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EXACT BAYESIAN RESTORATION IN NON-GAUSSIAN MARKOV-SWITCHING TREES

Multiresolution signal and image analysis and multiscale algorithms are of interest in many fields. In particular, efficient Bayesian restoration algorithms have been proposed for some treestructured Markovian models. In this paper we show that Bayesian filtering and prediction can be performed exactly, with complexity linear in time index, in a particular class of Triplet Markov Trees.

INTRODUCTION

Multiresolution signal and image analysis and multiscale algorithms are of interest in many fields [START_REF] Daubechies | Special issue on wavelet transforms and multiresolution signal analysis[END_REF], [START_REF] Krim | Special issue on multiscale statistical signal analysis and its applications[END_REF] and [START_REF] Starck | Multiscale Image Processing and Data Analysis[END_REF]). In particular, efficient restoration algorithms in statistical models defined on Hidden Markov trees (HMT) have been developed (see e.g. [START_REF] Chou | Multiscale recursive estimation, data fusion, and regularization[END_REF], Laferté et al. (2000) or [START_REF] Willsky | Multiresolution Markov models for signal and image processing[END_REF]).

Let us first briefly recall the definition of a Markov Tree (MT). Let S be a finite set of indices and let us consider a tree with nodes indexed by S. Let us consider a partition S = {S 1 , S 2 , ..., S N }, where S n are the generations of the tree : S 1 is the root node r, S 2 is the set of its children, and so on. Each node s except the root node r has exactly one parent s -, the set of the children of s is denoted by s + , the set of all descendants of s by s ++ and the set of all ancestors of s by s --. We also denote by a(s) the set of all ancestors of s and s itself (i.e. a(s) = {s --, s}).Without loss of generality we consider here the case of dyadic trees: each node s / ∈ S N has exactly two children s 1 and s 2 (i.e. s + = {s 1 , s 2 })(see Fig. 1). Each node s is associated with a random variable x(s). Also we introduce the notation x S = {x(s), s ∈ S}.

The tree is a Markov one if

p(x S ) = p(x r ) ∏ s∈S \S 1 p(x s |x s -). (1) 
Let now x S = {x(s), s ∈ S} and y S = {y(s), s ∈ S} be two sets of variables defined on the same set S. Variables x(s) (resp. y(s)) are hidden (resp. observed). (x S , y S ) is an HMT if their joint distribution satisfies:

p(x S , y S ) = p(x r ) ∏ s∈S \S 1 p(x s |x s -) ∏ s∈S p(y s |x S ), (2) 
i.e. x is an MT and p(y S |x S ) = ∏ s∈S p(y s |x S ). HMT have been extended to Pairwise Markov Trees (PMT) (see [START_REF] Pieczynski | Arbres de Markov Couple -Pairwise Markov Trees[END_REF] and [START_REF] Desbouvries | Kalman Filtering in pairwise Markov trees[END_REF]) defined by:

p(z S ) = p(z r ) ∏ s∈S \S 1 p(z s |z s -),
in which z s = (x s , y s ) and z S = (x S , y S ). Any HMT is a PMT, but the converse is not true, since in a PMT, x S is not necessarily an MT.

We now introduce a third latent process r S taking its values in a finite set Ω = {ω 1 , ..., ω t } which can monitor for example the change of characteristics of the model. We will say that (x S , r S , y S ) is a Triplet Markov Tree (TMT) if it is an MT. Bayesian restoration of a hidden variable x s from (some of the) observed variables {y s } is in general a difficult problem. For instance, as is well known (see [START_REF] Tugnait | Adaptive estimation and identification for discrete systems with Markov jump parameters[END_REF]) Bayesian inference in Jump-Markov State-Space (JMSS) systems is an NP-hard problem. JMSS systems are conditionally linear and Gaussian dynamic systems, defined as:

x n+1 = F n (r n )x n + G n (r n )u n y n = H n (r n )x n + v n
in which r n is a Markov Chain, and {u n } n∈{1,...,N} and {v n } n∈{1,...,N} are independent and mutually independent zero-mean random vectors, and independent from {r n } n∈{1,...,N} and x 0 . Such a model is a particular Triplet Markov Chain (x n , r n , y n ), and thus a particular Triplet Markov Tree (TMT) (x s , r s , y s ) (a tree reduces to a chain if each node has exactly one child).

On the other hand, in most situations we are indeed more interested by some moment E[g(x k )|y 1:n ] than by pdf p(x k |y 1:n ) itself. In particular, the conditional expectation E[x k |y 1:n ] is of particular interest since it is the solution to the Bayesian estimation problem with quadratic loss.

The aim of this paper is to show that for some particular TMT Bayesian filtering (see section 2) and prediction (see section 3) can be performed with complexity linear in time index. x s (resp. y s ) takes its values in R q (resp. R m ) and r s takes its values in Ω = {ω 1 , ..., ω t }.

We consider the following particular TMT model(see Fig. 2):

(R S ,Y S ) is a Markov Tree;

(3)

X s = F s -(R s -,Y s -)X s -+U s -; ( 4 
)
where {U s } s∈S are independent zero-mean random vectors, such that for each s ∈ S, U s is independent from (R S ,Y S ) and from X r . Note that in (4) vectors U s are not necessarily Gaussian. In this section we aim at computing E[X s |Y a(s) = y a(s) ] and Cov(X s |Y a(s) = y a(s) ) for any s ∈ S.

Notation

For each p ∈ S and s ∈ S let us first set:

M p (r p , y a(s) ) = R q
x p p(x p , r p |y a(s) )dx p (5)

If the covariance matrix Σ p of U p exists for all p, let us set:

V p (r p , y a(s) ) = R q x p x p T p(x p , r p |y a(s) )dx p (6)
Of course, E[X s |Y a(s) = y a(s) ] and Cov(X s |Y a(s) = y a(s) ) can be computed from M s (r s , y a(s) ) and V s (r s , y a(s) ) as:

E[X s |Y a(s) = y a(s) ] = ∑ r s M s (r s , y a(s) ) and Cov(X s |Y a(s) = y a(s) ) = ∑ r s V s (r s , y a(s) ) -( ∑ r s M s (r s , y a(s) ))( ∑ r s M s (r s , y a(s) )) T .
In the following we thus focus on the computation of M s (r s , y a(s) ) and V s (r s , y a(s) ).

Proposition

Let (X S , R S ,Y S ) satisfy ( 3)-( 4), with given transition p(r s , y s |r s -, y s -). Then M s (r s , y a(s) ) can be recursively computed with linear complexity in time by the following way:

M s (r s , y a(s) ) = 1 p(y s |y a(s -) ) ∑ r s - p(r s , y s |r s -, y s -)F s -(r s -, y s -)M s -(r s -, y a(s -) ) (7) 
with

p(y s |y a(s -) ) = p(y a(s) ) p(y a(s -) ) = ∑ r s p(r s , y a(s) ) ∑ r s -p(r s -, y a(s -) ) and p(r s , y a(s) ) = ∑ r s - p(r s -, y a(s -) )p(r s , y s |r s -, y s -)
Furthermore if the covariance matrix Σ s of U s exists for all s ∈ S it is possible to compute V s (r s , y a(s) ) as:

V s (r s , y a(s) ) = 1 p(y s |y a(s -) ) ∑ r s - p(r s , y s |r s -, y s -)[F s -(r s -, y s -)V s -(r s -, y a(s -) )F s -(r s -, y s -) T +Σ s -]
(8) Proof By using the Bayes formula, the fact that (X S ,Y S , R S ) is a Markov Tree and the model (3)-(4) we have:

p(x s , r s |y a(s) ) = ∑ r s - p(x s , r s , x s -, r s -|y a(s -) , y s )dx s - = 1 p(y s |y a(s -) ) ∑ r s - p(x s , r s , x s -, r s -, y s |y a(s -) )dx s - = 1 p(y s |y a(s -) ) ∑ r s - p(x s -, r s -|y a(s -) )p(r s , y s |r s -, y s -)p(x s |x s -, r s -, y s -)dx s - (9) 
We next multiply (9) by x s and integrate with respect to x s . Since {U s } are independent, zero-mean and independent from (R S ,Y S ):

M s (r s , y a(s) ) = 1 p(y s |y a(s -) ) ∑ r s - p(x s -, r s -|y a(s -) )p(r s , y s |r s -, y s -)F s -(r s -, y s -)x s -dx s - Finally: M s (r s , y a(s) ) = 1 p(y s |y a(s -) ) ∑ r s - p(r s , y s |r s -, y s -)F s -(r s -, y s -) x s -p(x s -, r s -|y a(s -) )dx s - = 1 p(y s |y a(s -) ) ∑ r s - p(r s , y s |r s -, y s -)F s -(r s -, y s -)M s -(r s -, y a(s -) )
which brings us to the end of the proof. ( 8) is obtained similarly.

EXACT PREDICTION IN SWITCHING-MARKOV TREES

We consider the following particular TMT:

R S is a Markov Tree; (10) (R S ,Y S ) is a Markov Tree; (11) X s = F s -(R s -)X s -+W s -; (12) 
where {W s } s∈S are independent zero-mean random vectors, such that for each s ∈ S, W s is independent from (R S ,Y S ) and from X r . Note that in (12) (as in ( 4)) vectors W s are not necessarily Gaussian.

In this section we aim at computing E[x p |y a(s) ] and Cov(x p |y a(s) ) for any s ∈ S and p ∈ s ++ . As above we focus on the computation of M p (r p , y a(s) ) and V p (r p , y a(s) ), defined in ( 5) and (6).

Proposition

Let (X S , R S ,Y S ) satisfy ( 10)-( 12), with given transition p(r s , y s |r s -, y s -). Then M p (r p , y a(s) ) can be recursively computed with linear complexity in time by the following scheme:

• Compute M s (r s , y a(s) ) with the algorithm presented in the last section;

• For each p ∈ s ++ compute M p (r p , y a(s) ) = ∑ r p - p(r p |r p -)F p -(r p -)M p -(r p -, y a(s) ). (13) 
Furthermore if the covariance matrix Σ s of W s exists for all s ∈ S it is possible to compute V p (r p , y a(s) ) as follows:

• Compute V s (r s , y a(s) ) with the algorithm presented in the last section; 

Then from ( 10) and ( 12), p(x p |r p , x p -, r p -, y a(s) ) reduces to p(x p |x p -, r p -) and p(r p |x p -, r p -, y a(s) ) reduces to p(r p |r p -). We next multiply (15) by x p and integrate with respect to x p to get (13). ( 14) is obtained similarly.
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 2 Figure 2. Switch-Markov Tree, with y * = (r, y)
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