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Improving mesoscale altimetric resolution/data in
the Mediterranean Sea: multi-tracer convolutional
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Abstract—Multi-satellite measurements of altimeter-derived
Sea Surface Height (SSH) have provided a wealth of information
on the ocean. Yet, horizontal scales below 100km remain scarcely
resolved. Especially, in the Mediterranean Sea, an important
fraction of the mesoscale range, characterized by a small Rossby
radius of deformation of 15-20 km, is not properly retrieved
by altimeter-derived gridded products. Here, we investigate a
novel retreatment of AVISO products with a view to resolving
the horizontal scales sensed by current along-track altimeter
data. The key feature of our framework is the use of linear
convolutional operators to model the fine-scale Sea Surface
Height (SSH) detail as a function of different sea surface
fields, especially optimally-interpolated SSH and Sea Surface
Temperature (SST). The proposed model embeds the Surface
Quasi-Geostrophic SST-SSH synergy as a special case. Using
an observing system simulation experiment with simulated SSH
data from model outputs in the Western Mediterranean Sea, we
show that the proposed approach has the potential for improving
current optimal interpolations of L4 altimeter-derived SSH fields
by more than 20% in terms of relative SSH and kinetic energy
mean square error, as well as in terms of spectral signatures
for horizontal scales ranging from 30km to 100km. Our results
also suggest that SST-SSH relationship may only play a secondary
role compared to the inter-scale SSH cascade. We further discuss
the relevance of the proposed approach in the context of future
altimetric satellite missions.

Index Terms—Sea Surface Height, altimeter-derived data, Sea
Surface Temperature, convolutional models, super-resolution,
OSSE, western Mediterranean Sea

I. INTRODUCTION AND RELATED WORK

In the last two decades, multi-satellite measurements of
altimeter-derived Sea Surface Height (SSH) and multisensor
measurements of Sea Surface Temperature (SST) have pro-
vided a wealth of information on ocean circulations [2, 5]. As
a depth-integrated quantity dependent upon the density struc-
ture of the water column, altimeter-derived SSH estimations
capture mesoscale structures for horizontal scales of a few
tens of kilometers to a few hundreds kilometers, and deliver
an estimation of surface currents using the geostrophy balance.
Yet, horizontal scales below 100km remain scarcely resolved.
Especially, in the Mediterranean Sea, an important fraction
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of mesoscale range, characterized by a small Rossby radius
of deformation, 15-20 km a factor of 2-4 less than in the
Global Ocean [21, 17]. This scale range, which plays a major
role both in the general ocean circulation through Eddy-Mean
interactions as well as for ocean biogeochemistry and biology
[4, 22], is not revealed by altimeter-derived L4 products, which
rely on optimal interpolation of along-track altimeter data
[20, 19]. Note that this is even more true for the smaller scales
know as submesoscales whose role on ocean dynamics and
ocean biogeochemistry is more and more recognized and that
might be accessed with the future altimetric sensors e.g. [27].

The needs to properly access the mesoscales, and more
generally the oceanic small scales, have motivated a number
of studies dedicated to the reconstruction of higher-resolution
SSH fields using other strategies and multi-platform studies
[3, 18]. In this respect, several studies [10, 13, 14] rationalize
and demonstrate that SST fields can become an active tracer
leading to strong correlations with SSH fields. In particu-
lar, SQG (Surface Quasi-Geostrophic) transfer functions and
further linear extensions [9, 11, 7, 26] were investigated
to predict high-resolution SSH fields from SST snapshots.
Other studies have investigated other tracers, such as finite-
size Lyapunov exponents [6] and local singularity exponents
[24], to reconstruction the fine-scale details of the SSH fields,
under the assumption that these tracer fields and the SSH field
should share similar fine-scale geometrical patterns based on
fine-scale eddy dynamics considerations. These studies mostly
rely on an a priori assumption on the relationship between
the unobserved high-resolution SSH and some observed sea
surface tracers (e.g., SST, FSLE), whereas recent works show
that upper ocean dynamics involve space-and-time-varying
relationships [11, 15]. Besides, they also mostly exploit the
joint analysis of L4 gridded sea surface fields and do not
explore the potential of along-track altimeter datasets, which
embed relevant high-resolution along-track information.

In this study, we investigate the synergy between along-track
altimeter data and L4 gridded sea surface fields with a view
to reconstructing high-resolution SSH fields. Our contributions
are two-fold:
• we first introduce a multi-tracer model to relate the high-

resolution SSH to observed sea surface tracers through
convolutional operators along with the calibration of these
operators from along-track altimeter data;

• Second, using an observing system simulation experiment
(OSSE), we show for a case-study region in the western
Mediterranean Sea that a convolution model combining
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optimal-interpolation-derived L4 SSH fields and high-
resolution SST fields can contribute to a significant
improvement of the estimation of the SSH mesoscale
variability for horizontal scales from 30km to 100km,
including spectral features.

This paper is organized as follows. Section II describes the
proposed model for the improvement of mesoscale altimetric
data. Section III presents the considered OSSE and the asso-
ciated results. We further discuss our key contributions and
future work in Section IV.

II. PROPOSED APPROACH

A. Problem statement

As stated in the introduction, our goal is to reconstruct high-
resolution SSH field from a joint analysis of L4 altimeter-
derived SSHs field, along-track altimeter datasets and high-
resolution SST fields. With a view to formally describing our
model, we introduce the following notations:
• SSH refers to the high-resolution SSH field to be recon-

structed at a given reference date t0. We drop the time
index for all fields for the sake of simplicity;

• {tAT (k), sAT (k), SSHAT (k)}k refers to a dataset of
along-track data {SSHAT (k)} sampled by narrow-swath
altimeters at times {tAT (k)} around reference date t0
and positions {sAT (k)}. The spatial sampling rate of
the along-track data defines the lower bound of the
considered fine-scale range ( 30km);

• SSHLR refers to a low-resolution reconstruction
of the SSH field. It typically amounts to an
optimal interpolation of along-track altimeter data
{tAT (k), sAT (k), SSHAT (k)}k [20];

• SST refers to a high-resolution SST field, typically a
1km-to-5km spatial resolution.

Here, we aim at reconstructing field SSH given
fields SSHLR and SST and along-track dataset
{tAT (k), sAT (k), SSHAT (k)}k. Formally, we consider
the following additive model:

SSH = SSHLR +H (SSHLR, SST ) +N (1)

where H is a transfer function, which states the contribution of
the low-resolution SSH and the high-resolution SST to the re-
construction of the fine-scale component of the high-resolution
SSH field. N is regarded as a noise process accounting for
unresolved scales. Hereafter, we refer to SSH−SSHLR as the
high-resolution SSH detail, denoted by dSSH . Along-track
dataset {tAT (k), sAT (k), SSHAT (k)}k can be regarded as a
set of observations of model (1).

B. Convolution-based multi-tracer model

In this study, we state model (1) according to linear convo-
lution operators:

SSH = SSHLR +H1 ∗ SSHLR +H2 ∗ SST +N (2)

where H1 (resp. H2) states the contribution of the low-
resolution SSH field (resp. the high-resolution SST field) to
the reconstruction of the SSH detail. It may be noted that

SGQ dynamics [13, 9] may be regarded as a special case of
(2), where the convolutional operators are parameterized as
H1 = 0 and H2 = ∆−1/2 (a fractional Laplacian filter).

The above model relates to patch-based super-resolution
image models [28, 8, 25]. It involves two main differences.
First, it combines both a low-resolution observation and an
additional high-resolution source (here, the SST field). Second,
as detailed below, here we are provided for each data with a set
of high-resolution sample points, through along-track altimeter
data. No such data is available in the classical image super-
resolution and the model is trained offline from a dataset of
high-resolution images. Given the expected time variability of
operators H1,2, we favor here local estimation robustness to
model complexity.

Convolutional operators may be represented in the Fourier
domain, as in the case of the fractional Laplacian operator
associated with SQG dynamics [13, 9]. Convolution operators
may also be represented by their impulse response, which
resorts to a convolution matrix when considering gridded data.
This matricial representation in the spatial domain appears
more adapted to deal with the sampling geometry of sea
surface fields, especially regarding the presence of land areas
(coastal areas, islands) and the irregular sampling of along-
track altimeter data. Hence, operators H1,2 are characterized
by their spatial support (2 ∗K + 1)× (2 ∗K + 1). Here, for a
grid resolution of 1/20◦, parameter K typically range from 1
to 4. Given parameter K, three types of parameterizations of
convolution operators H1,2 may be considered:
• ”Full” models: operators H1,2 are characterized by a (2∗
K + 1)× (2 ∗K + 1) matrix;

• ”Isotropic” models: operators H1,2 are characterized by
a (2 ∗K+ 1)× (2 ∗K+ 1) matrix invariant to horizontal
and vertical flipping and 90◦ rotation. This isotropy con-
straint imposes the operators to depict the same filtering
behaviour in all directions, what may be expected from
a theoretical point of view;

• ”Parametric” models: operators H1,2 may be set accord-
ing to predefined parametric forms. Here, we will test
for operator H2 a SQG-related parameterization, that is
to say H2 = α∆−1/2 with α a scalar parameter. We
consider a (2 ∗ K + 1) × (2 ∗ K + 1) approximation
of fractional Laplacian operator ∆−1/2, so that to the
reconstruction error is minimized.

C. Model calibration

To implement reconstruction model (1), we first need to cal-
ibrate operators H1,2. As stated previously, under the assump-
tion that along-track samples {tAT (k), sAT (k), SSHAT (k)}k
are realizations of model (1), we resort to the minimization of
the following least-square criterion∑

k

‖dSSHAT (k)−H1 ∗ SSHLR (tAT (k), sAT (k))

−H2 ∗ SST (tAT (k), sAT (k)) ‖2
(3)

with dSSHAT (k) = SSHAT (k)−SSHLR (tAT (k), sAT (k)).
It may be noted that along-track samples may not lie on the
considered uniform grid, such that the convolution products
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H1∗SSHLR H2∗SST at positions {tAT (k), sAT (k)} require
the interpolation of (2∗K+1)×(2∗K+1) SSHLR and SST
patches around each along-track positions {tAT (k), sAT (k)}.
Given the matrical representation of operators H1,2, the above
minimization amounts to a linear regression. To avoid over-
fitting, the number of along-track samples should be signif-
icantly greater than the number of model parameters (i.e.,
2 ∗ (2 ∗K + 1)2 for full models).

III. WESTERN MEDITERRANEAN SEA CASE-STUDY

A. Observing System Simulation Experiment (OSSE)

To evaluate the proposed approach, we develop an OSSE
from numerical simulations for a region in the western
Mediterranean Sea from the South of Balearic islands to
the Algerian coast (36.5◦N to 40◦N, 1.5◦E to 8.5◦N). The
considered OSSE involves three key components:
• Numerical simulations: we exploit the high-resolution

numerical simulations of the WMOP model [12] from
SOCIB (Balearic Islands Coastal Observing and Forecast-
ing System, http://www.socib.eu/). We specifically use the
daily SST and SSH fields from the free run hindcast
simulation spanning the period 2009-2015. The model
has a 2-km spatial resolution and is forced by 3-hourly
atmospheric fields from the 5-km resolution HIRLAM
model from the Spanish Meteorological Agency. Spatial
averages over the specific reduced domains of study are
removed from the daily SSH model outputs before our
analysis in order to discard the large-scale signals includ-
ing the high-frequency variability related to atmospheric
pressure forcing and winds and so focus exclusively on
the spatial scales below 300km.

• Simulations of along-track altimeter data: using peri-
odization, we use the 2014 and 2015 series of real posi-
tions of along-track altimeter data from four altimeters to
generate along-track positions for the entire time series
of the simulations. We select year 2014 and 2015 as four
altimeters were available, namely Saral/Altika, CryoSat-
2, HY-2 and OSTM/Jason-2. On a daily basis, we sample
the simulated SSH field at generated along-track positions
to extract pseudo along-track altimeter data. Prior to this
sampling of the SSH fields, we apply a spatial filter-
ing consistent with the along-track sampling resolution
(1̃5km). The resulting along-track altimeter data refer
to dataset {tAT (k), sAT (k), SSHAT (k)}k introduced in
Section II;

• Simulations of optimally-interpolated L4 SSH fields:
from the simulated along-track dataset, we compute L4
SSH fields, referred to as low-resolution SSH field and
denoted by SSTLR, using an optimal interpolation with
the following parameter setting. The spatial correlation
length is set to 100km and the temporal correlation length
to 7 days. We consider Arhan covariance model [3] and
a 1/8◦ grid resolution. Those parameters are selected to
mimic the operational L4 processing for gridded SSH
fields [20].

An illustration of the simulated dataset are reported in Fig.2.
Based on this OSSE, we apply the proposed approach which

Relative
SSH MSE

Relative
KE MSE

Relative
PSD MSE

OI-derived SSH 0.22 0.95 0.42
H1 +H2 0.17 0.63 0.31
H1 +H2 DT = ∞ 0.19 0.68 0.34
H1 +H2 = 0 0.19 0.68 0.31
H1 = 0 +H2 0.20 0.74 0.42
H1 +H2,SQG 0.18 0.64 0.31
H1,Iso +H2,Iso 0.17 0.62 0.30

TABLE I: Reconstruction performance of different parameter-
izations of model (2) with respect to the optimally-interpolated
SSH fields (OI−SSH): we report relative mean square error
for the SSH field, the SSH gradient magnitude and the radially-
average power spectral density (PSD).

aims at reconstructing the high-resolution SSH field given
an optimally-interpolated low-resolution version, along-track
altimeter data and a simultaneous high-resolution cloud-free
SST observation. Based on the OSSE, we can perform a
quantitative evaluation in terms of relative mean square error
(MSE) of the reconstructed SSH and of the associated kinetic
energy, as well as in terms of spectral signatures for scales
ranging from 30km to 100km, for which we can expect some
improvements given the along-track sampling resolution.

We proceed to a comparative evaluation of the recon-
struction of SSH fields from model (2) with respect to the
low-resolution optimally-interpolated SSH field. We consider
different parameterizations for model (2), namely:
• H1 +H2 refers to model (2) with full 3×3 convolutional

models (K = 1). We consider ±10 days (dTAT = 10)
around each date to estimate operators H1 and H2, what
amount approximatively to 1000 along-track positions for
model fitting;

• H2,∞+H2,∞ is similar to H1+H2 except that parameter
dTAT is set to∞, such that the operators H1 and H2 are
the mean operators trained from the entire time series.

• H1 + H2 = 0 refers to model (2) where operator
H2 is discarded, i.e. no prediction is derived from the
SST field. Parameters K and dTAT are the same as for
parameterization H1 +H2;

• H1 = 0 + H2 refers to model (2) where operator H2

is discarded, i.e. , i.e. no prediction is derived from the
low-resolution SSH field. Parameters K and dTAT are
the same as for parameterization H1 +H2;

• H1 +H2,SQG refers to model (2) where operator H2 is a
discrete approximation of the fractional Laplacian opera-
tor associated with SQG dynamics [13, 9]. Parameters K
and dTAT are the same as for parameterization H1 +H2;

• H1,Iso +H2,Iso refers to model (2) where both operators
H1 and H2 are restricted to isotropical operators. Param-
eters K and dTAT are the same as for parameterization
H1 +H2.

We refer to the optimally-interpolated SSH as OI − SSH .

B. Results

We report in Tab.I the relative MSE (mean square error)
(i.e.the MSE normalized with respect to the daily variance of
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Fig. 1: Reconstruction statistics for the considered four-year
time series: distribution of relative mean square error for
SSH values (left), kinetic energy (center) and radially-averaged
power spectral density (right). We compare the low-resolution
optimally-interpolated field (black) to model (2) for parame-
terization H1,Iso +H2,Iso (blue).

the high-resolution SSH field). All the considered parameter-
izations of model (2) lead to lower MSE values compared
to OI − SSH for all criterion (SSH, SSH gradient mag-
nitude, PSD), though the gain is weak for parameterization
H1 = 0 + H2. Model H1 + H2 leads to the lowest MSE
values with a relative gain of 23% for the SSH, 34% for the
SSH gradient and of 26% for the PSD. The distribution of
the relative mse over the considered time series as depicted
in Fig.1 further emphasizes the relevance of model (2) to
go beyond the optimal interpolation for the reconstruction of
high-resolution SSH variability below 100km.

The comparison of the different parameterizations of model
(2) provides insights on the interpretation of model (2):

• The daily fit of operators H1 and H2 outperforms the
mean operators (dTAT = ∞) (0.175 vs. 0.186 in terms
of relative SSH MSE). This points out the time variability
of model (2), which may reveal the underlying variability
of the upper ocean dynamics in the case-study area known
to exhibit both seasonal and higher-frequency variabilities
[11, 15, 26].

• In model (2), operator H1 associated to the low-resolution
SSH field contributes the most to the prediction of the
high-resolution SSH detail (relative SSH rmse of 0.186
for model H1 + H2 = 0 w.r.t. 0.196 for model H1 =
0 + H2). The anisotropical components of operator H1

do not seem to be significant (relative SSH rmse of 0.175
for both model H1 +H2 and H1,Iso +H2,Iso);

• SST is not a negligible contributor in model (2) (relative
SSH rmse of 0.175 for model H1 + H2 including SST
w.r.t. 0.186 for model H1 + H2 = 0 without SST).
Besides, the contribution from SST seems SQG-related as
the SQG-based parameterization for operator H2 reaches
similar reconstruction performance than the full parame-
terization (relative SSH rmse of 0.175 for model H1+H2

w.r.t. 0.176 for model H1 +H2,SQG = 0).

From Tab.I, we select parameterization H1,Iso + H2,Iso

in the subsequent analysis. We further illustrate the behavior
of our approach from two contrasted examples, depicted in
Fig.2 and Fig.3. The example during wintertime, February 10,
2010, involves a strong correlation between the SST and SSH
fields (R2 = 0.65). The relative SSH MSE is relatively large
for the optimally-interpolated field (0.31). The reconstruction

from model (2) enhances SSH gradients with finer SSH
details, which leads to a lower relative MSE (0.22). This is
emphasized by the visual inspection of the radially-averaged
PSDs. The optimal interpolation clearly underestimates the
energy below 100km, whereas the PSD associated with model
(2) is more consistent with the true PSD. Consequently, model
(2) resorts to a better estimation of the spectral slope in
the range [30km, 100km] (4.7 for the true SSH, 4.5 for the
SSH reconstructed by model (2) and 5.7 for the optimally-
interpolated field). Similar observations can be drawn from
the second example during summertime, February 10, 2010,
with a lower correlation between SST and SSH (R2 = 0.35).
Interestingly, these two examples exhibit different SST-SSH
relationships. Whereas the sole use of SST in model (2), i.e.
H1 = 0, is relevant for the first example (relative SSH MSE
of 0.22 w.r.t. 0.24 using H1,Iso+H2,Iso parameterization), the
SST field does not bring useful information in the second case
to improve the reconstruction of the SSH field (relative SSH
MSE of 0.07 for parameterzation H1,Iso + H2,Iso and 0.09
for parameterization H1,Iso = 0 + H2,Iso and the optimally-
interpolated SSH field).

As illustrated by the examples reported above, the proposed
approach results in a better estimation of the spectral properties
of the SSH field for horizontal scales ranging from 30km to
100km. We depict in Fig.4 the time series of the estimated
spectral slopes for this scale range as well as their pdf.
It clearly stresses the better match between the true SSH
fields and the reconstruction using model (2) compared to the
optimally-interpolated field. As such, model (2) provides a
more consistent view of spectral properties of the upper ocean
dynamics, including the expected link between SST and SSH
spectral slopes under QG and SQG dynamical mode [? ].

IV. DISCUSSION

We have presented and evaluated a novel model for the
retreament of AVISO products to improve mesoscale altimetric
data. Our model exploits convolutional operators and com-
bines the information from both a low-resolution optimally-
interpolated SSH field (similar to AVISO L4-gridded product)
and a high-resolution SST observation to reconstruct the
SSH detail for horizontal scales not resolved by the optimal
interpolation ( 100km). Using an OSSE, we demonstrate the
relevance of the proposed model to reconstruct the horizon-
tal scales resolved by along-track data (up to 3̃0km). We
report significant improvements in terms of both SSH, SSH
gradient reconstruction error as well as in terms of spectral
signatures for a case-study area in the Western Mediterranean
Sea. Interestingly, our study complements related works, who
mainly investigated SQG-related priors [13, 9], and suggest
that both low-resolution SSH and high-resolution SST convey
relevant information to reconstruct upper ocean mesoscale
dynamics, the former being on average the main contributor
accounting for 75% of the relative gain in SSH MSE. In
agreement with [11, 26], we exhibit time-varying operators.
But, contrary to [11, 7], the anisotropical components of the
convolution operators were shown to be negligible for the
considered case-study and the SST contribution was mainly
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Fig. 2: High-resolution SSH reconstruction, February, 10, 2010: first row, from left to right, high-resolution SSH, low-resolution
SSH, reconstructed SSH using model (2) with parameterization XXXX , high-resolution SST detail; second row, from left to
right, gradient magnitudes of the high-resolution, low-resolution , and reconstructed SSH fields, radially-average power-spectral
density of the high-resolution SSH (magenta), low-resolution SSH (black), reconstructed SSH (blue) and high-resolution SST
(cyan). See the main for the detail on model parameterization.

Fig. 3: High-resolution SSH reconstruction, August, 8, 2010: see Fig.2

SQG-related. This might be interpreted as a consequence of
the combination of low-resolution SSH and high-resolution
SST features in our model, whereas [11, 7] only considered
SST-SSH relationships.

Besides the temporal variability of the considered convo-
lutional operators, they are also expected to involve spatial
variabilities, that will be of interest for future work and
extension to regional and global scales. The proposed model
makes also simple the potential combination of additional
sea surface tracers, including for instance ocean colour [23]
and Lagrangian signatures [6]. The extension to non-linear

convolutional models [16, 1] seems a natural a extension to
address the complexity of multi-tracer upper ocean dynamics,
keeping in mind the balance model complexity and time-
varying estimation robustness. This appears particularly ap-
pealing in the context of the future SWOT mission which will
provide more spatially-structured data for model calibration [].
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