Exact Bayesian smoothing in triplet switching Markov chains
 Wojciech Pieczynski, François Desbouvries

- To cite this version:

Wojciech Pieczynski, François Desbouvries. Exact Bayesian smoothing in triplet switching Markov chains. S. Co. 2009: Complex Data Modeling and Computationally Intensive Statistical Methods for Estimation and Prediction, Sep 2009, Milan, Italy. hal-01365911

HAL Id: hal-01365911
https://hal.science/hal-01365911
Submitted on 13 Sep 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Exact BayEsian smoothing in TRiplet SWITCHING MARKOV CHAINS

Wojciech Pieczynski and François Desbouvries

Telecom SudParis / CITI department and CNRS UMR 5157
9, rue Charles Fourier, 91011 Evry, France
(e-mail: wojciech.pieczynski,francois.desbouvries@it-sudparis.eu)

Abstract

Bayesian smoothing in conditionally linear Gaussian models, also called jump-Markov state-space systems, is an NP-hard problem. As a result, a number of approximate methods - either deterministic or Monte Carlo based- have been developed. In this paper we address the Bayesian smoothing problem in another triplet Markov chain model, in which the switching process R is not necessarily Markovian and the additive noises do not need to be Gaussian. We show that in this model the smoothing posterior mean and covariance matrix can be computed exactly with complexity linear in time.

1 Introduction

Let $X_{1: N}=\left(X_{1}, \cdots, X_{N}\right)$ be a hidden random sequence with values in $\mathbb{R}^{q}, Y_{1: N}=\left(Y_{1}, \cdots, Y_{N}\right)$ an observed random sequence with values in \mathbb{R}^{m}. One often says that " $X_{1: N}$ is only observed through $Y_{1: N}$ " or that " $Y_{1: N}$ is a noisy version of $X_{1: N}$. According to the latter viewpoint, the distribution $p\left(y_{1: N} \mid x_{1: N}\right)$ of $y_{1: N}$ conditional on $x_{1: N}$ is sometimes called the "noise distribution". Let also $R_{1: N}=\left(R_{1}, \cdots, R_{N}\right)$ be an unobserved discrete random sequence with values in a finite set $S=\{1, \cdots, s\}$ which models the random changes of regime - or switches of the distribution of $\left(X_{n}, Y_{n}\right)$. The three chains are linked via some probability distribution $p\left(x_{1: N}, r_{1: N}, y_{1: N}\right)$, which should be designed in such a way that physical situations of interest are rather well fitted, and on the other hand estimating the couple ($x_{1: N}, r_{1: N}$) (or only the sequence $x_{1: N}$) from the observed sequence $y_{1: N}$ is computationally feasible. More precisely, the particular Bayesian smoothing problem which we address here consists in computing, for each $N=1,2, \cdots$ and each $n, 1 \leq n \leq N$, the conditional expectation $E\left(X_{n} \mid Y_{1: N}=y_{1: N}\right)$ (or, in short, $E\left(X_{n} \mid y_{1: N}\right)$) and associated conditional covariance matrix $\operatorname{Cov}\left(X_{n} \mid Y_{1: N}=y_{1: N}\right)$ (also denoted by $\operatorname{Cov}\left(X_{n} \mid y_{1: N}\right)$). The contribution of this paper consists in showing that $E\left(X_{n} \mid y_{1: N}\right)$ and $\operatorname{Cov}\left(X_{n} \mid y_{1: N}\right)$ can be computed exactly, with complexity linear in time, in the recent model proposed in Pieczynski (2009).

2 MARKOV MARGINAL SWITCHING HIDDEN MODEL (MMSHM)

Let us first consider the classical conditionally linear Gaussian model, also called jumpMarkov state-space system, which consists in considering that $R_{1: N}$ is a Markov chain and,
roughly speaking, that conditionally on $R_{1: N}$, the couple $\left(X_{1: N}, Y_{1: N}\right)$ is the classical Gaussian dynamic linear system. This is summarized in the following :

$$
\begin{align*}
R_{1: N} & \text { is a Markov chain } \tag{1}\\
X_{n+1} & =F_{n}\left(R_{n}\right) X_{n}+W_{n} \tag{2}\\
Y_{n} & =H_{n}\left(R_{n}\right) X_{n}+Z_{n} \tag{3}
\end{align*}
$$

where matrices $F_{n}\left(R_{n}\right)$ and $H_{n}\left(R_{n}\right)$ depend on $R_{n}, W_{1}, \cdots, W_{N}$ are Gaussian vectors in \mathbb{R}^{q}, Z_{1}, \cdots, Z_{N} are Gaussian vectors in \mathbb{R}^{m}, and $X_{1}, W_{1}, \cdots, W_{N}, Z_{1}, \cdots, Z_{N}$ are independent. Let us notice that variables W_{n} and Z_{n} can also depend on R_{n}; however, we will keep model (1)-(3) for sake of simplicity. For fixed $R_{1}=r_{1}, \cdots, R_{n}=r_{n}, E\left(X_{n} \mid y_{1: N}\right)$ can be computed by classical Kalman-like smoothing methods (see e.g. Ait-el-Fquih and Desbouvries (2008) and references therein). However, it has been well known since Tugnait (1982) that exact computation is no longer possible with random Markov $R_{1: N}$ and different approximations must be used, see e.g. Andrieu et al. (2003), Cappé et al. (2005), Costa et al. (2005), Giordani et al. (2007), Ristic et al. (2004), Zoeter and Heskes (2006). To remedy this, different models have been recently proposed in Pieczynski (2009). The core novelty of these models with respect to the classical one (1)-(3) is that the couple ($\left.R_{1: N}, Y_{1: N}\right)$ is Markovian, which in turn ensures that one can compute $p\left(y_{n+1} \mid y_{1: n}\right)$. This is a key computational point because the impossibility of filtering and smoothing in model (1)-(3) comes from the fact that $p\left(y_{n+1} \mid y_{1: n}\right)$ cannot be computed exactly (see Andrieu et al. (2003), Tugnait (1982)). Let us thus consider the following model, first introduced in Pieczynski (2009) :

Definition

The triplet ($X_{1: N}, R_{1: N}, Y_{1: N}$) will be called a "Markov marginal switching hidden model" (MMSHM) if:

$$
\begin{align*}
\left(R_{1: N}, Y_{1: N}\right) & \text { is a Markov chain; } \tag{4}\\
X_{n+1} & =F_{n}\left(R_{n}, Y_{n}\right) X_{n}+W_{n} \tag{5}
\end{align*}
$$

where matrix $F_{n}\left(R_{n}, Y_{n}\right)$ depends on $\left(R_{n}, Y_{n}\right), W_{1}, \cdots, W_{n}$ are independent zero-mean random vectors in \mathbb{R}^{q} such that W_{n} is independent from $\left(R_{1: N}, Y_{1: N}\right)$ for each $n, 1 \leq n \leq N$. Note that variables W_{1}, \cdots, W_{n} are not necessarily Gaussian and do not necessarily have a covariance matrix. This model is an extension of the early model proposed in Pieczynski (2008).

In (4) the chain $R_{1: N}$ does not need to be Markovian, which is the reason why we call (4)(5) a "Markov marginal switching" model and not a "Markov switching" model. As studied in Derrode and Pieczynski (2004), such a Markov chain $\left(R_{1: N}, Y_{1: N}\right)$ can be much more complex, and much more efficient in unsupervised hidden discrete data segmentation, than the classical hidden Markov chain (HMC), in which $R_{1: N}$ is Markovian. Theoretical results specifying under which conditions on a Markov chain $\left(R_{1: N}, Y_{1: N}\right)$ the chain $R_{1: N}$ is Markovian can be found in Pieczynski (2007).

Finally, in the classical Markov switching model (1)-(3) $R_{1: N}$ is Markovian and ($R_{1: N}, Y_{1: N}$) is not, while in the MMSHM (4)-(5) ($\left.X_{1: N}, R_{1: N}\right)$ is not necessarily Markovian but ($R_{1: N}, Y_{1: N}$) is. From a modeling point of view, it does not seem to appear clearly why any of these properties should fit real situations better than the other; however, from a computational point of
view the possibility of exact calculations is a clear advantage of the MMSHM model over the classical Markov-switching model : as we now see, in (4)-(5) $E\left(X_{n} \mid y_{1: N}\right)$ and $\operatorname{Cov}\left(X_{n} \mid y_{1: N}\right)$ can be computed exactly with a computational cost linear in the time index N.

3 Exact Bayesian smoothing in MMSHM

Let us consider an MMSHM $\left(X_{1: N}, Y_{1: N}, R_{1: N}\right)$. Let us set, for $1 \leq n \leq N-1$:

$$
\begin{align*}
E\left(X_{n+1}, r_{n} \mid y_{1: N}\right) & =E\left(X_{n+1} \mid r_{n}, y_{1: N}\right) p\left(r_{n} \mid y_{1: N}\right) \tag{6}\\
E\left(X_{n+1} X_{n+1}^{T}, r_{n} \mid y_{1: N}\right) & =E\left(X_{n+1} X_{n+1}^{T} \mid r_{n}, y_{1: N}\right) p\left(r_{n} \mid y_{1: N}\right) \tag{7}
\end{align*}
$$

Of course, we have

$$
\begin{align*}
E\left(X_{n+1} \mid y_{1: N}\right) & =\sum_{r_{n}} E\left(X_{n+1}, r_{n} \mid y_{1: N}\right) \tag{8}\\
\operatorname{Cov}\left(X_{n+1} \mid y_{1: N}\right) & =\sum_{r_{n}} E\left(X_{n+1} X_{n+1}^{T}, r_{n} \mid y_{1: N}\right)-E\left(X_{n+1} \mid y_{1: N}\right) E\left(X_{n+1} \mid y_{1: N}\right)^{T}, \tag{9}
\end{align*}
$$

and thus it is sufficient to compute $E\left(X_{n+1}, r_{n} \mid y_{1: N}\right)$ and $E\left(X_{n+1} X_{n+1}^{T}, r_{n} \mid y_{1: N}\right)$. In the following proposition we show that $E\left(X_{n+1}, r_{n} \mid y_{1: N}\right)$ and $E\left(X_{n+1} X_{n+1}^{T}, r_{n} \mid y_{1: N}\right)$ can be computed with complexity linear in time :

Proposition 1.

Let $\left(X_{1: N}, Y_{1: N}, R_{1: N}\right)$ be an MMSHM with given transitions $p\left(r_{n+1}, y_{n+1} \mid r_{n}, y_{n}\right)$. Then $E\left(X_{n+1}, r_{n} \mid y_{1: N}\right)$ can be computed with linear complexity in time index N in the following way:

- Compute $p\left(r_{1} \mid y_{1: N}\right)$ and $p\left(r_{n} \mid r_{n-1}, y_{1: N}\right)$ for $2 \leq n \leq N$ as

$$
\begin{equation*}
p\left(r_{1} \mid y_{1: N}\right)=\frac{\beta_{1}\left(r_{1}\right)}{\sum_{r_{1}} \beta_{1}\left(r_{1}\right)}, p\left(r_{n} \mid r_{n-1}, y_{1: N}\right)=\frac{\beta_{n}\left(r_{n}\right)}{\beta_{n-1}\left(r_{n-1}\right)} \tag{10}
\end{equation*}
$$

where $\beta_{n}\left(r_{n}\right)$ are computed by the backward recursions

$$
\begin{equation*}
\beta_{N}\left(r_{N}\right)=1, \beta_{n-1}\left(r_{n-1}\right)=\sum_{r_{n}} p\left(r_{n}, y_{n} \mid r_{n-1}, y_{n-1}\right) \beta_{n}\left(r_{n}\right) \tag{11}
\end{equation*}
$$

- For $2 \leq n \leq N$, compute $p\left(r_{n} \mid y_{1: N}\right)$ by the forward recursion

$$
\begin{equation*}
p\left(r_{n+1} \mid y_{1: N}\right)=\sum_{r_{n}} p\left(r_{n} \mid y_{1: N}\right) p\left(r_{n+1} \mid r_{n}, y_{1: N}\right) \tag{12}
\end{equation*}
$$

- Compute $E\left(X_{n+1}, r_{n} \mid y_{1: N}\right)$ from $E\left(X_{n}, r_{n-1} \mid y_{1: N}\right)$ by the recursion :

$$
\begin{equation*}
E\left(X_{n+1}, r_{n} \mid y_{1: N}\right)=F_{n}\left(r_{n}, y_{n}\right) \sum_{r_{n-1}} E\left(X_{n}, r_{n-1} \mid y_{1: N}\right) p\left(r_{n} \mid r_{n-1}, y_{n-1: N}\right) \tag{13}
\end{equation*}
$$

If, in addition, the covariance matrices $\Sigma_{1}, \cdots, \Sigma_{N}$ of W_{1}, \cdots, W_{N} exist, then $E\left(X_{n+1} X_{n+1}^{T}, r_{n} \mid y_{1: N}\right)$ satisfies

$$
\begin{align*}
E\left(X_{n+1} X_{n+1}^{T}, r_{n} \mid y_{1: N}\right) & =F_{n}\left(r_{n}, y_{n}\right)\left[\sum_{r_{n-1}} E\left(X_{n} X_{n}^{T}, r_{n-1} \mid y_{1: N}\right) p\left(r_{n} \mid r_{n-1}, y_{n-1: N}\right)\right] F_{n}^{T}\left(r_{n}, y_{n}\right) \\
& +\Sigma_{n} p\left(r_{n} \mid y_{1: N}\right) \tag{14}
\end{align*}
$$

and thus $\operatorname{Cov}\left(X_{n+1} \mid y_{1: N}\right)$ can also be computed with linear complexity in time index N.

Proof.

(10)-(12) extend from hidden to Pairwise Markov chains $\left(R_{1: N}, Y_{1: N}\right)$ (Derrode and Pieczynski (2004), Pieczynski (2007)) the classical calculations (Baum and Petrie (1966), Baum and Eagon (1967)). We now address (13). By assumption, $X_{n+1}=F_{n}\left(R_{n}, Y_{n}\right) X_{n}+W_{n}$. Since W_{n} and $\left(R_{n}, Y_{1: N}\right)$ are independent, and W_{n} is zero-mean, we have

$$
\begin{align*}
E\left(X_{n+1} \mid r_{n}, y_{1: N}\right) & =F_{n}\left(r_{n}, y_{n}\right) E\left(X_{n} \mid r_{n}, y_{1: N}\right) \\
& =F_{n}\left(r_{n}, y_{n}\right) \sum_{r_{n-1}} E\left(X_{n} \mid r_{n-1}, r_{n}, y_{1: N}\right) p\left(r_{n-1} \mid r_{n}, y_{1: N}\right) \tag{15}
\end{align*}
$$

On the other hand, from model (4)-(5) $E\left(X_{n} \mid r_{n-1}, r_{n}, y_{1: N}\right)=E\left(X_{n} \mid r_{n-1}, y_{1: N}\right)$, and thus

$$
\begin{equation*}
E\left(X_{n+1} \mid r_{n}, y_{1: N}\right)=F_{n}\left(r_{n}, y_{n}\right) \sum_{r_{n-1}} E\left(X_{n} \mid r_{n-1}, y_{1: N}\right) p\left(r_{n-1} \mid r_{n}, y_{1: N}\right) \tag{16}
\end{equation*}
$$

Multiplying both sides by $p\left(r_{n} \mid y_{1: N}\right)$ gives (13). Equation (14) is shown similarly : the independence of W_{1}, \cdots, W_{N} implies that X_{n} and W_{n} are independent conditionally on ($R_{1: N}, Y_{1: N}$), so (5) gives

$$
\begin{align*}
E\left(X_{n+1} X_{n+1}^{T} \mid r_{n}, y_{1: N}\right) & =F_{n}\left(r_{n}, y_{n}\right) E\left(X_{n} X_{n}^{T} \mid r_{n}, y_{1: N}\right) F_{n}^{T}\left(r_{n}, y_{n}\right)+E\left(W_{n} W_{n}^{T} \mid r_{n}, y_{1: N}\right) \\
& =F_{n}\left(r_{n}, y_{n}\right) E\left(X_{n} X_{n}^{T} \mid r_{n}, y_{1: N}\right) F_{n}^{T}\left(r_{n}, y_{n}\right)+\Sigma_{n} \tag{17}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
E\left(X_{n} X_{n}^{T} \mid r_{n}, y_{1: N}\right) & =\sum_{r_{n-1}} E\left(X_{n} X_{n}^{T}, r_{n-1} \mid r_{n}, y_{1: N}\right) \\
& =\sum_{r_{n-1}} E\left(X_{n} X_{n}^{T} \mid r_{n-1}, y_{1: N}\right) p\left(r_{n-1} \mid r_{n}, y_{1: N}\right)
\end{aligned}
$$

Injecting into (17) and multiplying by $p\left(r_{n} \mid y_{1: N}\right)$ gives (14), which ends the proof.

Remarks.

- As far as estimating X_{n+1} (and not R_{n+1}) is concerned, our method enables us to compute $E\left(X_{n+1} \mid y_{1: N}\right)$ and $\operatorname{Cov}\left(X_{n+1} \mid y_{1: N}\right)$, but not the distribution $p\left(x_{n+1} \mid y_{1: N}\right)$, which indeed is a very rich mixture distribution. We thus solve the Bayesian smoothing problem for the loss function $L\left(x^{1}, x^{2}\right)=\left\|x^{1}-x^{2}\right\|^{2}$ only. Note however that this problem remains of interest, and indeed the quadratic loss function is used in many applications;
- Let now the problem consist in estimating simultaneously X_{n+1} and R_{n+1}. Then our method enables us to compute the exact Bayesian solution associated to the family of loss functions

$$
\begin{equation*}
L\left(\left(x^{1}, r^{1}\right),\left(x^{2}, r^{2}\right)\right)=\left\|x^{1}-x^{2}\right\|^{2} L^{\prime}\left(r^{1}, r^{2}\right) \tag{18}
\end{equation*}
$$

in which L^{\prime} is arbitrary. To see this, let us notice that for a given $y_{1: N}$, the Bayesian estimator $\left(\hat{x}_{n}, \hat{r}_{n}\right)$ associates to $y_{1: N}$ the couple $\left(\hat{x}_{n}, \hat{r}_{n}\right)$ which minimizes the function :

$$
\left(x_{n}, r_{n}\right) \mapsto \sum_{r_{n}^{\prime}} \int_{\mathbb{R} q} L\left(\left(x_{n}, r_{n}\right),\left(x_{n}^{\prime}, r_{n}^{\prime}\right)\right) p\left(x_{n}^{\prime}, r_{n}^{\prime} \mid y_{1: N}\right) d x_{n}^{\prime}
$$

Given (18), the couple (\hat{x}_{n}, \hat{r}_{n}) minimizes

$$
\left(x_{n}, r_{n}\right) \mapsto \int_{\mathbb{R}^{q}}\left\|x_{n}-x_{n}^{\prime}\right\|^{2}\left[\sum_{r_{n}^{\prime}} L^{\prime}\left(r_{n}, r_{n}^{\prime}\right) p\left(r_{n}^{\prime} \mid y_{1: N}\right) p\left(x_{n}^{\prime} \mid r_{n}^{\prime}, y_{1: N}\right)\right] d x_{n}^{\prime}
$$

For fixed r_{n}, the minimum of this function is reached for

$$
\begin{equation*}
\hat{x}_{n}\left(r_{n}\right)=\sum_{r_{n}^{\prime}} \frac{L^{\prime}\left(r_{n}, r_{n}^{\prime}\right) p\left(r_{n}^{\prime} \mid y_{1: N}\right)}{\sum_{r_{n}^{\prime}} L^{\prime}\left(r_{n}, r_{n}^{\prime}\right) p\left(r_{n}^{\prime} \mid y_{1: N}\right)} E\left(X_{n} \mid r_{n}^{\prime}, y_{1: N}\right) \tag{19}
\end{equation*}
$$

which can be computed because $p\left(r_{n} \mid y_{1: N}\right)$ and $E\left(X_{n} \mid r_{n}^{\prime}, y_{1: N}\right)$ can both be computed in (4)-(5). Thus we can first search \hat{r}_{n} which minimizes $r_{n} \mapsto \hat{x}_{n}\left(r_{n}\right)$ in (19), and finally set $\hat{x}_{n}=E\left(X_{n} \mid \hat{r}_{n}, y_{1: N}\right)$.
Let us finally remark that in case we are only interested in the Bayesian estimation of R_{n+1}, then the arbitrary loss function $L^{\prime}\left(r^{1}, r^{2}\right)$ in (19) leads to the solution \hat{r}_{n}^{*} which minimizes the function $r_{n} \mapsto \sum_{r_{n}^{\prime}} L^{\prime}\left(r_{n}, r_{n}^{\prime}\right) p\left(r_{n}^{\prime} \mid y_{1: N}\right)$, and thus \hat{r}_{n}^{*} differs from \hat{r}_{n}.

REFERENCES

AIT-EL-FQUIH, B., DESBOUVRIES, F. (2008): On Bayesian Fixed-Interval Smoothing Algorithms. IEEE Transactions on Automatic Control, 53-10, 2437-42.
ANDRIEU, C., DAVY, C. M., DOUCET, A. (2003): Efficient particle filtering for jump Markov systems. Application to time-varying autoregressions. IEEE Trans. on Signal Processing, 51(7), 1762-1770.
BAUM, L. E., PETRIE, T. (1966): Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat., 37, 1554-63.
BAUM, L. E., EAGON, J. A. (1967): An inequality with applications to statistical estimation for probabilistic functions of a Markov process and to a model for ecology. Bull. Amer. Meteorol. Soc., 73, 360-63.
CAPPÉ, O., MOULINES, E., RYDEN, T. (2005): Inference in hidden Markov models. Springer, New York.
COSTA, O. L. V., FRAGOSO, M. D., MARQUES, R. P. (2005) Discrete time Markov jump linear systems. Springer-Verlag, New York.
DERRODE, S., PIECZYNSKI, W. (2004) Signal and Image Segmentation using Pairwise Markov Chains. IEEE Transactions on Signal Processing, 52(9), 2477-2489.

GIRDANI., P., KOHN, R., Van DIJK, D. (2007): A unified approach to nonlinearity, structural change, and outliers. Journal of Econometrics, 137, 112-133.
PIECZYNSKI, W. (2007) Multisensor triplet Markov chains and theory of evidence. International Journal of Approximate Reasoning, 45(1), 1-16.
PIECZYNSKI, W. (2008). Exact calculation of optimal filter in semi-Markov switching model. Fourth World Conference of the International Association for Statistical Computing (IASC 2008), December 5-8, Yokohama, Japan.
PIECZYNSKI, W. (2009). Exact filtering in Markov marginal switching hidden models. submitted to Comptes Rendus de l'Académie des Sciences - Mathematiques.
PIECZYNSKI, W., DESBOUVRIES, F. (2003): Kalman filtering using pairwise Gaussian models International Conference on Acoustics, Speech and Signal Processing (ICASSP 2003), Hong-Kong, April.
RISTIC, B, ARULAMPALAM, S., GORDON, N. (2004): Beyond the Kalman Filter - Particle filters for tracking applications. Artech House, Boston, MA.
TUGNAIT, J. K. (1982) : Adaptive estimation and identification for discrete systems with Markov jump parameters. IEEE Transactions on Automatic Control, AC-25, 1054-1065.
ZOETER, O., HESKES, T. (2006): Deterministic approximate inference techniques for conditionally Gaussian state space models. Statistical Computation, 16, 279-292.

