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We present a theoretical investigation of terahertz (THz) generation in laser-induced gas plasmas.
The work is strongly motivated by recent experimental results on micro-plasmas, but our general
findings are not limited to such a configuration. The electrons and ions are created by tunnel-
ionization of neutral atoms, and the resulting plasma is heated by collisions. Electrons are driven
by electromagnetic, convective and diffusive sources and produce a macroscopic current which is
responsible for THz emission. The model naturally includes both, ionization current and transition-
Cherenkov mechanisms for THz emission, which are usually investigated separately in the literature.
The latter mechanism is shown to dominate for single-color multi-cycle lasers pulses, where the
observed THz radiation originates from longitudinal electron currents. However, we find that the
often discussed oscillations at the plasma frequency do not contribute to the THz emission spectrum.
In order to predict the scaling of the conversion efficiency with pulse energy and focusing conditions,
we propose a simplified description that is in excellent agreement with rigorous particle-in-cell
simulations.

I. INTRODUCTION

Many applications in spectroscopy and sensing re-
quire sources in the terahertz (THz) region [1–5]. Com-
pact small bandwidth THz sources have been estab-
lished based on optical rectification in nonlinear crystals
[6, 7]. In large electron accelerator facilities, broadband
THz radiation is produced via coherent transition radi-
ation [8, 9]. THz emission from interaction of ionizing
intense laser pulses with gases is a promising approach
for more compact broadband THz sources. Recently, var-
ious theoretical and experimental efforts have been made
in this direction [10–25].

Several mechanisms responsible for THz radiation in
ionized gases have been proposed. Most of them are
plasma based. A crucial role plays the actual form of
the driving laser pulse, which can be single or multi-
color. For single-color driving pulses, THz emission can
be caused by excitation of plasma currents via pondero-
motive or radiation pressure sources [12]. This idea has
been applied to explain THz emission for femtosecond
(fs) filaments in [13, 26], and is usually referred to as
transition-Cherenkov (TC) mechanism: The ponderomo-
tive force of the driving laser pulse produces a longitu-
dinal current structure, which propagates approximately
with the speed of light. The interference of radiation from
distinct points along the propagation axis leads to a coni-
cal emission. The name transition-Cherenkov mechanism
comes from this characteristic radiation profile. While
Cherenkov radiation usually requires the source moving
at superluminal velocity, this is not necessary for an emis-
sion zone of a finite length.

∗ illia-thiele@web.de

For multi-color driving pulses, in particular the two-
color configuration relying on mixing the fundamental
harmonic (FH) and the second harmonic (SH) has been
studied [10, 11, 14, 16, 17, 19, 20, 23]. Originally, four-
wave mixing (FWM) rectification via third-order nonlin-
earity of the neutral atoms has been suggested as the THz
generating mechanism in this case [10]. However later, it
has been shown that contributions from FWM are much
weaker than those from mechanisms based on excitation
of the laser-induced plasma [16, 20, 23]. In particular,
the ionization current (IC) mechanism proposed in [11]
has been accepted as the major contributor to THz radi-
ation from such a two-color pump, and this mechanism
may also contribute for single-color pulses [21]: The ex-
trema of the first and the second half-laser-cycle create
two bunches of charge due to tunnel ionization. Each of
these gets accelerated in the laser field and produces a
current. Temporal asymmetry in the driving pulse can
render the superposition of these currents to be not com-
pletely destructive. In this case, the non-vanishing net
current can lead to emission of radiation, in particular in
the THz domain. The temporal asymmetry of the driv-
ing field can be achieved by, e.g., admixing a second laser
color or choosing a very short laser pulse.

Recently, a promising approach towards further minia-
turization of the THz source has been investigated exper-
imentally in [22]: A pulsed single-color fs laser is focused
strongly into a gas (e.g., air or argon). Intensities of 1014–
1016 W/cm2 in the focal region can be reached with µJ
driving pulses focused down to Abbe’s diffraction limit.
In the focal region, the neutral gas is ionized and a few
micrometer thick and few tens of micrometer long micro-
plasma is created. The excitation of the plasma by the
ionizing laser pulse leads to THz radiation that can be
measured in the far field. The major goal of this paper
is to investigate the THz radiation from such a micro-
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plasma theoretically. While for two-color laser pulses the
dominance of the IC mechanism is established, for single-
color laser pulses the prevailing mechanism is still under
discussion and depends on both laser and gas proper-
ties. Moreover, a unified theoretical description of these
mechanisms is missing, as well as simplified models which
would allow to identify general scaling laws. Throughout
this paper we assume the laser pulses to interact with
argon gas at ambient pressure. The first stage ionization
potential of argon is IAr

p = 15.8 eV, which is close to

the ionization potential IN2
p = 15.6 eV of the nitrogen

molecule as the main component of air [27].
The paper is organized in the following way. In Sec. II,

we derive a model by means of multiple scale analysis
which describes both IC and TC mechanisms in a con-
sistent and straight forward way. In Sec. III, the model
is analyzed for the one-dimensional (1D) case to under-
stand the main processes occurring in the laser gas inter-
action: ionization, heating, collisions, and in particular
excitation of plasma waves at THz frequencies. We also
estimate the laser pulse parameters where either the IC
mechanism or the TC mechanism dominates. In Sec. IV,
we extend our analysis to the two and three dimensional
(2D, 3D) cases. Symmetry properties of the system are
studied and the important role of non-radiative plasma
wave excitations is discussed. In Sec. V, we finally pro-
vide a simplified 2D/3D model for THz radiation in the
single-color case. By means of this simplified approach,
the scaling of the THz conversion efficiency with various
pulse parameters is discussed. All our results are bench-
marked by rigorous particle-in-cell (PIC) simulations us-
ing the codes OCEAN [28] and CALDER [29], and we
report excellent agreement.

II. MODEL FOR THZ EMISSION

In the following, we briefly present our model for THz
emission from fs-laser-generated gas plasmas. The ac-
tual derivation makes use of multiple scale analysis and
is detailed in App. A. In the main text, we focus more
on discussing the resulting set of equations. The starting
point is the non-relativistic Vlasov equation describing
the distribution function of electrons fe(r,v, t) depend-
ing on position r, velocity v and time t

∂tfe + v · ∇rfe +
F

me
· ∇vfe = Sδ(v) + C , (1)

where me is the electron mass. The electrons are pushed
by the electromagnetic force

F = qe [E(r, t) + v ×B(r, t)] , (2)

with the electric field E and magnetic field B, and qe is
the electron charge. The ionization of atoms is taken into
account by the source term S. We assume that each elec-
tron is born with zero velocity, and that ions do not move
on timescales relevant to our problem. For example, for

tunnel ionization and singly-charged ions only, the source
term simply reads S = W [E]nn, where W [E] is the tun-
nel ionization rate and nn the density of neutral atoms.
For intensities of up to 1016 W/cm2 as considered in this
paper, single ionization is not sufficient, and we include
multiple ionization as explained in App. B. Collisions are
taken into account via the term C which depends on the
properties of the plasma. Since for the driving pulses con-
sidered here almost all atoms in the interaction region are
quickly ionized, we neglect electron neutral collisions, and
in particular impact or collisional ionization. Then, colli-
sions are all elastic, and the total momentum of electrons
can change via collisions with ions only. Our PIC sim-
ulations accounting for electron-ion collisions show that
anisotropy of the electron distribution function is neg-
ligible due to fast thermalization, and thus employing
a scalar electron-ion collision frequency νei is sufficient
[cf. Eq. (9) below]. Details can be found in App. A. Fi-
nally, introducing the macroscopic current density J as
the 1st moment of the electron distribution function fe,

J = qe

∫
vfed

3v , (3)

allows for coupling to the macroscopic Maxwell equa-
tions. Like in the PIC codes we use to benchmark our
theory, we do not account for linear or nonlinear polariza-
tion of the neutral atoms or ions. Moreover, in our model
we neglect losses in the electromagnetic fields due to ion-
ization. Both simplifications are justified by the small
size of the interaction region considered in this paper.

The 0th , 1st and 2nd moments of Eq. (1) leads to con-
tinuity equation, Euler equation and free electron energy
balance, respectively. A brief review can be found in
App. A 1. We perform a multiple scale expansion on
these three equations employing a small parameter ε. For
instance, electric and magnetic field as well as the macro-
scopic current density are then expressed as

E =

∞∑
i=1

εiEi, B =

∞∑
i=1

εiBi, J =

∞∑
i=1

εiJi . (4)

The parameter ε represents the ratio of respective orders
of the fields, for instance, the ratio of J2 over J1. As
discussed in App. A 2, for underdense gas plasmas this
ratio can be estimated to be smaller than |qeEL/meωLc|.
Here, EL is the laser electric field amplitude, c is the
vacuum speed of light, ωL = 2πc/λL is the laser frequency
and λL is the vacuum laser wavelength. Following this
estimation, the multiple scale expansion is valid for laser
intensities below 2 × 1016 W/cm2 at λL = 0.8 µm. We
will furthermore verify a posteriori the ratio of different
orders of the fields at the end of Sec. V.

It turns out that in order to get meaningful results
out of the multiple scale expansion, the source term S
has to be of order ε0. Then, the continuity equation
immediately dictates

∂tn0 = S, (5)



3

where n0 is the 0th order electron density. For practical
purposes, n0 can be seen as the macroscopic free electron
density. Considering the momenta equations at scales
ε1 and ε2 gives, after some algebra, the following set of
equations (see App. A 2 for details):

ε1 : ∂tJ1 + νeiJ1 =
q2e
me

n0E1 (6)

ε2 : ∂tJ2 + νeiJ2 =
q2e
me

n0E2 + ι2 , (7)

where

ι2 = − n0
2qe
∇
∣∣∣∣J1

n0

∣∣∣∣2 − J1

qe
×∇×

t∫
−∞

J1

n0

(
νei +

∂t′n0
n0

)
dt′

− (νei + ∂t)

qen0

J1

t∫
−∞

∇ · J1 dt
′

− 2qe
3me
∇ (n0Eth)

(8)

and Eth is the lowest order thermal energy. The electron-
ion collision frequency νei is of order ε0, like the ionization
source S. Following [30], we assume

νei[s
−1] =

3.9× 10−6
∑
Z

Z2n
(Z)
ion [cm−3]λei

(Eth[eV] + Ekin[eV])
3/2

, (9)

where Z is the ion charge for ions with density n
(Z)
ion and

λei is the Coulomb logarithm. For our choice of scal-
ing, the lowest order of the electron thermal energy Eth

appears at order ε2 and is given by (see App. A)

∂t (n0Eth) = Ekin (2n0νei + ∂tn0) , (10)

and the 2nd order kinetic energy reads

Ekin =
me

2

∣∣∣∣ J1

n0qe

∣∣∣∣2 . (11)

Thus, the knowledge of J1 is sufficient to compute Eth

and νei. A similar reasoning is possible for the ioniza-
tion source S, for which a system of rate equations, as
detailed in App. (B), has to be solved. In general, the
ionization rates involved depend on the total electric field
E, which is unknown. In the spirit of the multiple scale
expansion, one has to take E up to the highest known or-
der. However, in practice the 1st order electric field E1 is
sufficient to compute the ionization source S. Finally, we
have to plug our multiple scale expansion into Maxwell’s
equations, and linearity implies

∇×Ei = −∂tBi (12)

∇×Bi =
1

c2
∂tEi + µ0Ji (13)

for all orders εi with i = 1, 2, . . . .

The above system of Eqs. (5)–(13) is complete. Before
going on and discussing the solutions in detail, a few re-
marks are in order. Firstly, the electric field E1 contains
the laser field EL fixing the boundary conditions, and
for S ≡ 0 we recover just vacuum propagation at order
ε1. Secondly, in Eqs. (5), (6), and (9)–(13) all quanti-
ties up to order ε1 are treated independently from higher
orders. This 1st order set of equations already describes
the IC mechanism [14–16, 20, 21]. The THz radiation
due to the IC mechanism can be computed as soon as J1

is known by using Jefimenko’s equation [31]. Thirdly, the
current J1 allows to compute the nonlinear source term
ι2 driving the current J2 in Eq. (7). The source term ι2
contains ponderomotive, radiation pressure, convection
and diffusion sources that are discussed in more detail
in Sec. (III). Thus, the TC mechanism appears at order
ε2. Formally, it would be possible to extend the multi-
ple scale approach to even higher orders. However, at
least for driving pulse and plasma configurations inves-
tigated here, 2nd order solutions show already excellent
agreement with rigorous PIC simulations.

III. COMPARING MECHANISMS OF THZ
EXCITATION

In the following section, the excitation of plasma cur-
rents in the THz range is analyzed for various laser pulse
durations and intensities. To this end, we restrict our-
selves to a 1D configuration, where translational invari-
ance is assumed in the x and y directions while the laser
pulse propagates along z. The laser pulse propagates
through vacuum for z ≤ 0 and enters the gas at z = 0.
The incoming linear polarized laser pulse is prescribed as

EL(t, z = 0) = E0
L sin(ωLt) exp

(
−t2/t20

)
ex , (14)

where t0 characterizes the pulse duration, E0
L is the elec-

tric field amplitude, and ex the unit vector in x direc-
tion. The corresponding intensity can be calculated as

I0L = ε0c
(
E0

L

)2
/2 where ε0 is the vacuum permittivity.

One advantage of our multiple scale model is that the
orders ε1 and ε2, i.e., Eq. (6) and Eq. (7), can be ana-
lyzed separately. Let us start with order ε1. The current
J1 is driven by the electric field E1 [c.f. Eq. (6)]. As
suggested in previous works [14, 16, 20], we can approx-
imate the electric field E1 by the laser field EL when
computing J1. By doing so, electrons are treated as test
particles driven by the laser electric field. As a conse-
quence, radiation emitted by the current J1 does not af-
fect the electric field which drives J1. However, such
back-coupling has an important impact in particular in
the THz frequency range [32], and therefore this approx-
imation can only serve as a very rough estimation for J1

at THz frequencies. For the main spectral components
of J1 however, namely at the laser frequency ωL, this
approximation works very well. This is justified by the
short propagation distances (∼ 10 µm) and underdense
plasmas we are interested in. In the following we will
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compute the laser field EL for vacuum propagation, and
thus neglect plasma dispersion and nonlinear propaga-
tion effects. We therefore approximate Eq. (6) for the
1st order current as

∂τJ1 + νeiJ1 ≈ ι1 , (15)

where the incident laser field contributes to the first-order
nonlinear source term

ι1 =
q2en0
me

EL . (16)

The current density J1 is transverse, as the electric field
EL. For technical convenience, we switched to the co-
moving pulse frame by introducing the new time variable
τ = t − z/c. The collision frequency νei has to be com-
puted from Eqs. (9)–(11), and n0 follows from Eq. (5).

Let us have a look at a first illustrative example show-
ing some basic processes, namely the ionization and laser
heating, captured by the ε1 model. We consider a laser
pulse with t0 = 50 fs, I0L = 4×1014 W/cm

2
, λL = 800 nm

in argon gas with initial atom density na = 3×1019 cm−3,
corresponding to about 1 bar pressure. The laser pulse
profile is shown in Fig. 1(a) (red dashed line). The gas
atoms are getting ionized and the electron density n0 in
Fig. 1(a) (black solid line) is growing step-wise near time
points corresponding to extrema of EL. In this particu-
lar case the final electron density n0 reaches the initial
gas density na, thus the atoms undergo complete sin-
gle ionization. The electron kinetic energy Ekin reaches
about 48 eV, and oscillates at 2ωL (not shown). Accord-
ing to our model, the thermal energy Eth of the electrons
increases up to 10 eV [red solid line in Fig. 1(b)]. As
shown by Eq. (10), the heating of the electrons is driven
by two mechanisms. Firstly, we have the contribution
of electron-ion collisions ∝ νei. Secondly, the ionization
term ∝ ∂tn0 increases the thermal energy as well, consis-
tent with results published in [33]: Electrons which are
born at a time point in the laser cycle displaced from
the peak electric field acquire a dephasing energy. This
mechanism is important for fs-laser pulses but becomes
negligible for longer pulses (> 100 fs), where the heating
from electron-ion collisions dominates. The evolution of
the collision frequency νei according to Eq. (9) is shown
in Fig. 1(c) (red line). It features a maximum near the
peak intensity of the driving pulse and decreases finally
to 13 ps−1 corresponding to a collision time of 77 fs. Os-
cillations at 2ωL appear due to the dependency on Ekin.

The prediction of the thermal energy by our model is
now confronted with a 1D PIC simulation accounting for
electron-ion and electron-electron collisions by means of
the code CALDER [34]. The input laser pulse [same as
shown in Fig. 1(a)] propagates over 10 µm in argon, with-
out noticeable deformation. Thus, the thermal energies
extracted from this simulation depend only on the re-
tarded time τ as well. The PIC electron thermal energy
EPIC

th shown in Fig. 1(b) (solid blue line) is in excellent
agreement with the model. As already mentioned above,

100 50 0 50 100
τ [fs]

0
2
4
6
8

10

E
th

[e
V

]

(b)

Eth

EPIC
th

EPIC
th,x

EPIC
th,y/z

FIG. 1. Example of a t0 = 50 fs, I0L = 4 × 1014 W/cm2 laser
pulse at λL = 800 nm in argon gas with initial atom den-
sity na = 3 × 1019 cm−3 in 1D configuration. Because we
neglect laser propagation effects, the problem depends on the
co-moving time τ = t − z/c only. In (a) the laser intensity
IL (red dashed line) and the resulting electron density n0

(black solid line) according to our model are shown. Figure
(b) presents the thermal energy Eth as captured by the model
(red line) for λei = 3.5, in excellent agreement with the ther-
mal energy EPIC

th obtained from a PIC simulation (solid blue
line, see text for details). In (c) the collision frequency νei
(red line) according to Eq. (9) is shown.

we expect contributions from two different heating pro-
cesses, which can be visualized in the PIC results. The
dashed blue line in Fig. 1(b) shows the thermal energy
EPIC

th,x in the motion of the electrons along the x-axis,
which is the laser polarization direction. The dash-dotted
blue line shows the thermal energy EPIC

th,y/z contained in

each of the other two degrees of freedom. Thus, the mo-
mentum distribution of the electrons in the PIC simu-
lation is anisotropic. The reason for this anisotropy is
the heating by the second term on r.h.s in Eq. (10): The
corresponding dephasing energy (see above) is acquired
solely along the laser polarization direction leading to a
momentum spread of the electron distribution function
along x only. In contrast, heating by electron-ion colli-
sions is isotropic. However, the phase space quickly ther-
malizes in the PIC simulation due to electron-electron
and electron-ion collisions. This fact justifies the assump-
tion of instantaneous thermalization in our model.
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Before discussing THz emission from the ε1 model, let
us proceed with the calculation of J2. In 1D configu-
ration, the current at order ε2 is driven by the purely
longitudinal source term ι2 = ι2,zez, which according to
Eq. (8) contains four contributions

ι2,z = ιpond2,z + ιion2,z + ιcol2,z + ιheat2,z . (17)

In the co-moving pulse frame, these contributions read
(see App. C for details)

ιpond2,z =
n0

2qec
∂τ

∣∣∣∣J1

n0

∣∣∣∣2 , ιion2,z =
(∂τn0)

qec

∣∣∣∣J1

n0

∣∣∣∣2 ,

ιcol2,z =
n0νei
qec

∣∣∣∣J1

n0

∣∣∣∣2 , ιheat2,z =
2∂τ (n0Eth)

3meqec
.

(18)

The first term is the ponderomotive source ιpond2,z . The

second source term ιion2,z is a direct consequence of the ion-
ization, and is absent in preformed plasmas. The third
source term ιcol2,z takes into account the radiation pres-

sure. Finally, the fourth source term ιheat2,z is caused by

diffusion or pressure of the electrons. We note that ιpond2,z ,

ιion2,z , and ιcol2,z have already been derived in [12]. In a 1D
configuration, the longitudinal component of ∇×B van-
ishes and Eq. (13) dictates that the longitudinal electric
field E2,z is connected to the longitudinal current J2,z via

J2,z = −ε0∂τE2,z . (19)

Thus, we can substitute J2,z in Eq. (7) and end up with
the following equation for the longitudinal field E2,z:

∂ττE2,z + νei∂τE2,z +

(
q2en0
meε0

)
E2,z = − ι2,z

ε0
. (20)

All quantities involved, in particular ι2,z, can be com-
puted from the solution to the 1st order problem.

Let us now come back to the case study of a 50-fs
pulse from above. The low-frequency power spectra of
the 2nd order source term ι2,z and its four constituents
defined in Eq. (18) are presented in Fig. 2(a). Ob-
viously, ι2,z (black line) is dominated by the pondero-

motive source ιpond2,z (red line). Other contributions are
at least one order of magnitude smaller for this driving
pulse. The peak excitation happens around 0.022ωL (i.e.,
ν ≈ 8.25 THz). In comparison, the power spectrum of ι2,z
at the plasma frequency ωp ≈

√
(q2ena/meε0) ≈ 0.13ωL

(i.e., ν ≈ 50 THz) is almost two orders of magnitude
smaller [35]. Nevertheless, longitudinal plasma oscilla-
tions at ωp are excited in E2,z when the electron density
n0 builds up, as can be seen in Fig. 2(b). This excita-
tion is also visible in the spectrum of the current J2,z
shown in Fig. 2(c). It is interesting to note that for our
example the observed strong excitation at the plasma
frequency ωp is intimately linked to ionization. Shoot-
ing the same driving pulse into a preformed plasma with
constant density n0 ≡ na triggers almost no oscillations

0.00 0.05 0.10 0.15 0.20
ω [ωL]

10-6
10-5
10-4
10-3
10-2
10-1
100

|̂ι 2
,z
|2

[a
rb
.u
.]

ι̂2,z

ι̂pond
2,z

ι̂ion
2,z

ι̂heat
2,z

ι̂col
2,z

(a)

b

0.00 0.05 0.10 0.15 0.20
ω [ωL]

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

|Ĵ
2,
z|2

[a
rb
.u
.]

Ĵ2,z

Ĵ
pond

2,z

Ĵ
ion

2,z

Ĵ
heat

2,z

Ĵ
col

2,z

(c)

FIG. 2. In (a) the low-frequency power spectra of the second-
order source term and its constituents as specified in the leg-
end are shown. The longitudinal electric field E2,z is pre-
sented in (b) together with the electron density n0. In (c) the
power spectra of the longitudinal currents corresponding to
the source terms in (a) are plotted. Driving laser parameters
are the same as in Fig. 1.

at ωp (not shown). For constant n0, the power spectrum
of the second-order source term ι2,z is more narrow, and
in particular its value at ωp is more than two orders of
magnitude lower. Only very short driving pulses fulfill
the resonance condition t0 . π/ωp and significantly ex-
cite plasma oscillations in a preformed plasma.

In our discussion of plasma currents in the THz spec-
tral range above we completely ignored the first-order
current J1. The reason for this is simply that for our 50-
fs single-color driving pulse, J1,x has no significant THz
component. In the spectral range shown in Fig. 2(c),
the power spectrum of J1,x is more than ten orders of
magnitude lower than that of J2,z. Thus, in our ex-
ample the IC mechanism is not present and THz emis-
sion results from the TC mechanism only. However, this
may change for other driving pulse parameters, even in
single-color configuration. In the following, the IC (J1)
and TC (J2) mechanisms are compared for laser inten-

sities I0L = 2 − 50 × 1014 W/cm
2

and pulse durations
t0 = 4 − 50 fs. Figures 3(a,b) show the power spectra of
ι1,x and ι2,z (IC resp. TC source) integrated up to 0.2ωL
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IC/TC regimes

FIG. 3. In (a) the up to 0.2ωL (ν ≤ 75 THz) integrated power spectrum of the source term ι1,x (IC source) is shown as a
function of laser pulse duration t0 and intensity I0L. The same data for ι2,z (TC source) are shown in (b). These two terms
are compared in panel (c): In the blue region the IC source term ι1,x dominates by at least one order of magnitude, in the red
region the same is true for the TC source term ι2,z, and in the green region ι1,x and ι2,z are both important. The computations
are performed for an argon gas with the initial atom density na = 3× 1019 cm−3.

(ν ≤ 75 THz). Figure 3(a) reveals that the IC mecha-
nism requires short and intense pulses to play a role, in
agreement with [21]. By contrast, the source term ι2,z
of the TC mechanism varies only weakly in the consid-
ered parameter range [see Fig. 3(b)]. Finally, Fig. 3(c)
displays the parameter regions where one of the source
terms dominates by at least one order of magnitude. We
can conclude that the IC mechanism is important for very
short pulses only, whereas the TC mechanism is the key
player for sufficiently long pulses.

We now want to cross-check the predictions of Fig. 3
by means of 1D PIC simulations. To this end, we con-
sider two pulse configurations: A few-cycle pulse with
t0 = 5 fs, I0L = 4× 1014 W/cm

2
to illustrate the IC dom-

inated regime and the multi-cycle pulse with t0 = 50 fs,
I0L = 4 × 1014 W/cm

2
already used above as an exam-

ple for the TC dominated regime. Following [13, 26], we
use the 1D results for the current density J and com-
pute a hypothetical far-field spectrum Pwire

far by assum-
ing the plasma having a transverse shape of an infinitely
thin 10 µm long wire and by means of Jefimenko’s equa-
tions [31]. Simulation (solid lines) and model results
(dashed lines) are presented in Fig. 4. For the IC mech-
anism (blue lines) we use the transverse current JPIC

x

from the PIC simulation and J1,x from the full ε1 model,
without approximating E1 by EL. For the TC mecha-

(a) (b)

FIG. 4. Hypothetical far field spectra integrated over all
angles computed by assuming an infinitely thin 10 µm long
plasma wire (see text) are shown for I0L = 4 × 1014 W/cm2,
t0 = 5 fs (a) and t0 = 50 fs (b). Power spectra are calculated
from current densities obtained by 1D PIC simulations and
the model according to the legend in (a).

nism (green lines) we use the longitudinal current JPIC
z

from the PIC simulation and J2,z from the ε2 model.
Obviously, PIC simulations (solid lines) and the model
(dashed lines) are in an excellent agreement. The PIC
results confirm that the IC mechanism (blue lines) domi-
nates the TC mechanism (green lines) for the short pump
pulse (a), and vice versa for the longer pulse (b). In the
latter case, Pwire

far produced by JPIC
x is even dominated

by the noise of the PIC simulation and the model gives a
four orders of magnitude lower signal (not shown here),
far below the signal from the TC mechanism.

It is important to note that the IC mechanism requires
the full treatment of the equations at order ε1. In con-
trast, assuming E1 ≈ EL causes almost no loss of ac-
curacy when evaluating the ε2 order of the model: The
computation of the nonlinear source ι2,z for Fig. 4(b) was
performed approximating J1 according to Eq. (15), and
gives already perfect agreement with the PIC simulation.
For the few-cycle pulse in Fig. 4(a), laser absorption due
to ionization and electron heating becomes notable: The
electric field amplitude decreases during the propagation
through the 10 µm long gas plasma by 3 %, and the final
electron density at z = 10 µm is about 11 % smaller than
at z = 0 µm (not shown here). Therefore, in Fig. 4(a) a
full treatment of the model up to order ε2 was necessary
to obtain perfect agreement with PIC results.

It is quite tempting to conclude from hypothetical far
field spectra obtained from 1D results as shown in Fig. 4
on actual THz emission from a real 3D plasma as pro-
duced in experiments. While such reasoning can be found
in the literature, e.g. in [13], it is generally incorrect. On
the one hand, we assume translation invariance in the
transverse directions when computing the 1D current, on
the other hand, we impose later a thin transverse shape
of the plasma wire when computing the hypothetical far
field. As we will see in the next section, realistic THz
emission spectra differ very strongly from Fig. 4. The
reason for this discrepancy is that not all plasma cur-
rents lead to emission of radiation, and in particular os-
cillations at the plasma frequency may not radiate [36].
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IV. RADIATING AND NON-RADIATING
EXCITATIONS

In the previous section we have analyzed plasma cur-
rents generated by an intense fs laser pulse in a gas,
with particular emphasize on excitations in THz spec-
tral range. The question we want to answer now is how
the radiation produced by these currents looks like. As
already indicated in the concluding remarks of Sec. III,
one has to be careful with longitudinal excitations at the
plasma frequency, which may not contribute to the radi-
ation spectrum [36]. The reason for this will be elabo-
rated in the following, however, a simple physical picture
gives already some insight: The plasma oscillations at ωp,
whenever they are eigen-oscillations of the system, would
continue forever (for νei = 0) and their energy would stay
inside the plasma. Thus, they can not contribute to ra-
diation, or otherwise energy conservation is violated.

In this section, we focus on the TC mechanism and
thus emission from the 2nd order current J2. As we have
seen above, this mechanism is expected to dominate the
THz emission from micro-plasmas created by multi-cycle
single-color laser pulses as used in [22]. At the end of the
section we briefly comment on the IC mechanism. Our
starting point is thus Eq. (7). Using Maxwell’s equations
(12), (13) we find

∂ttE2 + νei∂tE2 +
q2en0
meε0

E2

+ c2∇×∇×E2 + νeic
2

t∫
−∞

∇×∇×E2 dt
′ = −ι2

ε0

(21)

for the field E2. This equation is nothing else but the
3D version of Eq. (20). In contrast to the 1D case stud-
ied above (where ι2 is purely longitudinal and the z-
component of ∇ × E2 vanishes), in 3D all components
of E2 are non-zero and coupled. Moreover, focusing dy-
namics of the driving laser pulse render a transformation
to the co-moving pulse frame useless.

In order to identify the part of E2 which actually
contributes to the far field, we note that according to
Eq. (12) a curl-free field (∇×E2 = 0) does not lead to ra-
diation in the far-field, because no electro-magnetic wave
is produced (∂tB2 = 0). By using the Helmholtz decom-
position theorem, we can decompose E2 = E2,d + E2,r

into a curl-free field E2,d with ∇ × E2,d = 0 and a
divergence-free field E2,r with ∇ · E2,r = 0. In general,
both fields are coupled in Eq. (21) by the terms ∝ n0 and
∝ νei. By taking the curl of Eq. (21) we find that E2,r

can decouple from E2,d if

E2,d ×∇n0 = 0 , ∂tE2,d ×∇νei = 0 . (22)

Let us have a look at a simple but illustrative ex-
ample for the occurrence of such non-radiative curl-
free electric fields: In a preformed collisionless plasma
(n0 = const., νei = 0), the curl-free and divergence-
free fields are decoupled (see also [31]). We found in the

[μm]

[μ
m
]

[μ
m
]

[μm]

FIG. 5. Snapshot of the longitudinal electric field (a) E2,z

from our model and (b) EPIC
z from a corresponding 2D PIC

simulation at the time moment when the laser pulse is at
focus. The y-polarized Gaussian laser pulse (t0 = 50 fs,
Imax = 4 × 1014 W/cm2) is focused to w0 = 0.8 µm into a
uniform preformed plasma (n0 = 3× 1019 cm−3).

previous section that the ponderomotive source ιpond2 =
−n0/2qe∇|J1/n0|2 gives the dominant contribution. Be-

cause ιpond2 is obviously curl-free, the solution to Eq. (21)
is also curl-free and the wave equation reduces to a simple
oscillator equation

∂ttE2 +
q2en0
meε0

E2 = − n0
2qe
∇
∥∥∥∥J1

n0

∥∥∥∥2
2

. (23)

We now consider a 2D (translational invariance in y-
direction) 50-fs Gaussian pulse, linearly polarized in y-
direction, and strongly focused into a uniform preformed
plasma (n0 = 3 × 1019 cm−3). The peak intensity at fo-

cus is Imax = 4×1014 W/cm
2
, and the transform-limited

beam width is 0.8 µm. This particular 2D configuration
has the advantage that in the PIC simulation the electric
field of the driving laser appears in the Ey component
only, and the longitudinal component Ez is produced by
the plasma only. Thus a direct confrontation of E2,z

from the model with EPIC
z is possible. When evaluat-

ing the model, the ponderomotive source and the laser
field are approximated (see App. D). Nevertheless, a tem-
poral snapshot of the longitudinal electric field at focus
(see Fig. 5) shows excellent agreement between analytical
model (a) and 2D PIC simulation (b). A low-frequency
field and a second harmonic (SH) field are clearly visi-
ble as a fast and slow modulation pattern along z. Both
fields are non-radiating according to our previous argu-
mentation. This is confirmed by inspecting the magnetic
field component By in the PIC simulation, which is found
to be at background noise level (not shown).

For laser-induced plasmas, we have a finite plasma
volume with spatially (and temporally) varying electron
density (∇n0 6= 0). For the sake of simplicity, we will
look for curl-free solutions of Eq. (21) for ι2 = 0 only,
i.e., after the driving pulse has passed. Then, n0 is con-
stant in time and the general solution in the collisionless
case has the form (see App. E)

E2,d = A(n0) cos

√ q2en0
meε0

t+ φ(n0)

∇n0 , (24)
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. The same laser pulse as in Fig. 5 is focused into
argon gas at ambient pressure. A snapshot of the generated
plasma (a) and the absolute value of the cosine of the angle
between EPIC and ∇nPIC (b) after the pulse has passed the
focus are shown. The corresponding snapshot of the electric
field component EPIC

z is depicted in (c). The exemplary time
trace of EPIC

z in (d) features oscillations at the local plasma
frequency, in agreement with Eq. (24). The snapshot of BPIC

y

in (e) shows the static field which is present in the interaction
region after the laser pulse has passed (see corresponding time
trace in (f)). All temporal snapshots in (a,b,c,e) are taken
about 100 fs after the pulse has passed the focus. Recording
positions of the time traces shown in (d,f) are indicated by
the respective arrows.

where A and φ are scalar functions depending on the
electron density n0. The solution E2,d oscillates at the

local plasma frequency ωp(r) =
√
q2en0(r)/meε0, and the

electric field vector is always parallel to ∇n0, thus E2,d

is decoupled from radiating fields E2,r [c.f. Eq. (22)].

Equation (24) presents the solution for a non-radiating
eigen-oscillation at the plasma frequency in 2D/3D con-
figuration. We now want to show that such fields are
really excited in laser-induced micro-plasmas and shoot
the same y-polarized laser as in the previous example of a
preformed plasma in argon gas with na = 3× 1019 cm−3.
As above, we use the 2D geometry with translational in-
variance in y-direction in the PIC simulation and neglect
collisions. The resulting electron density profile after the
laser pulse has passed through the interaction region is
shown in Fig. 6(a): A 10 µm long and 1 µm wide plasma
with fully singly ionized argon at focus. In order to check
whether the electric field in the PIC simulation after the

FIG. 7. The same laser pulse as in Figs. 5, 6 is focused into
argon gas at ambient pressure. The angle-integrated far field
spectra obtained from 2D PIC simulation, model and 1D wire
model are presented according to the legend.

laser pulse has passed is of the form Eq. (24), we compute
the absolute value of the cosine of the angle between EPIC

and ∇nPIC
e [37] and present the result in Fig. 6(b). Ob-

viously, after the laser has left the interaction region the
two vectors are (anti-)parallel almost everywhere. More-
over, Figs. 6(c,d) confirm that after the laser has left the
interaction region, the electric field EPIC oscillates at the
local plasma frequency (here shown for the z-component
only). However, as expected from our previous reasoning,
these oscillations occur inside the plasma only, the angle-
integrated far field spectrum in Fig. 7 (solid red line) ex-
hibits no feature at the plasma frequency, in direct con-
tradiction to the results from the 1D wire model discussed
in the previous section (solid green line). Moreover, 2D
PIC simulations with collisions (solid blue line) coincide
perfectly with PIC simulations without collisions, up to
the noise level around 10−2. In particular, collisions do
not enhance the far-field amplitude at the plasma fre-
quency.

As previously explained, in our simulation no radia-
tion is emitted due to plasma oscillations after the exci-
tation by the laser pulse. During the laser pulse, the non

curl-free ιpond2 term (as ∇n0 6= 0) is able to generate a
potentially radiating field E2,r. The investigation of this
TC radiation will be presented in the next section and
explains the spectrum observed in Fig. 7.

Besides the non-radiating excitation E2,d, there exists
a second non-radiating, magneto-static excitation. The
corresponding field B2,m is linked to a non-radiating,
static current J2,m via

∆B2,m = −µ0∇× J2,m . (25)

Our PIC simulation above confirms the existence of such
a magneto-static excitation as well: The y-component of
the magnetic field BPIC is constant in time after the laser
has passed the interaction region. In Fig. 6(e) a snapshot
of this static magnetic field component is shown, together
with an exemplary time trace in Fig. 6(f).

The total non-radiative current created in the micro-
plasma can thus be written as

Jnonrad
2 = J2,m − ε0∂tE2,d . (26)
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Interestingly, the second (curl-free) term in Eq. (26) is
exactly what we used in the previous 1D model [c.f.
Eq. (19)]. In order to compute the hypothetical far field
spectra in Fig. 4, this (curl-free) current density has been
then multiplied by a narrow transverse electron distribu-
tion in order to represent a thin wire. It is obvious that
such operation destroys the ”curl-free” property of the
current and thus introduces an artificial radiation. To
judge if a current is radiating its transverse spatial de-
pendence is of great importance. Therefore, 1D modeling
is not suitable for the description of THz emission from
plasma currents and we perform 2D/3D modeling for the
radiating fields in the next section.

The PIC simulation results presented above show that
non-radiating plasma oscillations following Eq. (24) can
be excited in the particular 2D configuration. Finally, we
want to show that non-radiating plasma oscillations can
in principle appear whenever the TC mechanism is active.
To this end, let us consider an axisymmetric laser pulse
(|EL(r⊥, z, t)| = |EL(−r⊥, z, t)|, e.g., a Gaussian or vor-
tex beam profile. For such a driving pulse, the electron
density n0 and collision frequency νei feature the same
symmetry. Thus, the left-hand-side of Eq. (21) conserves
the following two symmetries: Es

2 with symmetric trans-
verse field

Es
2,⊥(r⊥, z, t) = Es

2,⊥(−r⊥, z, t)
Es

2,z(r⊥, z, t) = −Es
2,z(−r⊥, z, t) ,

(27)

and Ea
2 with anti-symmetric transverse field

Ea
2,⊥(r⊥, z, t) = −Ea

2,⊥(−r⊥, z, t)
Ea

2,z(r⊥, z, t) = Ea
2,z(−r⊥, z, t) .

(28)

Hence, if we decompose the source term ι2 = ιs + ιa

in the spirit of Eqs. (27) and Eqs. (28), the symmetric
solution Es

2 is solely driven by ιs, and the anti-symmetric
solution Ea

2 is solely driven by ιa. It is easy to verify
that the non-radiating curl-free solution E2,d given in
Eq. (24) is anti-symmetric. Thus, E2,d can be excited
only if the source has an anti-symmetric part. Because
the source term ι2 given in Eq. (8) contains always an
anti-symmetric part ιa, non-radiating plasma oscillations
can in principle appear whenever the TC mechanism is
active.

So what about the IC mechanism we completely ig-
nored in the previous discussion? With the simple substi-
tution Ẽ1 = E1−EL, which has already been used in [21],
we can bring Eq. (6) in the same form as Eq. (21), where

E2 → Ẽ1 and ι2 → ι1 as defined in Eq. (16). Then, by
analyzing symmetry properties completely analogous to
above, it turns out that for driving pulses with a Gaus-
sian beam profile, ι1 is symmetric, and thus cannot ex-
cite a non-radiative solution E1,d of the form in Eq. (24).
However, anti-symmetric beams as a singly charged vor-
tex or a radially polarized doughnut could in principle
produce non-radiating plasma oscillation even for the IC
mechanism.

laser

plasma

SH

THz

[μm]

[μ
m
]

[mT]
PIC

(a)

FIG. 8. Snapshot of the magnetic field BPIC
y from the same

PIC simulation as shown in Fig. 6. The figure is a zoom-out
of Fig. 6(e), so the emitted THz and SH waves are visible
(denoted as ’SH’ and ’THz’). The mean width of the focused
laser is indicated by the red lines, and the position of the
generated plasma is marked as a blue oval.

V. TERAHERTZ RADIATION FROM
LASER-INDUCED MICRO-PLASMAS

We have seen in the previous section that one has to
be careful when concluding from plasma excitations on
THz radiation in the far field. Plasma oscillations can
be excited at the local plasma frequency, which do not
emit radiation. Using a 1D plasma model in order to pre-
dict THz emission spectra from fs-laser gas interaction,
as proposed in [13] and later used, e.g., in [22, 26], may
give incorrect results: As we have shown in Fig. 6(e),
THz emission spectra obtained from such model devi-
ate strongly from those obtained from PIC simulations.
Thus, in order to understand the THz emission spectra,
2D or even 3D models are inevitable.

Throughout this section, we consider the 50-fs y-
polarized laser pulse configuration already employed in
Figs. 6 and 7 as an example. For the sake of computa-
tional costs, we restrict our PIC simulations to this 2D
configuration, and treat the experimentally relevant 3D
geometry in the framework of the model only. We have
already seen that for our example the TC mechanism
dominates and the current J2 is mainly driven pondero-
motively, i.e., in the xz-plane. Thus, the radiation driven
by the ponderomotive source is fully described by the
magnetic field component B2,y, while B2,x = B2,z = 0.
On the other hand, the driving laser pulse is y-polarized
and hence BL,y = 0. This natural separation, which is a
special feature of the chosen 2D geometry, is very handy
when it comes to analyzing the PIC simulation results.
In Fig. 8 a snapshot of BPIC

y from the PIC simulation
is presented. The beam envelope of the focused laser is
shown schematically as red lines. The snapshot is taken
about 100 fs after the driving pulse has passed the fo-
cus, and the extension of the created plasma is sketched
as a blue oval. In fact, zooming in on the region where
the plasma is created would reproduce Fig. 6(e). In the
larger frame of Fig. 8 emitted THz and also SH waves
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propagating forward inside a cone are clearly visible. No
radiation is emitted on-axis along z in agreement with
PIC simulations in [25] for a simple reason: For Gaus-
sian beams the source ι2 is symmetric in the sense of
Eq. (27), and the beam excites the symmetric solution
Es

2 only. This implies an anti-symmetric B2 and thus
B2,y(r⊥ = 0) = 0, which forbids on-axis radiation.

While solving the full model up to order ε2, i.e.,
Eqs. (5)–(13), is already much cheaper in terms of compu-
tational costs compared to full PIC simulations, it is still
too heavy for quick estimations and parameter scans, in
particular in 3D. Therefore, we propose in the following
further simplifications for the computation of the THz
emission in the far field. Firstly, we will approximate the
source term ι2 by the ponderomotive source as we already
did in the previous sections (see App. D). Secondly, we
will not solve the full wave equation (21) to obtain E2,
but neglect the term proportional to n0. Then, for the
collision-less case (νei = 0), the simplified equation reads

∂ttE2 +
�
�
�
�Z

Z
Z
Z

q2en0
meε0

E2 + c2∇×∇×E2 = −ι2
ε0

. (29)

With this approximation, the curl-free part E2,d and
divergence-free part E2,r of the solution E2 decouple, and
we disregard the following three effects:

1. Oscillations at the plasma frequency in the curl-free
E2,d defined by Eq. (24) are neglected.

2. In particular for the divergence free E2,r, both dis-
persion and absorption are neglected.

3. The coupling between E2,d and E2,r is neglected.

The first point is not problematic for the description of
the THz far-field spectra, because such plasma oscilla-
tions do not lead to radiation as they are curl-free. The
second point is critical and has to be accounted for, in
particular for larger and more dense plasmas as we will
see below. The third point cannot be avoided and may
be important for certain plasma shapes: The coupling
can lead to resonant excitation as in plasma wave-guides,
similar to what is frequently exploited in the case of meta-
materials, see e.g. [38]. However, for laser-induced micro-
plasmas we never observed such wave-guiding effects in
the PIC simulations.

It is interesting to note that using Eq. (29) instead of
Eq. (21) is equivalent to solving the simplified current
equation ∂tJ2 = ι2, or

∂tJ2 + νeiJ2 = ι2 , (30)

when taking into account collisions. In this light, the
approximation is not exactly new and has already been
successfully applied for the current J1 and the IC mech-
anism [14, 16, 20]. By using Eq. (30), we can easily
compute the current J2 from ι2, and then E2 and B2

in the far field by means of Jefimenko’s equations [31],
or equivalently via the results presented in App. F. For

FIG. 9. Far field THz power spectra as a function of frequency
ωTHz and detection angle ϕ for the laser pulse of Figs. 6, 7
and 8. In (a) the result of the PIC simulation and in (b)
those of the simplified model (see text) are presented. In (c)
and (d) analogous results accounting for collisions are shown.
The color scale allows for quantitative comparison of the am-
plitudes, which are normalized to maxPPIC

far .

Gaussian beam profiles and transversely narrow plasmas,
it is moreover possible to show that only the longitudinal
component of the current J2,z contributes to the far field
and thus to the THz power spectrum (see App. G).

Before evaluating our simplified model and confront it
with PIC results, we have to take into account the sec-
ond point above, namely the incorrect treatment of THz
dispersion. For frequencies below the plasma frequency
ωp the plasma becomes opaque. For given ωp and νei,
it is possible to compute the penetration depth of the
electromagnetic field as

sp =
c

2ωTHz
=

√
ω2
THz + iνeiωTHz

ω2
THz + iνeiωTHz − ω2

p

, (31)

where the symbol = denotes the imaginary part of a com-
plex quantity. For singly ionized argon gas, the pene-
tration depth sp is about 0.5 µm for ωTHz ≈ 0.02ωL �
0.13ωL ≈ ωp. This is about half the thickness of the
plasma in the example of Fig. 6(a). For driving pulse con-
figurations which produce larger plasmas or cause multi-
ple ionization, the penetration depth may become signif-
icantly smaller than the plasma width. Then, the plasma
emits mainly from a thin layer at its surface, where ra-
diation at frequencies below ωp can still exit due to op-
tical tunneling. The frequency dependent thickness of
this layer is related to the penetration depth in Eq. (31).
In order to mimic this effect in our simplified model, we
do not take into account contributions from the whole
plasma when calculating the far field THz power spec-
trum as described above. Instead, we only take contri-



11

[μm] [μm]

FIG. 10. Scaling of the conversion efficiency ηTHz with focal spot-size and pulse energy, for fixed laser wavelength λL = 0.8 µm,
pulse duration t0 = 50 fs and argon gas density na = 3×1019 cm−3. In (a), PIC results (solid red line) and the simplified model
(solid black line) for a laser pulse energy of Ep = 0.18 J/m are shown. The black dashed line shows model results accounting for
collisions. In (b), the model is evaluated in the (w0, Ep)-plane. Ratios of PIC and model conversion efficiencies are indicated
in gray. In (c), ηTHz as a function of the pulse energy is shown for tight focusing (w0 = 0.8 µm). Results from PIC simulations
(solid red line) and the simplified model with and without collisions (dashed and solid black line, resp.) are in good agreement.
The black dashed-dotted line shows model results when the opaqueness of the plasma is ignored (see text).

butions from the current density J2 in a thin layer at
the plasma surface, i.e., from positions r and frequencies
ωTHZ with distance to the transparent outer area less
than 1.2sp. The empirical factor 1.2 was chosen by equal-
ing the THz pulse energy obtained with model and PIC
simulation in Fig. 9, and is kept constant for the rest of
the paper. Of course, this approach implies a strong sim-
plification of the situation, however, as we will see below,
it leads to reasonable agreement with PIC simulations
with respect to the spectral and angular distribution of
the THz emission.

In Fig. 9(a), we present the angle resolved far field
power spectrum PPIC

far for the PIC simulation of Figs. 6, 7
and 8. The exact definition for Pfar we use is provided
in App. H. For comparison, Fig. 9(b) shows the power
spectrum Pmod

far obtained from our simplified model. We
find good qualitative and even quantitative agreement,
both spectra feature a broad peak around 0.02ωL (i.e.,
7.5 THz). Simulation and simplified model predict the
strongest radiation under an angle of ϕ ≈ 70◦ with re-
spect to the optical axis. Because the length of the
plasma is about 10 µm only, THz emission due to the TC
mechanism is expected at such large angles [13, 26]. Com-
paring the power spectrum PPIC

far with results from PIC
simulation accounting for collisions, as shown in Fig. 9(c),
confirms that collisions are of minor importance for the
THz emission.

Let us finally discuss scaling properties of the THz con-
version efficiency

ηTHz =
ETHz

Ep
, (32)

where ETHz is the THz pulse energy [or energy density in
2D, see App. (H) for details] containing frequencies below
0.2ωL and Ep is the energy (or energy density) of the in-
coming laser pulse. In the following, we will use the term
”energy” also in the 2D case for the sake of readability,
even if we mean ”energy density”. Moreover, we fix the

laser wavelength λL = 0.8 µm, pulse duration t0 = 50 fs
and neutral argon gas density na = 3 × 1019 cm−3. The
conversion efficiency ηTHz for Ep = 0.18 J/m as a func-
tion of the focal beam width w0 is presented in Fig. 10(a).
Our simplified model is in good agreement with the PIC
simulations. It turns out that strong focusing leads to the
highest conversion efficiency ηTHz for the chosen pulse
energy. Strong focusing is also preferable for higher
pulse energies as shown by the (w0, Ep)-parameter scan
in Fig. 10(b). The results of the parameter scan are pre-
sented for the model. The ratio between the PIC and
the model conversion efficiencies is indicated by the gray
numbers, showing reasonable agreement within one order
of magnitude.

For all focusing conditions in Fig. 10(b), the conversion
efficiency ηTHz first increases with the driving laser pulse
energy, and then saturates for higher energies around
10−6 − 10−7. This behavior, which translates into lin-
ear growth of the THz energy with the laser energy, is
a direct consequence of the opaqueness of the plasma
for THz radiation. As we have argued above, due to
this opaqueness the plasma radiates from a thin layer
only when the plasma diameter is sufficiently large. The
thickness of this layer does not change much when in-
creasing Ep, and is of the order of the penetration depth
sp given in Eq. (31). We show in App. (I) that in the
2D geometry the plasma diameter d2Dplasma ∝ Ep grows
linearly with the laser pulse energy Ep. In 3D, we find

d3Dplasma ∝
√
Ep. Thus, the length/surface (2D/3D) of

the radiating layer increases as d2Dplasma ∝ Ep in 2D or

(d3Dplasma)2 ∝ Ep in 3D. In both cases, the volume of the
radiating layer grows therefore linearly in Ep. This sim-
ple consideration explains why the conversion efficiency
ηTHz is expected to saturate at higher pulse energies, and
the THz energy ETHz increases only linearly with Ep.

Figure 10(c) shows a line-out of Fig. 10(b) for tight fo-
cusing (w0 = 0.8 µm) and corroborates this explanation.
Both PIC results (red solid line) and model are in good
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agreement. The dashed-dotted black line corresponds to
results from our simplified model when the opaqueness of
the plasma is ignored, i.e., the current density J2 in the
whole plasma volume is taken into account. In particular
for larger pulse energies, where the plasma is much wider
than the penetration depth sp, conversion efficiencies are
overestimated by several orders of magnitude. Thus, it
is crucial to take into account the opacity of the plasma
when the plasma width exceeds the penetration depth.

Finally, we want to comment a posteriori on validity of
the multiple scale expansion for the configuration studied
in this paper with t0 = 50 fs, I0L = 4 × 1014 W/cm

2
,

E0
L = 55×109 V/m, λL = 800 nm in argon gas with initial

atom density na = 3 × 1019 cm−3: In Fig. 2(b) for 1D
and Fig. 6(d) for 2D configuration we found the electric
field E2 driven by ι2 of the order 107 V/m. The ratio of
1st and 2nd order electric field is thus about 2 × 10−3 <
1.4×10−2 = |qeE0

L/meωLc|, i.e., the upper bound for the
ration established in App. A 2.

VI. SUMMARY AND CONCLUSION

We have analyzed the emission of broadband THz ra-
diation from femtosecond laser-induced gas plasmas by
means of theoretical modeling and numerical simulations.
Our approach is based on a multiple scale analysis of the
non-relativistic Vlasov equation, which allows us to iden-
tify distinct THz generation mechanisms. We have ob-
tained closed systems of equations describing the ioniza-
tion current (IC) [11] as well as the transition-Cherenkov
(TC) [13] mechanism. Both mechanisms have been dis-
cussed already in the literature, but usually without a di-
rect comparison. Our model accounts for, among others,
field ionization, damping of the current due to collisions,
and heating of the electron plasma. Plasma currents can
be excited due to the electric laser field (IC) as well as
ponderomotive, radiation pressure, convective and diffu-
sive sources (TC). Confrontation of the model with rig-
orous PIC simulations shows excellent agreement. The
main results of this paper are as follows.

For single-color driving pulses in gases at ambient
pressure, as used, e.g., in [22], the TC mechanisms is
dominant for sufficiently long (50 fs) multi-cycle pulses.
The ponderomotive excitation dominates radiation pres-
sure and other convective and diffusive sources. Strong
plasma oscillations are excited at the plasma frequency,
which are damped due to collisions.

Angularly-resolved far-field spectra confirm the angu-
lar THz emission characteristics for the TC mechanism
as proposed in [13]. In particular, for micro-plasmas the
THz radiation is predominantly emitted at large angles
> 70◦, as also observed in [22]. However, the frequency
dependence of the far field power spectra according to
the model derived in [13] is not correct: Oscillations at
the plasma frequency are present in the micro-plasma but
do not contribute to the far field emission spectrum. We
analyzed this behavior in detail, showing that 1D model-

ing of the plasma currents is not sufficient for predicting
correct THz emission spectra.

Our investigation of the THz conversion efficiency sug-
gests that, as far as low-energy pulses below the filamen-
tation threshold are concerned, strong focusing is advan-
tageous. Conversion efficiencies of 10−6−10−7 have been
observed in PIC simulations as well as in our model. We
find that for higher laser energies, the conversion effi-
ciency saturates, and the THz energy increases linearly
with the pump energy. We explained this saturation by
the opacity of the plasma at THz frequencies: For higher
laser pulse energies, the plasma volume becomes larger
and radiates from a thin layer at its surface only. For
strong focusing conditions, the plasma surface increases
linearly with the laser pulse energy.

We believe that our model will be useful for further
analysis of THz emission from fs-laser-induced gas plas-
mas. Besides single-color driving pulses, it also allows
the treatment of multi-color driving pulses, for which the
IC mechanism is expected to play a key role.
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Appendix A: Derivation of the model

1. Moments of the Vlasov equation

Our starting point are Maxwell’s equations and the
non-relativistic Vlasov equation, i.e., Eqs. (1) and (2)
of the main text, governing the distribution function of
electrons fe(r,v, t). We assume ions to be fixed, so the
Vlasov equation for ions with charge Z simply reads

∂tf
(Z)
ion (r, t) = S(Z)δ(v) . (A1)

The ionization of atoms is taken into account by the
source terms S(Z), which are related to the corresponding
term S in Eq. (1) via

∑
Z ZS

(Z) = S (see Appendix B).
Elastic collisions in Eq. (1) are described by the term

C[fe, f
(Z)
ion ], which depends on the state of the plasma. C

has the property to conserve the density and the total
energy of the particles. The dominating effect of colli-
sions is to change the direction of the electron momenta.
The momenta of non-relativistic electrons ’a’ and ’b’ af-
ter an electron-electron collision event are p′a = pb and
p′b = pa where pa and pb are the momenta before the
collision event. Thus, electron-electron collisions do not
lead to a change of the overall momentum. The total
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momentum of the electrons can change under collisions
with ions only.

As already mentioned in the main text we neglect
electron-neutral collisions, mainly because for the driving
pulses considered here almost all atoms in the interac-
tion region are quickly ionized. We checked this assump-
tion by including the electron-neutral collision frequency
νen ≈ 5 × 10−15cm2 × nn

√
(Ekin + Eth)/me [30] in the

model below. Here nn is the neutral density, and Ekin

and Eth are kinetic and thermal electron energy, respec-
tively. As expected, electron-neutral collisions contribute
to the heating of the electron plasma at the beginning
of the ionization process, but quickly become negligible
because of the depletion of neutral atoms. For driving
pulse configurations considered in this paper, neglecting
electron-neutral collisions gives a total error below 30 %
in the final thermal energy and collision frequency. Be-
cause it turns out that collisions play a minor role for
THz generation in laser-induced micro-plasmas anyway,
and moreover electron-neutral collisions are not imple-
mented in both of our PIC codes yet, we will neglect
electron-neutral collisions throughout this paper.

In the following, we will re-derive the 0th , 1st , and
2nd velocity momenta of the distribution function fe lead-
ing to continuity and Euler equation, respectively, as well
as the equation for the total energy of the electrons.

a. Continuity equation Let us compute the
0th velocity moment of Eq. (1). The first term on the
left hand side provides∫

∂tfe d
3v = ∂t

∫
fe d

3v = ∂tne , (A2)

where we introduced the electron density

ne =

∫
fed

3v . (A3)

Using integration by part for the second term gives∫
v · ∇rfed

3v = ∇r ·
∫

vfed
3v = ∇r · (neu) , (A4)

where we defined the (electron) fluid velocity as

u =
1

ne

∫
vfed

3v . (A5)

Because ions are fixed, the total current density reads

J = qeneu . (A6)

The 0th moment of the force term vanishes because∫
F · ∇vfed

3v = −
∫
fe∇v · Fd 3v = 0 , (A7)

where we used integration by parts and fe(|v| =∞) = 0
as well as ∇v ·F = qe∇v · (E + v ×B) = 0. Moreover, it
is easy to see that ∫

Sδ(v)d 3v = S . (A8)

Finally, the 0th moment of the term C has to vanish
because elastic collisions conserve the particle density.
Adding up all the terms leads to the continuity equation

∂tne +∇r · (neu) = S , (A9)

and analogous for the ions by using Eq. (A1)

∂tn
(Z)
ion = S(Z) , (A10)

where we introduced ion densities as n
(Z)
ion =

∫
f
(Z)
ion d

3v.
The total charge density ρ is then given by

ρ = qe

(
ne −

∑
Z

Zn
(Z)
ion

)
. (A11)

b. Euler equation In analogy to above, we now com-
pute the 1st velocity moment of all terms in Eq. (1):∫

v∂tfed
3 v = ∂t (neu) . (A12)

We rewrite the moment of the second term as∫
v (v · ∇rfe) d

3v = ∇r ·
∫
fev ⊗ vd3v , (A13)

where ⊗ denotes the usual outer product, and the diver-
gence operator applied to a matrix-valued function yields
the divergence for each row of the matrix. By using the
expression for the velocity spread of the electrons

varv =
1

ne

∫
fe(v − u)⊗ (v − u) d3v (A14)

as well as electron density Eq. (A3) and fluid velocity
Eq. (A5), one can show that∫

v (v · ∇rfe) d
3v = ∇r · (neu⊗ u + nevarv) . (A15)

We assume instantaneous thermalization of the plasma,
which renders varv proportional to the identity matrix:

varv = diag(1, 1, 1)
1

3ne

∫
|v − u|2 fe d3v . (A16)

Again via integration by parts, we find∫
v

(
F

me
· ∇vfe

)
d3v = −

∫
fe∇v ·

(
v ⊗ F

me

)
d3v

= −
∫
fe

(
F

me
+ v
∇v · F
me

)
d3v = −qene

me
(E + u×B)

(A17)

for the 1st moment of the force term. The contribution
from the ionization source term S vanishes. In order to
handle the 1st velocity moment of the collision term, we
introduce the electron-ion collision frequency νei via∫

vC d3v = −neνeiu . (A18)
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This term is responsible for the damping of the electron
current, as will be clear later. Note that in Eq. (A18) we
make again the assumption of instantaneous thermaliza-
tion and thus electron-ion collisions are isotropic, i.e., a
scalar collision frequency νei is sufficient.

In summary, the 1st moment of Eq. (1) is giving Euler’s
equation

∂t (neu) +∇r · (neu⊗ u + nevarv)

=
qene
me

(E + u×B)− neνeiu .
(A19)

c. Energy equation Finally, we consider the energy
density of electrons defined as

E =
me

2

∫
|v|2 fe d3v . (A20)

Again, we compute the 2nd velocity momenta of all terms
in Eq. (1) first:∫

|v|2 ∂tfe d3v =
2

me
∂tE . (A21)

Next we have∫
|v|2 v · ∇rfe d

3v = ∇r ·
∫
|v|2 vfe d3v , (A22)

which is already of 3rd order in the velocity and therefore,
as we will see below, not relevant for our multiple scale
analysis in the next subsection. Furthermore,∫

|v|2 F

me
· ∇vfe d

3v = −
∫
fe∇v ·

(
|v|2 F

me

)
d3v

= −2

∫
fe v ·

F

me
d3v = −2qene

me
u ·E , (A23)

where we used integration by parts, Eq. (A7), and
v · (v ×B) = 0. The ionization source S gives no contri-
bution, and the assumption of elastic collisions dictates∫

|v|2 C d3v = 0. (A24)

Using these results and the Euler equation (A19), the
free electron energy density is governed by

∂tE +
me

2
∇r ·

∫
|v|2 vfe d3v −meneνei |u|2

= meu · [∂t (neu) +∇r · (neu⊗ u + nevarv)] .

(A25)

It is possible to recast the electron energy density in
terms of u and varv:∫

|v|2 fe d3v =

∫
|u|2 fe d3v +

∫
|v − u|2 fe d3v

= ne |u|2 + tr (nevarv) , (A26)

where tr denotes the trace of the matrix. Then, we can
identify kinetic and thermal energy density as

Ekin =
me

2
ne |u|2 , Eth =

me

2
tr (nevarv) , (A27)

respectively.

2. Multiple scale expansion

In the following, Eqs. (A9), (A19) and (A25) are sim-
plified by means of a multiple scale analysis. The general
idea behind this approach is that electron velocities are
small compared to the speed of light, and thus velocity
momenta become less important with increasing order.
What exactly ”small” means in this context is discussed
at the end of this section. We introduce a scaling param-
eter ε� 1, and expand the relevant quantities

ne =

∞∑
i=0

εini, u =

∞∑
i=1

εiui, E =

∞∑
i=2

εiEi,

varv =

∞∑
i=2

εi (varv)i , (A28)

∫
|v|2 vfe d3v =

∞∑
i=3

εi
(∫
|v|2 vfe d3v

)
i

.

Each summation in Eq. (A28) starts at the order of the
respective power in v. Furthermore, we assume that both
ionization source S and collision frequency νei are of order
ε0. These scalings already imply that all macroscopic
quantities in Maxwell’s equations start at order ε1:

E =

∞∑
i=1

εiEi, B =

∞∑
i=1

εiBi, J =

∞∑
i=1

εiJi, ρ =

∞∑
i=1

εiρi .

(A29)
While there certainly is some arbitrariness in our scaling
assumptions, they lead to a set of meaningful equations.
In particular, they insure that the kth moment is driven
by terms of order εk and higher, only.

Plugging Eqs. (A28), (A29) into Eqs. (A9), (A19) and
(A25) and separating the different orders of ε, we find:

ε0 : ∂tn0 = S (A30)

ε1 : ∂tn1 +∇ · (n0u1) = 0 (A31)

ε1 : ∂t (n0u1) + n0νeiu1 =
qen0
me

E1 (A32)

ε2 : ∂t (n0u2) + ∂t (n1u1) + n0νeiu2 + n1νeiu1

+∇r · [n0u1 ⊗ u1 + n0 (varv)2] (A33)

=
qe
me

(n0E2 + n1E1 + n0u1 ×B1)

ε2 : ∂tE2 = meνein0 |u1|2 +meu1 · ∂t (n0u1) . (A34)

According to Eq. (A27), the lowest order kinetic energy
density reads

ε2 : Ekin,2 =
me

2
n0 |u1|2 , (A35)

and with Eqs. (A34) we find

ε2 : ∂tEth,2 = men0νei |u1|2 +
me

2
|u1|2 ∂tn0 . (A36)

Finally, we can exploit our assumption of instanta-
neous thermalization in Eq. (A16) and relate (varv)2 via
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Eq. (A27) to the thermal energy density

ε2 : (varv)2 = diag(1, 1, 1)
2Eth,2
3men0

. (A37)

For the electron-ion collision frequency νei we take the
expression Eq. (9) [30], which depends on the kinetic and

thermal energy per electron

Eth,2 =
Ekin,2
n0

, Ekin,2 =
Eth,2
n0

. (A38)

Herewith, our model is complete, and can be recast
as given in the main text by replacing fluid velocities
by current densities. Equation (A30) is Eq. (5) in the
main text; with J1 = qen0u1, Eq. (A32) gives Eq. (6).
Equations (7) and (8) follow from Eq. (A33) with J2 =
qen0u2 + qen1u1, Eqs. (A31), (A37) and Eqs. (12), (13):

q2e
me

(n1E1 + n0u1 ×B1)− qe∇r · [n0u1 ⊗ u1 + n0 (varv)2]

=
q2e
me

n1E1 −
qe
me

J1 ×
t∫

−∞

(∇r ×E1) dt′ −∇r · (u1 ⊗ J1)− 2qe
3me
∇rEth,2

=
n1
n0

(νei + ∂t)J1 − J1 ×

∇r ×
t∫

−∞

(νei + ∂′t)

qen0
J1 dt

′

− u1∇r · J1 − (J1 · ∇r)u1 −
2qe
3me
∇rEth,2

=
(νei + ∂t)

n0
(n1J1)− J1 × (∇r × u)− J1 ×

∇r ×
t∫

−∞

u1

(
νei +

∂t′n0
n0

)
dt′

− (J1 · ∇r)u1 −
2qe
3me
∇rEth,2

= − (νei + ∂t)

qen0

J1

t∫
−∞

∇r · J1 dt
′

− n0
2qe
∇r

∣∣∣∣J1

n0

∣∣∣∣2 − J1

qe
×∇r ×

t∫
−∞

J1

n0

(
νei +

∂t′n0
n0

)
dt′ − 2qe

3me
∇rEth,2 = ι2

(A39)

Finally, Eqs. (A35) and (A36) give Eqs. (10) and (11),
where we omitted the index ,2 in the main text.

To ensure that quantities at order ε2 are small com-
pared to those at order ε1 we have to inspect the driving
source terms ι2 and ι1 defined in Eq. (8) and Eq. (16) of
the main text, respectively. The magnitude of ι1 can be
estimated as

|ι1| ∼
q2en0
me

EL , (A40)

where EL is the field amplitude of the driving laser pulse.
The 1st order current J1 is dominated by the laser field
oscillating at ωL, and an upper bound for its magnitude
follows from Eq. (6):

|J1| .
q2en0EL

meωL
. (A41)

We further estimate an upper bound for Eth,2 by inte-
grating Eq. (A36) to

Eth,2 .
me|J1|2

2q2en0
(2νeit0 + 1) , (A42)

where t0 is the laser pulse duration and we used Eq. (A35)
with J1 = qen0u1. By using Eqs. (A42) and (A41) we

can given an upper bound for the magnitude of ι2. To
this end, we replace in Eq. (A39) all spatial derivatives
by ∂x/y/z → 2π/λL and temporal integration of functions
oscillating dominantly at ωL by dt → 1/ωL. Moreover,
we assume that 1/νei > t0 > tion > 1/ωL, where tion
is the typical ionization time defined by ∂tn0 . n0/tion.
Then, after some algebra, we find

|ι2| .
∣∣∣∣ qeEL

meωLc

∣∣∣∣ |ι1| . (A43)

Thus, we can conclude that the ratio of |ι2| over |ι1| and
thus of |J2| over |J1| and |E2| over |E1| is typically much
smaller than |qeEL/meωLc|, rendering the multiple scale
approach valid for non-relativistic laser pulses.

Appendix B: The Ionization Model

We are working at peak intensities IL > 1014 W/cm2,
thus in tunneling ionization regime for argon. The ion-
ization rate W (Z) in quasi-static approximation creat-
ing ions with charge Z is given in [39, 40]. The same
approach is used in the PIC codes OCEAN [28] and

CALDER [29]. The ion densities n
(Z)
ion of the ions with

charge Z are of order ε0. These quantities appear in the
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0th moment of Eq. (A1) and are determined by the set of
equations

∂tn
(Z)
ion = W (Z)n

(Z−1)
ion −W (Z+1)n

(Z)
ion

∂tn
(0)
ion = −W (1)n

(0)
ion

(B1)

for Z = 1, 2, 3, . . ., and the initial neutral density is

n
(0)
ion(t = −∞) = nn(t = −∞) = na. Because we con-

sider fixed ions, there are no higher order ion densities.
Charge conservation dictates that the electron density at
order ε0 follows

n0 =
∑
Z

Zn
(Z)
ion . (B2)

We introduce the ion source S(Z) as

S(Z) = W (Z)n
(Z−1)
ion −W (Z+1)n

(Z)
ion , (B3)

and the electron source

S =
∑
Z

ZS(Z) . (B4)

In general, the ionization rates and thus S depend on the
total electric field E. In the multiple scale approach, one
should formally use the best approximation to the total
electric field, i.e., the sum of all known orders. However,
it is usually sufficient to take just on the lowest order
electric field E1.

Appendix C: Transformation of the 1D current
source ι2 into the co-moving pulse frame

We rewrite the current source Eq. (8) in 1D geometry.
Using ∂x = ∂y = 0 and J1,z = 0 we get

ι2,z = − n0
2qe

∂z

∣∣∣∣J1

n0

∣∣∣∣2 − J1,x
qe

∂z

t∫
−∞

J1,x
n0

(
νei +

∂t′n0
n0

)
dt′

− J1,y
qe

∂z

t∫
−∞

J1,y
n0

(
νei +

∂t′n0
n0

)
dt′ − 2qe

3me
∂z (n0Eth) .

(C1)

We also find that ι2,x = ι2,y = 0, so ι2 is purely longitu-
dinal in 1D. Next we transform ι2,z into the co-moving
pulse frame (z, t) 7→ (ξ = z, τ = t − z/c). According
to the approximation we made in Eq. (15), the current
J1 can be calculated directly from the vacuum laser field
EL. Because EL and thus J1 do not change their tempo-
ral shape upon propagation along z, they are invariant
in the new variable ξ and the z derivative transforms as
∂z = ∂ξ − ∂τ/c = −∂τ/c leading to

ι2 =
n0

2qec
∂τ

∣∣∣∣J1

n0

∣∣∣∣2ez +
n0
qec

∣∣∣∣J1

n0

∣∣∣∣2(νei +
∂τn0
n0

)
ez

+
2qe

3mec
∂τ (n0Eth) ez .

(C2)

Appendix D: Ponderomotive source in
quasi-monochromatic paraxial approximation

Here, we derive an approximate expression for the pon-
deromotive source term

ιpond2 = − n0
2qe
∇
∣∣∣∣J1

n0

∣∣∣∣2 . (D1)

The Gaussian 2D laser electric field is computed in the
quasi-monochromatic paraxial approximation as

E2D
L (x, z, t) ≈ <E

0
L e
− x2

w2
0

(
1+i z

zR

)− τ2
t20
−i(ωLτ−π2 )√

1 + i zzR

ey , (D2)

with τ = t−z/c, and the Rayleigh length zR = w2
0ωL/2c.

The symbol < denotes the real part of a complex quan-
tity. In general, the current J1 has to be calculated by
solving the Maxwell’s equations coupled to Eqs. (6) and
(10). However, when using J1 to calculate the source
term ι2 in order to study the TC mechanism, it is suffi-
cient to approximate

J1(x, z, t) ≈ q2e
me

t∫
−∞

n0(x, z, t′)E2D
L (x, z, t′) dt′ (D3)

≈ n0q
2
e

meωL
< iE0

L e
− x2

w2
0

(
1+i z

zR

)− τ2
t20
−i(ωLτ−π2 )√

1 + i zzR

ey .

In the following computation of ∇|J1/n0|2 we will omit
the z dependent Gouy phase as well as the transverse
phase curvature. The former would give a z dependent

time shift for ιpond2 of maximum half a laser period, while
the latter is almost flat near focus where we look for a
good approximation. Thus, both phases are without a
greater importance for THz waves. Then, the pondero-
motive source writes in terms of the optical intensity

ιpond2 ≈ − n0q
3
e

2m2
eω

2
Lε0c
∇
{
I2DL [1 + cos(2ωLτ)]

}
, (D4)

with

I2DL (x, z, t) =
ε0c
(
E0

L

)2
2

w0

w(z)
e
− 2x2

w(z)
− 2τ2

t20 , (D5)

w(z) = w0

√
1 +

(
z

zR

)2

. (D6)

A similar treatment applies to a Gaussian 3D laser elec-
tric field

E3D
L (r, t) ≈ <E

0
L e
− x2+y2

w2
0

(
1+i z

zR

)− τ2
t20
−i(ωLτ−π2 )

1 + i zzR
ey . (D7)
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One just has to plug the expression for the 3D intensity

I3DL (r, t) =
ε0c
(
E0

L

)2
2

[
w0

w(z)

]2
e
− 2x2+2y2

w(z)
− 2τ2

t20 (D8)

into the expression for the ponderomotive source
Eq. (D4). Thus, the longitudinal ponderomotive source

ιpond2,z for a 2D/3D Gaussian driving pulse, which we need
to evaluate our model, reads

ιpond2,z = − q3en0IL
2m2

eω
2
Lε0c


z
(

1−D +
4r2⊥
w2(z)

)
z2R + z2

+
4τ

ct20


× [1 + cos(2ωLτ)] + 2

ωL

c
sin(2ωLτ)

}
, (D9)

where IL is given by Eq. (D5) or (D8), D = 2 or 3 is the
number of dimensions, and r2⊥ = x2 or x2 + y2, respec-
tively. Here, the term ∝ z appears due to beam focusing,
while the term ∝ τ reflects the longitudinal ponderomo-
tive source as it already exist in 1D. Both are equally
important in 2D or 3D geometry. The product n0Id pro-
duces THz as well as SH frequencies due to the step-like
increase in time of n0.

Appendix E: Non-radiating solutions of the wave
equation

We want to show that the general curl-free solution
E2,d to the wave equation (21) in the collisionless case
(νei = 0), after the driving pulse has passed (ι2 = 0,
∂tn0 = 0), is given by Eq. (24) of the main text. Because
∇×E2,d = 0, Eq. (21) reduces to an oscillator equation

∂2tE2,d +
q2en0
meε0

E2,d = 0 , (E1)

and we can write the general solution as

E2,d(r, t) = g(r) exp

i

√
q2en0
meε0

t

 . (E2)

For convenience, Eq. (E2) is written in complex form,
and g(r) is a complex valued function fulfilling

∇× g(r) = 0, g(r)×∇n0(r) = 0 . (E3)

Thus, we can write g(r) = ∇h(r) with some scalar
complex valued function h(r). For spatially varying n0,
∇h × ∇n0 = 0 further implies h(r) = f(n0) with some
complex valued function f , and we have

E2,d = exp

i

√
q2en0
meε0

t

∇f(n0) . (E4)

Taking the real part of Eq. (E4), we identify A(n0) =
|∂n0

f(n0)| and φ(n0) = arg [∂n0
f(n0)] in Eq. (24).

Appendix F: Far-field emission from a current

As has been pointed out in Sec. IV, it is sufficient to
know the current density J in order to calculate the far-
field emission. To give an explicit expression for the far
field, we consider the wave equation for the magnetic field
in Fourier space

∆B̂ +
ω2

c2
B̂ = −µ0∇× Ĵ , (F1)

where the temporal Fourier transform (here given for the
magnetic field) is defined as

B̂(ω) =

∞∫
−∞

B(t) exp (iωt) dt . (F2)

Throughout the paper the Fourier transform is denoted
by ”ˆ”. Solutions of Eq. (F1) can be written as [31]

B̂(r) = µ0

∫
Vplasma

∇r′ × Ĵ(r′)G3D(r− r′) d3r′ (F3)

with the Green function

G3D(r) =
exp

(
±iωc |r|

)
4π|r|

. (F4)

The ± indicates whether the incoming or the outgoing
wave is considered. Here, we have to consider outgoing
waves and use the ” − ” sign. Integration by parts in
Eq. (F3) gives the far field approximation (|r| � |r′|)

B̂far(r) ≈ −iµ0
ω

c

r

|r|
×
∫

Vplasma

Ĵ(r′)G3D(r−r′) d3r′ . (F5)

The corresponding electric field in the far field, in partic-
ular outside the plasma volume, can then be computed
from c2∇× B̂far = −iωÊfar as

Êfar(r) ≈ −c r

|r|
× B̂far(r) . (F6)

Special care has to be taken when it comes to evaluating
Eq. (F5) for 2D geometries with translational invariance
in, e.g., y-direction. Then, the integration over y can be
performed analytically leading to the 2D Green function
valid in the far field (K = ω

c

√
x2 + z2 � 1)

G2D(x, z) =

∞∫
−∞

exp
(
iωc |r|

)
4π|r|

dy =

∞∫
0

exp (iθ + iK)

2π
√
θ2 + 2Kθ

dθ

≈
∞∫
0

exp (iθ + iK)

2π
√

2Kθ
dθ =

exp
(
iωc
√
x2 + z2 + iπ4

)√
8π ωc
√
x2 + z2

. (F7)

Here, we used the substitution θ = ω
c |r| −K.
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Appendix G: Far-field emission from a transversely
narrow plasma

For a narrow plasma with transverse extension R ≥
|r′⊥| and length L ≥ |r′| one can show that under certain
conditions only the longitudinal current Jz contributes
significantly to radiation in the far-field (|r| � |r′|).
These conditions, which are typically found for the TC
mechanism, are:

1. The plasma is symmetric,

n0(r′⊥, z
′) = n0(−r′⊥, z′) . (G1)

2. The plasma is narrow, in the sense that∣∣|r− r′| − |r⊥ + (z − z′)ez|
∣∣ ≤ |r′⊥| ≤ R� πc

ω
, (G2)

and therefore

G3D(r⊥ − r′⊥, z − z′) ≈ G3D(r⊥, z − z′) . (G3)

3. The current is anti-symmetric [c.f. Eqs. (28)]

J⊥(r⊥, z) = −J⊥(−r⊥, z) (G4)

Jz(r⊥, z) = Jz(−r⊥, z) . (G5)

Then, the integral in Eq. (F5)∫
Vplasma

Ĵ⊥(r′)G3D(r− r′) d3r′ ≈ 0 (G6)

and thus the contributions of Ĵ⊥ to the far field vanish.
In 2D geometry, the same argumentation holds when re-
placing r′⊥ → x′ and G3D → G2D.

Appendix H: Far-field power spectrum

We define the far-field power spectrum as

P 3D
far (r, θ, ϕ, ω) =

[
Êfar(r, θ, ϕ, ω)× Ĥ?

far(r, θ, ϕ, ω)
]
· er .

(H1)

Here, Ĥfar = B̂far/µ0 and Êfar are given in frequency
space [see Eq. (F2)], and we switched to spherical coordi-
nates (r, θ, ϕ) for convenience. Then, the detection angle
is given by (θ, ϕ) and the detector distance by r. The
vector er is the unit vector in r-direction and normal to
the radiation sphere. For our 2D geometry with transla-
tional invariance in y-direction we use polar coordinates
(r, ϕ) to parametrize the (x, z) plane.

The integral of Pfar over ω gives the frequency inte-
grated power spectrum. The integral of Pfar over (θ, ϕ),
i.e., the radiation sphere, gives the angle integrated power
spectrum. Performing both integrals we get the total ra-
diated energy. For the THz energy we use

E3D
THz =

ωm∫
0

π
2∫

−π2

2π∫
0

P 3D
far (r, θ, ϕ, ω) r2 sin θ dϕ dθ dω , (H2)

where we count the THz signal up to ωm. In 2D geometry,
the THz energy density is defined analogous as

E2D
THz =

ωm∫
0

2π∫
0

P 2D
far (r, ϕ, ω) r dϕ dω . (H3)

When exploiting Eqs. (F5) and (F6) for the far field, it
is possible to show that the integration over all angles
cancels the r dependency in Eqs. (H2) and (H3), respec-
tively. When we use fields obtained from PIC simulations
to compute ETHz, we use the invariance in r as an addi-
tional consistency check for our codes.

Appendix I: Scaling of the plasma volume with the
laser pulse energy

We define the plasma volume Vplasma of an elongated
plasma with electron density n0 after ionization by a
Gaussian laser pulse as

Vplasma = {r |n0(r, t =∞) ≥ nth} , (I1)

where nth is a threshold electron density. For Gaussian
quasi-monochromatic laser pulses, at each position r, the
temporal dependency of the laser intensity IL is the same
up to the amplitude. The larger the amplitude, the more
electrons are ionized and thus we can rewrite Eq. (I1) in
terms of the intensity

Vplasma = {r | IL(r, τ = 0) ≥ Ith} . (I2)

For a threshold electron density nth � n0 resp. threshold
intensity Ith � I0 we can expect a bone shaped plasma
[see, e.g., Fig. 6(a)], and the maximum transverse size
is achieved off focus at z � zR. In order to estimate
transverse and longitudinal extension R resp. L of the
plasma, we use the intensity profiles I2DL and I3DL given
in Eqs. (D5) and (D8). For z � zR and thus w(z) ≈
w0z/zR, we can see that

2D : L ∝ I0L ∝ Ep R ∝ I0L ∝ Ep (I3)

3D : L ∝
√
I0L ∝

√
Ep R ∝

√
I0L ∝

√
Ep . (I4)
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L. Bergé, and S. L. Chin, Phys. Rev. Lett. 116, 063902
(2016).

[24] A. D. Koulouklidis, V. Y. Fedorov, and S. Tzortzakis,
Phys. Rev. A 93, 033844 (2016).
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