hidden
variable xs from (some of the) observed variables {ys} is in general a difficult problem. For
instance, as is well known (see Tugnait (1982)) Bayesian inference in Jump-Markov State-
Space (JMSS) systems is an NP-hard problem. JMSS systems are conditionally linear and
Gaussian dynamic systems, defined as:

xn+1 = Fn(rn)xn +Gn(rn)un

yn = Hn(rn)xn + vn

in which rn is a Markov Chain, and {un}n∈{1,...,N} and {vn}n∈{1,...,N} are independent and
mutually independent zero-mean random vectors, and independent from {rn}n∈{1,...,N} and
x0. Such a model is a particular Triplet Markov Chain (xn,rn,yn), and thus a particular Triplet
Markov Tree (TMT) (xs,rs,ys) (a tree reduces to a chain if each node has exactly one child).

On the other hand, in most situations we are indeed more interested by some moment
E[g(xk)|y1:n] than by pdf p(xk|y1:n) itself. In particular, the conditional expectation E[xk|y1:n]
is of particular interest since it is the solution to the Bayesian estimation problem with
quadratic loss.

The aim of this paper is to show that for some particular TMT Bayesian filtering (see
section 2) and prediction (see section 3) can be performed with complexity linear in time
index.

Figure 1. Example of dyadic tree



2 EXACT FILTERING ON SWITCHING-MARKOV TREES

Let x = {xs}s∈S , y = {ys}s∈S and r = {rs}s∈S be sets of random variables indexed by S . Each
xs (resp. ys) takes its values in Rq (resp. Rm) and rs takes its values in Ω = {ω1, ...,ωt}.

We consider the following particular TMT model(see Fig.2):

(RS ,YS ) is a Markov Tree; (3)
Xs = Fs−(Rs− ,Ys−)Xs− +Us− ; (4)

where {Us}s∈S are independent zero-mean random vectors, such that for each s ∈ S , Us is in-
dependent from (RS ,YS ) and from Xr. Note that in (4) vectors Us are not necessarily Gaussian.

Figure 2. Switch-Markov Tree, with y∗ = (r,y)

In this section we aim at computing E[Xs|Ya(s) = ya(s)] and Cov(Xs|Ya(s) = ya(s)) for any
s ∈ S .

Notation

For each p ∈ S and s ∈ S let us first set:

Mp(rp,ya(s)) =
∫

Rq
xp p(xp,rp|ya(s))dxp (5)

If the covariance matrix Σp of Up exists for all p, let us set:

Vp(rp,ya(s)) =
∫

Rq
xpxp

T p(xp,rp|ya(s))dxp (6)

Of course, E[Xs|Ya(s) = ya(s)] and Cov(Xs|Ya(s) = ya(s)) can be computed from Ms(rs,ya(s))
and Vs(rs,ya(s)) as:

E[Xs|Ya(s) = ya(s)] = ∑
rs

Ms(rs,ya(s)) and



Cov(Xs|Ya(s) = ya(s)) = ∑
rs

Vs(rs,ya(s))− (∑
rs

Ms(rs,ya(s)))(∑
rs

Ms(rs,ya(s)))
T .

In the following we thus focus on the computation of Ms(rs,ya(s)) and Vs(rs,ya(s)).

Proposition

Let (XS ,RS ,YS ) satisfy (3)-(4), with given transition p(rs,ys|rs− ,ys−). Then Ms(rs,ya(s))
can be recursively computed with linear complexity in time by the following way:

Ms(rs,ya(s)) =
1

p(ys|ya(s−))
∑
rs−

p(rs,ys|rs− ,ys−)Fs−(rs− ,ys−)Ms−(rs− ,ya(s−)) (7)

with

p(ys|ya(s−)) =
p(ya(s))

p(ya(s−))
=

∑rs p(rs,ya(s))

∑rs−
p(rs− ,ya(s−))

and
p(rs,ya(s)) = ∑

rs−

p(rs− ,ya(s−))p(rs,ys|rs− ,ys−)

Furthermore if the covariance matrix Σs of Us exists for all s ∈ S it is possible to compute
Vs(rs,ya(s)) as:

Vs(rs,ya(s))=
1

p(ys|ya(s−))
∑
rs−

p(rs,ys|rs− ,ys−)[Fs−(rs− ,ys−)Vs−(rs− ,ya(s−))Fs−(rs− ,ys−)
T +Σs− ]

(8)
Proof

By using the Bayes formula, the fact that (XS ,YS ,RS ) is a Markov Tree and the model
(3)-(4) we have:

p(xs,rs|ya(s)) = ∑
rs−

∫
p(xs,rs,xs− ,rs− |ya(s−),ys)dxs−

=
1

p(ys|ya(s−))
∑
rs−

∫
p(xs,rs,xs− ,rs− ,ys|ya(s−))dxs−

=
1

p(ys|ya(s−))
∑
rs−

∫
p(xs− ,rs− |ya(s−))p(rs,ys|rs− ,ys−)p(xs|xs− ,rs− ,ys−)dxs− (9)

We next multiply (9) by xs and integrate with respect to xs. Since {Us} are independent,
zero-mean and independent from (RS ,YS ):

Ms(rs,ya(s)) =
1

p(ys|ya(s−))
∑
rs−

∫
p(xs− ,rs− |ya(s−))p(rs,ys|rs− ,ys−)Fs−(rs− ,ys−)xs−dxs−

Finally:



Ms(rs,ya(s)) =
1

p(ys|ya(s−))
∑
rs−

p(rs,ys|rs− ,ys−)Fs−(rs− ,ys−)
∫

xs− p(xs− ,rs− |ya(s−))dxs−

=
1

p(ys|ya(s−))
∑
rs−

p(rs,ys|rs− ,ys−)Fs−(rs− ,ys−)Ms−(rs− ,ya(s−))

which brings us to the end of the proof. (8) is obtained similarly.

3 EXACT PREDICTION IN SWITCHING-MARKOV TREES

We consider the following particular TMT:

RS is a Markov Tree; (10)
(RS ,YS ) is a Markov Tree; (11)
Xs = Fs−(Rs−)Xs− +Ws− ; (12)

where {Ws}s∈S are independent zero-mean random vectors, such that for each s ∈ S , Ws is
independent from (RS ,YS ) and from Xr. Note that in (12) (as in (4)) vectors Ws are not nec-
essarily Gaussian.

In this section we aim at computing E[xp|ya(s)] and Cov(xp|ya(s)) for any s ∈ S and
p ∈ s++. As above we focus on the computation of Mp(rp,ya(s)) and Vp(rp,ya(s)), defined
in (5) and (6).

Proposition

Let (XS ,RS ,YS ) satisfy (10)-(12), with given transition p(rs,ys|rs− ,ys−). Then Mp(rp,ya(s))
can be recursively computed with linear complexity in time by the following scheme:

• Compute Ms(rs,ya(s)) with the algorithm presented in the last section;
• For each p ∈ s++ compute

Mp(rp,ya(s)) = ∑
rp−

p(rp|rp−)Fp−(rp−)Mp−(rp− ,ya(s)). (13)

Furthermore if the covariance matrix Σs of Ws exists for all s ∈ S it is possible to compute
Vp(rp,ya(s)) as follows:

• Compute Vs(rs,ya(s)) with the algorithm presented in the last section;
• For each p ∈ s++ compute

Vp(rp,ya(s)) = ∑
rp−

p(rp|rp−)[Fp−(rp−)Vp−(rp− ,ya(s))Fp−(rp−)
T +Σp− ]. (14)



Proof

We have:

p(xp,rp|ya(s)) = ∑
rp−

∫
p(xp,rp,xp− ,rp− |ya(s))dxp−

= ∑
rp−

∫
p(xp− ,rp− |ya(s))p(xp,rp|xp− ,rp− ,ya(s))dxp−

= ∑
rp−

∫
p(xp− ,rp− |ya(s))p(xp|rp,xp− ,rp− ,ya(s))p(rp|xp− ,rp− ,ya(s))dxp− (15)

Then from (10) and (12), p(xp|rp,xp− ,rp− ,ya(s)) reduces to p(xp|xp− ,rp−) and
p(rp|xp− ,rp− ,ya(s)) reduces to p(rp|rp−). We next multiply (15) by xp and integrate with
respect to xp to get (13). (14) is obtained similarly.
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