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Abstract—Non-binary low-density parity-check codes have
better communication performance compared to their binary
counterparts but they suffer from higher complexity, especially
for the check node processing. In this paper a sorting of the
input vectors based on a reliability criteria is performed prior
to the check node processing. This presorting process allows
the Extended Min-Sum (EMS) check node process to focus its
effort mainly on the weakest inputs. Proof is given for a check
node of degree 12 in GF(64) for the syndrome based algorithm
with a number of computed syndromes reduced by a factor of
four which directly impacts the check node complexity without
performance degradation.

Index Terms—NB-LDPC, Check Node, syndrome-based, EMS.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes where first pro-

posed by R.G. Gallager in 1963 [1] and rediscovered by D.

Mackay et al in 1996 [2]. Today many commercial standards

(WiMAX, WiFi, DVB-C2, DVB-S2X, DVB-T2) make use of

LDPC codes. Very long binary LDPC codes have been proven

to perform close to the Shannon limit. However when consid-

ering short blocks of only some hundred bits of length for

low latency applications, these codes suffer from performance

degradation. The extension of binary LDPC codes to Galois

Fields of order q (GF(q) with q > 2) is a promising approach

to solve this problem. Moreover the symbols of high-order

modulation schemes can be directly mapped to the decoder

input symbols. Thus an additional gain in communication

performance is observed for systems combining high-order

modulation and Non-Binary Low-Density Parity-Check (NB-

LDPC) codes [3]. This gain is obtained at the cost of a

significant increase of the decoding complexity. The decoding

can be performed by message passing algorithms like Belief

Propagation (BP). However a straightforward implementation

of the BP algorithm has a complexity of O(q2) [4]. In recent

years several approaches have been proposed to reduce the

decoding complexity without sacrificing the communication

performance.

An extension of the well-known binary Min-Sum algorithm

to the non-binary domain, called the Extended Min-Sum

(EMS) algorithm [5], [6] gives a good compromise between

hardware complexity and communication performance. The

largest complexity in the EMS algorithm is the computation

of the Check Node (CN). Three categories of simplified EMS

emerge frome state of the art. The Forward-Backward Check

Node (FB-CN) algorithm [4] is efficiently implemented in

[7] and [8] but can be limited in throughput due to its

Fig. 1. Message notation on a CN

serial processing. The trellis based EMS [9] algorithm allows

parrallel processing and efficient emplementation.

The Syndrome-Based Check Node (SB-CN) algorithm, re-

cently presented in [10], [11], allows an efficient parallel

computation of the CN function for high order Galois fields

(q ≥ 16). However, the complexity of the SB-CN algorithm

is dominated by the number z of syndromes to compute. The

value of z is in the order of O(d2c), which limits the interest of

the SB-CN algorithm for high coding rates with high values

of dc.

In this paper we show that permuting the input messages

of a CN based on reliability criteria significantly reduces the

search space to explore during the check node processing. This

reduction of search space can be exploited to simplify the

hardware complexity of the SB-CN processor with practically

no performance degradation.

The paper is structured as follows: Section II reviews

the decoding of NB-LDPC codes making use of the EMS

algorithm and its hardware implementation with the Syndrome

Based CN algorithm. The presorting of input messages and its

effect on FB-CN algorithm is presented in section III. Section

IV presents the simulations results and section V gives the

conclusions.

II. CHECK NODE PROCESSING

In this section we first review the original EMS decoding

algorithm and the SB-CN decoding algorithm. For simplicity,

the algorithms are described only at the CN level.

Let us define a CN equation of degree dc in GF(q) as

e1 ⊕ e2 ⊕ e3 ⊕ . . . ⊕ edc
= 0. Each input ei can take q

values. The a priori information about variable e is the discrete

probability distribution P (e = x), x ∈ GF(q). Each element of

the probability distribution E associated to e can be expressed

in the log domain as the Log Likelihood Ratio (LLR) e+(x)
defined as



e+(x) = − log

(

P (e = x)

P (e = x̄)

)

(1)

where x̄ is the hard decision on e obtained by taking the most

probable GF symbol, i.e. x̄ = argmaxx∈GF(q) P (e = x). By

definition of the LLR, we have: e+(x̄) = 0 and ∀x ∈ GF(q),
e+(x) ≥ 0. The distribution (or message) E associated to e is

thus E = {e+(x)}x∈GF(q). In the sequel, operator ⊕ is used to

represent addition in GF(q). The Min-Sum algorithm defines

the LLR value of the ith output for the GF symbol x as

v+i (x) = min







dc
∑

i′=1,i6=i′

e+i′ (xi′) |

dc
⊕

i′=1,i′ 6=i

xi′ = x







, (2)

where xi′ ∈ GF(q) for i′ = 1, 2, ..., dc, i
′ 6= i. The EMS

algorithm is a simplification of the Min-Sum algorithm.

A. EMS algorithm

The main characteristic of the EMS algorithm is to shrink

the q values of the message E to its nm most reliable

components, with nm << q. The resulting message U is

composed of nm couples coming in ascending order of the

LLR (from the most reliable to the less reliable). The input U
of a CN is thus a list (or vector) {U [j]}j=0...nm−1 of couples,

with U [j] = (U+[j], U⊕[j]), where U+[j] designates the jth

smallest LLR value of E and U⊕[j] designates its associ-

ated GF element, i.e., e+(U⊕[j]) = U [j]+. Note also that

U+[0] = 0, U⊕[0] = x̄, and that j ≤ j′ ⇒ U+[j] ≤ U+[j′].
The same process is also performed for each output V of a

CN.

The EMS processing is performed in two steps. First, it eval-

uates (2) by replacing xi′ ∈ GF(q) by xi′ in the set of available

GF data, i.e., xi′ ∈ U⊕
i , with U⊕

i = {U⊕
i [j]}j=0,1,...,nm−1.

The obtained equation is thus

v+i (x) = min







dc
∑

i′=1,i′ 6=i

U+
i′ [ji′ ] |

dc
⊕

i′=1,i′ 6=i

U⊕
i′ [ji′ ] = x







,

(3)

where ji′ ∈ {0, 1, . . . nm − 1} for i′ = 1, 2, ..., dc, i
′ 6= i.

Second, the v+i (x) are sorted in ascending order and the first

nm smallest values are kept to generate the output vector Vi.

One should note that V +
i [0] = 0 (in fact, ji′ = 0⇒ U+

i′ [ji′ ] =
0 and thus, at least one term in (3) is the summation of zero

values). Fig. 1.a illustrates the principle of a CN processing.

In the next section, we will derive the SB-CN algorithm

[10] to process the EMS algorithm.

B. Syndrome-based CN processing

The SB-CN is based on the definition of a deviation path

and its associated syndrome.

Definition of deviation path: A deviation path δ is defined

as a dc-tuple of integer values between 0 and nm − 1, i.e.

δ = (δ(1), δ(2), . . . , δ(dc)), with δ(i) ∈ {0, 1, . . . , nm − 1},
i = 1, 2, . . . , dc.

Fig. 2. Syndrome-based CN processing

Definition of syndrome: Assuming a CN with dc input Ui,

i = 1, 2, ..., dc, it is possible to associate to a deviation path δ
a syndrome S(δ) defined as the couple (S+(δ), S⊕(δ)), with

S+(δ) =

dc
∑

i=1

U+
i [δ(i)], S⊕(δ) =

dc
⊕

i=1

U⊕
i [δ(i)]. (4)

Fig. 1.b shows an example of a CN with dc = 4 and

messages of size nm = 5. In this figure, the deviation

path δ = (0, 1, 0, 2) is represented by a gray area in each

input vector. It is also represented with straight lines linking

U1[0], U2[1], U3[0] and U4[2]. Assuming that the elements

of GF(64) are represented by the power of the monomial α
in GF(64)[α]/P [α], with P [α] = α6 + α + 1, the syndrome

associated to δ is S(δ) = (9, α42).
Let ∆a be the set of all possible deviation paths, i.e.,

∆a = {0, . . . , nm− 1}dc . Using the syndrome associated to a

deviation path, (3) can be reformulated as:

v+i (x) = min
δ∈∆a,S⊕(δ)⊕U

⊕

i
[δ(i)]=x

{

S+(δ)− U+
i [δ(i)]

}

, (5)

Lemma: Let δ and β be two deviation paths verifying

δ(i′) = β(i′) for i′ 6= i and δ(i) = 0, then

S+(β)− U+
i [β(i)] = S+(δ), (6)

S⊕(β)− U⊕
i [β(i)] = S⊕(δ)− U⊕

i [0]. (7)

In others words, these two paths will lead exactly to the same

v+(x) values. Thus, it is possible to further reduce (5) to

v+i (x) = min
δ∈∆a,δ(i)=0,S⊕(δ)⊕U

⊕

i
[0]=x

{

S+(δ)
}

. (8)

The SB-CN algorithm proposed in [10] is summarized in

Algorithm 1 and the associated architecture is given in Fig.

2. Step 1, 2 and 3 of Algorithm 1 are represented by the

three layers of processing in Fig. 2. In particular, decorrelation

(step 3) is performed by the dc Decorrelation Units (DU)

represented in parallel to show the inherent parallelism of the

SB decoder.

In [10], the deviation set ∆1,2(d1, d2) is composed of

the union of 3 sub-sets ∆0, ∆1(d1) and ∆2(d2) where



Pre-processing: Select ∆ ⊂ ∆a;

Initialisation:

for i = 1 to dc do
ji = 0;

end

Processing:

step 1 (syndrome generation): ∀δ ∈ ∆, compute S(δ)
step 2 (sorting process): Sort the syndrome in the

ascending order of S(δ)+ to obtain an ordered list

{S(δk)}k=1,2,...,|∆| of syndromes;

step 3 (decorrelation):

for k = 1 to |∆| do

for i = 1 to dc do

if δk(i) = 0 and ji < nm then

Vi[ji] = (S+(δk), S
⊕(δk)⊕ U⊕

i [0]);
ji = ji + 1;

end

end

Algorithm 1: Syndrome based algorithm

∆0 contains only the deviation path δ0 corresponding to

the most reliable syndrome (all its coordinates are equal to

0), ∆1(d1) is the subset of deviation path deviating less

than d1 in exactly one position, and ∆2(d2) is the subset

of deviation paths deviating less than d2 in exactly two

positions. For example, considering a CN of degree dc = 3
with d1 = 2 and d2 = 1 then ∆0 =

{

(0, 0, 0)
}

, ∆1(3) =
{

(1, 0, 0), (2, 0, 0), (0, 1, 0), (0, 2, 0), (0, 0, 1), (0, 0, 2)
}

and

∆2(1) =
{

(1, 1, 0), (1, 0, 1), (0, 1, 1)
}

. The cardinality

|∆1,2(d1, d2)| of ∆1,2(d1, d2) is

|∆1,2(d1, d2)| = 1 + d1

(

dc
1

)

+ (d2)
2

(

dc
2

)

. (9)

III. INPUT MESSAGE PRESORTING

The idea of the input presorting is to polarize the statistics of

the input vector by sorting them according to the reliability of

the hard decision input, i.e., the probability of P (ei = U⊕
i [0]),

i = 1, 2, . . . , dc. The main interest of this polarization process

is that many deviation paths in the CN process become very

unlikely to contribute to an output, and thus can be suppressed

without affecting performance. The principle of polarization

is first described. Then, its application to the SB algorithm is

presented.

A. Presorting to polarize the input messages

Let us first give an approximation of P (ei = U⊕
i [0]), i =

1, 2, . . . , dc. Using (1) and applying
∑

x∈GF P (ei = x) = 1
leads to:

P (ei = U⊕
i [0]) =

e−U
+

i
[0]

∑q−1
j=0 e

−U
+

i
[j]
. (10)

In this equation, the values of U+
i [j] for j ≥ nm are equal

to U+
i [nm − 1] + O, where O is a constant offset value (see

[6] for a complete description of the EMS algorithm). Since

Input The dc input message {Ui}i=1,2,...,dc
.

Step 1: Extract vector U1 = (U+
1 [1], U+

2 [1], ..., U+
dc
[1])

Sort U1 in ascending order to generate U ′1.

return permutation π = (π(1), . . . , π(dc)) associated to

the sorting process: U ′1(i) = U1(π(i)), i = 1, 2 . . . dc.

Step 2: Permute input vectors using the permutation π:

for i = 1, 2, . . . , dc, U ′
i = Uπ(i)

Step 3: Perform the CN process with input vectors

{U ′
i}i=1,2,...,dc

to generate output vectors {V ′
i }i=1,2,...,dc

.

Step 4: Permute output vector using the inverse

permutation π−1:

for i = 1, 2, . . . , dc , Vπ(i) = V ′
i

Algorithm 2: Pre-sorting principle

Fig. 3. Presorting principle

U+
i [0] = 0 and, for j > 2, U+

i [1] ≤ U+
i [j], then P (ei =

U⊕
i [0]) can be approximated by

P (ei = U⊕
i [0]) ≈

1

1 + e−U
+

i
[1]

. (11)

In other words, the higher the value of U+
i [1] is, the

higher P (ei = U⊕
i [0]). In this context, it is natural

to sort the input vector according to the vector U1 =
(U+

1 [1], U+
2 [1], . . . , U+

dc
[1]) before entering the check node, as

described in Algorithm 2 and illustrated in Fig. 3 where nm

= 5 and dc = 4.

As shown in Fig. 3, compared to the standard CN, the

presorting process requires extra hardware: a dc-input vector

sorter and two permutation networks (or switches). Neverthe-

less, it allows some simplification in the CN itself, globally

leading to a complexity reduction of the whole CN processing.



The presorting can not be applied to T-EMS [9] because

messages are not sorted nor truncated in the algorithm. How-

ever, the presorting can by efficiently applyed to EMS based

algrithm [5], simplified EMS [12] and derived implementation

derived from EMS as in FB-CN [7], [8] and SB-CN [10].

B. Presorting on syndrome-based decoder

In this section, the presorting principle is applied to the

SB-CN algorithm [10]. In Fig. 3, some upper elements of the

vectors U ′ are hashed because their associated LLR values

are greater than 4 and are not contributing to the generation

of the outputs. This is a particular example but, in the general

case, this property remains statically true. In others word, a

deviation path that implies entries from the hashed area can be

pruned from the deviation set ∆. For example, if ∆1,2(3, 1) is

used as the deviation-path set, its cardinality is reduced from

19 (see (9)) to 10, thanks to the pruning process.

Let ∆ be the deviation path set associated to a SB-CN

architecture. The complexity of the CN will be characterized

by two parameters: the number z of deviation paths z = |∆|
and the number γ(∆) of useful inputs, i.e, the number of

entries reached at least by one deviation path of ∆. By

definition, γ(∆a) = dc × nm. In the general case, the set

∆ will be considered as consistent, i.e., ∀δ ∈ ∆, ∀i ∈
{1, 2, . . . , dc}, δ(i) = p > 0 ⇒ ∃δ′ ∈ ∆ | δ′(i) = p − 1.

In that case, γ(∆) is given by

γ(∆) =

dc
∑

i=1

max
δ∈∆
{δ(i) + 1}

The construction of the syndrome set cardinality is a trade-

off between the complexity of the decoder (the smaller z
and γ, the better it is) and the decoder performance (the

lower z and γ, the higher the probability that a configuration

path contributing to the output is missing, thus alleviating the

decoder performance). Nevertheless, for a given number z,

it is possible to derive the optimal deviation-path set ∆o(z)
as the set of the first z deviation paths having the highest

probability to contribute to an output in a given context (the

NB-LDPC code, Signal-to-Noise Ratios (SNR), number of

decoding iterations). The formal derivation of ∆o(z) is very

complex, thus, we propose to use a Monte-Carlo simulation

to explicitly construct ∆o(z), as presented in Algorithm 3.

T associates to each possible deviation path a counter. Note

that in the pre-processing step, |∆a| = ndc

m = 2.2 × 1015 for

nm = 19 and dc = 12. Algorithm tricks (not described here)

are used to reduce the size of the array T .

IV. SIMULATION RESULTS

In this section, we present some results of the presorting

based algorithm for the SB-CN algorithm. Simulation results

are based on a regular code C (the code can be downloaded

in [13]) of coding rate 5/6, length N = 576 bits and

M = 480 bits of information over GF(64). This regular code

has dc = 12 and a variable node degree of dv = 2. The

maximum number of decoding iterations is set to I = 10.

Input value of SNR, dc, nm, NB-LDPC code of size

(N,M), number of decoding iterations I , z = |∆(z)|,
number of codewords P .

Pre-processing Generate the set |∆a| from dc and nm.

define function F as:

F : ∆→ N, δ → F (δ) =
∑dc

i=1 δ(i)n
i−1
m .

∀δ ∈ ∆, set T (F (δ)) = 0
Monte-Carlo simulation

for p = 1 to P do
Generate a noisy codeword C for the given code and

SNR.

Perform I decoding iterations on C
Let δ(t, c, i, j) be the deviation path used to generate

the Vi[j] output of CN c (c = 1, 2, . . . ,M ) during the

tth decoding iteration (t = 1, 2, . . . , I).

T (F (δ(t, c, i, j)))← T (F (δ(t, c, i, j))) + 1;
end

Post-Processing

Generate ∆o(z) as the set of the deviation paths

associated to the first z highest values of T .

Algorithm 3: Monte-Carlo construction of the optimal

deviation-path set ∆o(z) with z elements.

Performance is estimated in terms of Frame Error Rate (FERs)

as a function of the Signal to Noise Ratio (SNR) in a Binary

Phase Shift Keeing (BPSK) modulation under the Additive

White Gaussian Noise (AWGN) channel.

The first step of the proposed method is to construct the

optimal deviation path set ∆o(z) as a function of z. To do

so, P = 106 codewords have been simulated with/without

presorting at a SNR of 4 dB. Since Algorithm 3 gives a score to

each deviation path of the EMS decoder and selects the first z
having the maximum score, one can derive the probability that

a given deviation path δ found in the EMS decoder belongs to

the set ∆o(z). Fig. 4 shows this probability P (δ ∈ ∆o(z)) as

a function of z for the presorted and the original (i.e. unsorted)

SB-CN decoder. As expected, presorting allows to significantly

reduce the number of configurations required to obtain a given

value of P (δ ∈ ∆o(z)). For example, z0 = 47 is required

to obtained P (δ ∈ ∆o(z)) = 0.9 for the presorted SB-CN

algorithm while z1 = 257 to obtain the same probability for

the unsorted SB-CN algorithm. In this figure, the functions

γ(∆o(z)) are also presented for the presorted and the unsorted

SB-CN decoder. Those two curves are more or less similar and

we can note that γ(∆o(47)) = 24 for the presorted SB-CN

algorithm while γ(∆o(257)) = 75 for the unsorted SB-CN

algorithm. The impact of the value of z, for an SNR of 4

dB, is given in Fig. 5 for presorted and unsorted SB decoder.

Optimal performance (i.e., EMS algorithm) is obtained for z =
65 in case of presorting, while z = 271 is required when

no presorting is processed. This reduction of configurations

by a factor of 4 translates directly in hardware complexity.

Finally, Fig. 6 gives the performance of the decoder in several

configurations: presorted SB-CN decoder with z = 35, 65,

non-sorted SB-CN decoder with z = 103, 271.
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V. CONCLUSION

In this paper, we have shown that input message presorting

based on the reliability of the hard decision create a polariza-

tion of the space of configuration of inputs used to generate

the CN outputs. In other words, some input configurations

become very unlikely and the CN processor can just ignore

them, leading to potential reduced hardware complexity. This

algorithm simplification has been validated on a rate-5/6 NB-

LDPC code with dc = 12. It has been shown that the number

of configurations can be reduced by a factor of 4, without

performance degradation. In a near future, we will extend the

presorting of the input vector to the Forward-Backward algo-

rithm. We will also perform the hardware implementation of

the SB-CN processor and extend those promising preliminary

results to several coding rates (i.e. different dc values) and to

Galois Fields of higher order.
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