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Abstract

We discuss the question of model identi�ability within the context of non-

linear mixed e�ects models. Although there has been extensive research in the

area of �xed e�ects models, much less attention has been paid to random ef-

fects models. In this context we distinguish between theoretical identi�ability,

in which di�erent parameter values lead to non-identical probability distribu-

tions, structural identi�ability which concerns the algebraic properties of the

structural model, and practical identi�ability, whereby the model may be the-

oretically identi�able but the design of the experiment may make parameter

estimation di�cult and imprecise. We explore a number of pharmacokinetic

models which are known to be non-identi�able at an individual level but can

become identi�able at the population level if a number of speci�c assumptions

on the probabilistic model hold. Essentially if the probabilistic models are dif-

ferent, even though the structural models are non-identi�able, then they will

lead to di�erent likelihoods. The �ndings are supported through simulations.

1 Introduction

A statistical model is said to be identi�able when, given an in�nite amount of data,
it is possible to uniquely estimate the true values of the model parameters. The
uniqueness property implies that di�erent values of the model parameters generate
di�erent probability distributions of the observable variables. Conversely if two or
more sets of parameters generate identical distributions of the observed values the
model is not identi�able. However it still may be possible to uniquely identify a
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subset of parameters: that is, not all the parameters of an unidenti�able model are
unidenti�able. In this case we say that the model is partially identi�able.

It should also be noted that even when the parameters of the model are unidenti�-
able, the model itself may perfectly describe the observed variables, in other words
perfectly �t the data.

A distinction is made in the literature between structural identi�ability and practical
identi�ability. Structural identi�ability is related to the structure of the underly-
ing mathematical model. It is concerned with whether the parameters of a model
can be exactly identi�ed from a given experiment with perfect input-output data
[1, 5, 15, 18, 21]. Chappell et al. [4] compare methods for analyzing the global struc-
tural identi�ability of the parameters of a nonlinear system with a speci�ed input
function. Gargash and Mital [9] study the problem of global and local structural
identi�ability for �xed structure compartmental deterministic model of the biologi-
cal system. Frohlich et al. [7] investigate the e�ect of structural non-identi�ability
on the performance of frequentist methods for standard uncertainty analysis. They
observe that the pro�le likelihood approach is the only one that properly identi�es
structural non-identi�ability of parameters. On the other hand practical identi�-
ability is related to the study design, i.e. the limited amount of information that
can be obtained from a given experiment [11, 13, 15]. A link exists between prac-
tical identi�ability and sensitivity analysis. Brun et al. [3] propose a systematic
approach for tackling the parameter identi�ability problem of large models based on
local sensitivity analysis.

Model identi�ability is closely related to model indistinguishability. The objective of
indistinguishability analysis is to determine if di�erent models are capable to �t the
available input-output data [10, 22]. Identi�ability and distinguishability of para-
metric models are important properties when the parameters to be estimated have
a biological meaning or when the model is to be used to reconstruct physiologically
meaningful variables that cannot be measured directly [18].

The question of identi�ability of pharmacokinetic (PK) and pharmacokinetic- phar-
macodynamics (PKPD) models has been previously studied. Evans et al. [6] con-
sider the identi�ability of a parent-metabolite pharmacokinetic model for ivabradine
and one of its metabolites. Shivva et al. [16] use a simple one compartment pop-
ulation pharmacokinetic model to show that identi�ability of the variances of the
random e�ects are a�ected by the parameterisation of the �xed e�ects. An ap-
proach for assessment of identi�ability for �xed and mixed e�ects PK or PKPD
models is proposed in [15]. Guedj et al. [11] study the identi�ability of parameters
in a model of HIV dynamics based on a system of non-linear Ordinary Di�erential
Equations. Garcia et al. [8] discuss di�erent types of identi�ability that occur in
physiologically-based pharmacokinetic (PBPK) models and give reasons why they
occur.
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Identi�ability in mixed e�ects models has received much less attention. Identi�a-
bility of linear mixed e�ects models is considered in [19]. In the context of mixed
e�ects models, identi�ability is a fundamental prerequisite for model identi�cation.
It concerns uniqueness of the population parameters estimated from a given set of
observations obtained from several individuals of a same population [2, 12, 20]. It
was the purpose of the current investigation to examine some issues in identi�ability
of mixed e�ects models.

We de�ne the concept of identi�ability of mixed e�ects models in Section 2. Identi-
�ability is usually de�ned for continuous data models but this concept can be easily
extended to categorical, count or time to event data models. We show that a model
can be identi�able even if it is not structurally identi�able. Indeed the probability
distribution of the individual parameters plays an important role for characterizing
the identi�ability property of the model. Furthermore, a distinction is made between
identi�ability of the population parameters (the population parameters can be esti-
mated successfully and unequivocally from the observed data) and identi�ability of
the individual parameters (the individual parameters can be estimated successfully
and unequivocally from the observed data).

Sections 3 and 4 present some speci�c results taken from the �eld of pharmacokinet-
ics. We consider �rst a situation where di�erent parameterizations of a PK model
are algebraically undistinguishable. The model is shown to be identi�able as soon
as some hypothesis are made on the correlation structure of the PK parameters.
It is usually claimed that the bioavailability F cannot be estimated using only PK
measurements obtained from an oral administration: only the ratio F/V can be
properly estimated. We show that the model is identi�able under some assumptions
on the probabilistic model. Then, both F and V can be simultaneously estimated.

2 Identi�ability of mixed e�ects models

2.1 Preliminary remarks

The de�nition of identi�ability for mixed e�ects models is not always very precise.
As an example, the de�nition given in [20] reduces to: �parameters or models are
called non-identi�able if two sets of di�erent parameters lead to the same probability
distribution�. This de�nitions remain quite ambiguous and needs to be clari�ed. In
particular, we will need to distinguish the identi�ability of the population parameters
and the identi�ability of the individual parameters.

We need also to make a clear distinction between identi�ability, structural iden-
ti�ability and practical identi�ability, de�ning what these properties mean in the
context of mixed e�ects models.

3



The concept of structural identi�ability was introduced �rst in the area of systems
and control (see [1]), where the systems are deterministic and depend on nonrandom
parameters. The situation is quite di�erent in a population approach context where
the individual parameters are random variables. In order to analyse the properties
of a statistical model it is necessary to take into account the algebraic properties
of the structural model as well as the properties of the probabilistic model. In
particular, the choice of the parameterization may have a strong impact on the
probabilistic properties of the model. For instance, parameterizations of a PK model
using volume V and clearance Cl, or using volume V and elimination rate constant
k, where k = Cl/V , are absolutely equivalent from a purely algebraic point of view:
we can use both interchangeably. That's not the case if we put a distribution on
these parameters.

Assume, for instance, that V and Cl are independent and log-normally distributed:

log(V ) ∼ N (log(Vpop), ω2
V )

log(Cl) ∼ N (log(Clpop), ω2
Cl)

corr (log(V ), log(Cl)) = 0

where corr (log(V ), log(Cl)) is the linear correlation between log(V ) and log(Cl).

Then, we are implicitly assuming that k is also log-normally distributed with a
variance ω2

k larger than the variance of V and that log(k) and log(V ) are negatively
correlated. Indeed,

log(k) = log(Cl)− log(V )

Then, since log(Cl) and log(V ) are both normally distributed, log(k) is also normally
distributed and

log(k) ∼ N (log(Clpop/Vpop), ω2
V + ω2

Cl)

Furthermore, the covariance between log(V ) and log(k) is given by

cov (log(V ), log(k)) = −var (log(V )) = −ω2
V

Then,
corr (log(V ), log(k)) = −ωV /ωk

On the other hand, if we use parameters (V, k) in the model, assuming independent
distributions, then, we implicitly assume that V and Cl are dependent.

2.2 Structural identi�ability

Structural identi�ability is related to the structure of the underlying mathematical
model, for example as discussed above, the PK model.
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For sake of simplicity, we will only consider models for univariate data, i.e. for a
single outcome.

We need some notation. Let N be the number of individuals. Then, for i =
1, 2, . . . , N , let yi = (yij, 1 ≤ j ≤ ni) be the ni observations for individual i col-
lected at times (tij, 1 ≤ j ≤ ni).

Let us start with a basic model for continuous data:

yij = f(tij;ψi) + εij

Here, f is the structural model, which is a parametric function of time, ψi is a vector
of individual parameters, and (εij, 1 ≤ j ≤ ni) is a sequence of residual errors.
We will assume that εij is a sequence of random variables with mean 0 and �nite
variance σ2.

Structural identi�ability of the model is directly related to the properties of the
structural model f . We don't take into account possible di�erences between indi-
viduals.

Without any loss of generality, we will assume that f is de�ned for t ≥ 0. Let
f( · ;ψ) be the function f de�ned for a given vector of parameters ψ (we could
equivalently use the notation fψ). Then, we will say that the model is structurally
identi�able if there exists a one-to-one mapping between the parameter ψ and the
function f( · ;ψ), i.e.

ψ = ψ′ ⇔ f(t;ψ) = f(t;ψ′) for any t ≥ 0

This de�nition can be easily extended to any other parametric mixed e�ects models:

• Continuous data model with non constant residual error model: Assume now
that there exists a parametric function g such that

yij = f(tij;ψi) + g(tij;ψi)εij

Here, the structural model is the pair (f, g).

• Time-to-event data model: The structural model is the hazard function h(t;ψ).

• Count data model: Consider for instance a Poisson model,

yij ∼ Poisson(λ(tij, ψi))

The structural model is the Poisson intensity λ(t;ψ)

• Categorical data model: Assume a Bernoulli model for binary data as an
example,

P(yij = 1) = 1− P(yij = 0) = π(tij;ψi)

Here, the structural model is the function π(t;ψ).
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2.3 Practical identi�ability

Practical non-identi�ability is less clearly de�ned in the literature compared to struc-
tural non-identi�ability.

Practical identi�ability not only depends on the model structure, but is also related
to the experimental conditions together with the quality and quantity of the mea-
surements [13]. Then, a parameter that is structurally identi�able may be practically
unidenti�able with a limited amount and quality of experimental data.

Deriving some relationship between identi�ability and con�dence interval of pa-
rameter estimates seems natural. Nevertheless, since practical identi�ability is a
non-asymptotic property, it is not possible to propose a rigorous de�nition based on
asymptotic con�dence intervals.

Raue et al. [14] propose an appealing de�nition of practical identi�ability based on a
likelihood-based con�dence region instead of asymptotic con�dence intervals. They
suggest an approach that exploits the pro�le likelihood and enables the detection of
both structural and practical non-identi�abilities.

Unfortunately, such an approach is cumbersome to adopt for (nonlinear) mixed
e�ects models since it requires the estimation of the population parameters and
computation of the likelihood many times.

Methods that can be used in practice for detecting some identi�ability issues remain
quite empirical:

• We can for instance run the estimation algorithm with di�erent initial values.
Convergence to di�erent solutions may be suspicious.

• Even if it is an asymptotic criteria, the observed Fisher Information Matrix can
also be used. Indeed, the inverse of this matrix provides an approximation of
the variance-covariance matrix of the estimated parameters. A large condition
number of this variance-covariance matrix (i.e. the ratio of its largest and
smallest eigenvalues) re�ects a strong correlation structure between estimates
and may indicate some identi�ability issue.
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2.4 Identi�ability of the population parameters

Identi�ability of the population parameters θ is related to the properties of the
statistical model of the observations y = (yi, 1 ≤ i ≤ N):

p(y; θ) =
N∏
i=1

p(yi; θ) (1)

=
N∏
i=1

∫
p(yi, ψi; θ) dψi (2)

We are here in a �classical� situation where the statistical model is identi�able if the
mapping between θ and the probability distribution p(y; θ) is one-to-one (we use
indiscriminately p(y; θ) for the probability distribution function (pdf) and for the
distribution of y).

By de�nition, the Maximum Likelihood (ML) estimate of θ maximizes p(y; θ). If the
model is identi�able, then, the ML estimate converges to the true value of θ when
N increases, under very general regularity conditions [12]. That means that it is
possible to estimate θ as precisely as required as soon as the size N is large enough.
On the other hand, if the model is not identi�able, then, maximizing p(y; θ) with
respect to θ will not lead to a unique solution. We can �nd, for instance, θ̂(1) and
θ̂(2) such that, for any vector of population parameters θ,

p(y; θ) ≤ p(y; θ̂(1)) = p(y; θ̂(2))

A number of particular cases have been reported. For instance, Wang et al. [19]
study the identi�ability of the covariance parameters in a linear mixed e�ects model.
They focus on those models that are not over-parameterized and derive conditions
of identi�ability and study commonly used covariance structures. In an unpublished
work, Nuñez and Concordet consider the identi�ability problem in a nonlinear mixed
e�ects model for continuous data, assuming a nonparametric distribution for the
individual parameters. They provide several explicit conditions on f which ensure
the identi�ability of the model.

Since p(y; θ) =
∫
p(y, ψ; θ), identi�ability of the complete model p(y, ψ; θ) is a nec-

essary condition to ensure the identi�ability of the observed model p(y; θ). Unfor-
tunately, it is not a su�cient condition.

For example consider the linear model

yij = (ai + bi)tij + εij (3)

where ai and bi are normally distributed with unknown means m1 and m2. Here,
the vector of population parameters θ includes m1 and m2. The model p(y; θ)
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is unidenti�able since the population parameters m1 and m2 cannot be estimated
from a sequence of observations (yij): only the sum m1 +m2 can be estimated since
ai + bi is normally distributed with mean m1 + m2. On the other hand, the joint
model p(yi, ai, bi; θ) is identi�able since m1 and m2 can be estimated using sequences
(ai, 1 ≤ i ≤ N) and (bi, 1 ≤ i ≤ N).

Analyzing the structural identi�ability of the model is important and useful, but it
is not su�cient for concluding if the model is identi�able or not. For instance, a
statistical model may be identi�able even if it is not structurally identi�able. Indeed,
when data coming from various individuals is available, and under some hypothesis,
we can take advantage of the probability distribution of the individual parameters
to estimate the population parameters. It is then the combination of algebraic
relationships and probabilistic relationships that make the model identi�able.

Consider again the linear model (3). The structural model f(t; ai, bi) = (ai + bi)t is
not identi�able since only ai + bi can be estimated. We have seen in the previous
example that the statistical model of the observations is not identi�able when ai
and bi are both normally distributed. Surprisingly, the model becomes identi�able
in most cases when ai and bi are not both normally distributed.

Assume for instance that ai and bi have exponential distributions with parameters
λ1 and λ2. Then, assuming that λ1 6= λ2, the sum ai + bi is a random variable with
pdf

p(z;λ1, λ2) =
λ1λ2
λ1 − λ2

(
e−λ2z − e−λ1z

)
There is a one-to-one mapping between (λ1, λ2) and this pdf: the model is iden-
ti�able. Identi�abililty of the model remains a theoretical property: in practice,
accurate estimation of λ1 and λ2 will require a huge amount of data.

2.5 Identi�ability of the individual parameters

We can see the problem of estimating the individual parameters (ψi) as an inverse
problem: we aim to recover these unobserved vectors of parameters using the obser-
vations (yi).

Structural unidenti�ability means that the problem is ill posed: we can �nd di�erent
vectors ψi and ψ′i that produce the same structural predictions:

ψi 6= ψ′i and f(t;ψi) = f(t;ψ′i) for any t ≥ 0

And then,

p(yi|ψi) = p(yi|ψ′i)
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Each individual conditional model p(yi|ψi) is therefore unidenti�able, but in a mixed
e�ects model, we usually don't estimate each individual parameter ψi by maximiz-
ing this conditional distribution p(yi|ψi). Indeed, each individual parameter ψi is
a random vector with distribution p(ψi; θ). Then, for a given vector of popula-
tion parameter θ (given or previously estimated), we rather consider the posterior

distribution

p(ψi|yi; θ) =
p(yi|ψi)p(ψi; θ)

p(yi; θ)

Thus, ψi is identi�able as soon as p(ψi; θ) 6= p(ψ′i; θ).

In other words, the population distribution of the individual parameters plays the
role of a prior distribution that now makes the problem well posed.

Example 1: Consider a bi-exponential model:

f(t;Ai, Bi, αi, βi) = Aie
−αi t +Bie

−βi t

This structural model is locally identi�able but globally unidenti�able since (Ai, αi)
and (Bi, βi) are interchangeable. The model becomes identi�able if we introduce
some information about αi and βi, assuming for instance that P(αi > βi) > 0.5.
The use of this prior leads to select the solution where αi > βi and discard the other
solution where αi < βi.

Example 2: Consider again model (3) where εij ∼i.i.d.(0, σ
2).

This structural model f(t; ai, bi) = (ai + bi)t is clearly locally unidenti�able since
only the sum ai + bi can be estimated maximizing the conditional pdf of yi. Let
ci = ai + bi and de�ne ĉi as

ĉi = Argmax
ci

p(yi|ci)

= Argmin
ci

∑
j

(yij − citij)2

Thus, âi + b̂i = ĉi =
∑

j yijtij/
∑

j t
2
ij, but it is impossible to decompose this sum

and compute âi and b̂i without any additional information.

Assume for instance that (
ai
bi

)
∼ N

((
m1

m2

)
,Ω

)

Let Ti be the ni × 2 matrix

Ti =

(
ti,1 ti,2 . . . ti,ni

ti,1 ti,2 . . . ti,ni

)′
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The posterior distribution of ai and bi is now a well de�ned normal distribution:(
ai
bi

)
|yi ∼ N

((
µi,1
µi,2

)
,Γi

)
where

Γi =

(
T ′iTi
σ2

+ Ω−1
)−1

and (
µi,1
µi,2

)
= Γi

(
T ′iyi
σ2

+ Ω−1
(
m1

m2

))
The maximum a posteriori (MAP) estimates of ai and bi are, respectively, µi,1 and
µi,2. They are well de�ned and unique: the individual parameters of the model are
now identi�able.

Remark: introduction of a Gaussian prior information for estimating the parame-
ters of a linear ill-posed problem is equivalent to introduce a Tikhonov regularization
term [17].

3 Illustration: the �ip-�op phenomenon

In this example, the structural model is not identi�able without some physiological
constraint (we can �nd two di�erent sets of PK parameters that produce identical
PK pro�les). Nevertheless, identi�ability is ensured under some assumptions on the
probabilistic model.

For a sake of simplicity, we will consider a single individual and omit the subscript
i in the notation.

3.1 The structural PK model

Consider a basic PK model for a single oral administration at time 0,

f(t; ka, V, k) =
Dka

V (ka − k)

(
e−k t − e−ka t

)
. (4)

It is easy to see that, for any t ≥ 0,

f(t; ka, V, k) = f(t; k′a, V
′, k′)

where k′a = k , k′ = ka and V ′ = (k/ka)V .
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Without any assumptions on the parameter values, the two solutions are indistin-
guishable. Some assumptions on the parameter space may make the model identi�-
able (e.g. ka > k).

3.2 The probabilistic model

Without any assumption on the parameter space the structural model is not iden-
ti�able but the probabilistic model may be identi�able under some assumptions.

If we assume log-normal distributions for (ka, V, k), then (k′a, V
′, k′) are also log-

normally distributed since log(V ′) = log(V ) + log(k)− log(ka).

Furthermore, if we assume that log(ka), log(V ) and log(k) are uncorrelated, then
log(V ′) and log(k′a) are implicitly correlated, as well as log(V ′) and log(k′).

Thus, the two following models are distinguishable:

M1 : corr (ka, V ) = corr (ka, k) = corr (k, V ) = 0

M2 : corr (k′a, V
′) = corr (k′a, k

′) = corr (k′, V ′) = 0

In other words, if we assume that the variance-covariance matrix Ω of (log(ka), log(V ), log(k))
is diagonal, then the model is identi�able since we cannot have simultaneously both
Ω and Ω′ diagonal, where Ω′ is the variance-covariance matrix of (log(k′a), log(V ′), log(k′)).

On the other hand, if we don't make any assumption on Ω, then the model is
not identi�able: we can �nd two sets of �xed parameters (kapop, Vpop, kpop) and
(ka′pop, V

′
pop, k

′
pop) and two covariance matrices Ω and Ω′ such that

p(y, ψ; kapop, Vpop, kpop,Ω) = p(y, ψ; ka′pop, V
′
pop, k

′
pop,Ω

′)

where y = (yj, 1 ≤ j ≤ n) is a vector of observed concentrations and ψ = (ka, V, k)
is the vector of individual PK parameters.

3.3 Statistical implications

Assume now that we have some PK data and we want to use the PK model de�ned
in (4) to �t this data. Then, it is expected to obtain di�erent values of the likelihood
underM1 andM2 since the two probabilistic models are di�erent (we cannot have
simultaneously corr (k, V ) = 0 and corr (k′, V ) = 0).

Simulation:

Data with N = 100 subjects and n = 12 measurements per subject were simulated
with the following parameter values: ka,pop = 1, Vpop = 10, kpop = 0.1, ωka = 0.25,
ωV = 0.3, ωk = 0.15.
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We can then try to estimate the population parameters of the model, using any
software tool such as Monolix or NONMEM. According to the initial value, the
SAEM algorithm [12] in Monolix converges to two solutions: (k̂

(1)
a , V̂ (1), k̂(1)) =

(1, 10.4, 0.099) and (k̂
(2)
a , V̂ (2), k̂(2)) = (0.097, 0.99, 1.04). The estimated log-likelihood

for these two solutions are, respectively, −1126 and −1145. We see that, in this ex-
ample, the �rst solution, which is the �right� solution (i.e. close to the �true� values
used for the simulation), correspond to the global maximum of the likelihood, while
the other one correspond to a local maximum.

In other words, the model is identi�able if we assume a diagonal matrix Ω, and
maximizing the likelihood allows to select the �right� solution.

Here, it is not the values of the population PK parameters that allows one to select a
model, but the (strong) hypothesis that we make concerning the covariance structure
of the random e�ects. Indeed, if we simulate uncorrelated PK parameters using the
other parameterization, then, the likelihood criteria will select this solution.

On the other hand, if we don't make any assumption about the covariance matrix, i.e.
if we estimate a full variance-covariance matrix, then the model is not identi�able
and the likelihood criteria cannot select a model. Indeed, the log-likelihood still
exhibits two maxima, (1, 10.4, 0.1) and (0.098, 1, 1.03), but with very close values:
−1125.7 and −1126.2, respectively.

Remark 1: As expected, even if independent random e�ects were simulated using
the �rst parameterization, estimated variance-covariance matrix associated to the
second solution is not diagonal: estimated correlations between log(k′a) and log(V ′)
and between log(k′) and log(V ′) are, respectively, 0.41 and −0.62.

Remark 2: Similar results are obtained with NONMEM and FOCE: k̂(1)a = 1.01,
V̂ (1) = 10.4, k̂(1) = 0.099 using the �rst set of initial estimates and k̂

(2)
a = 0.098,

V̂ (2) = 0.995, k̂(2) = 1.04 using the second one. We have simulated rich data in this
example. Then, up to the exchangeability issue between ka and k, the individual
PK parameters can be estimated accurately from the individual PK data. FOCE
works very well here because this algorithm is precisely based on the estimation of
the individual parameters.

4 Illustration: Identi�ability of the bioavailability

We show with this example that, even if the structural model only allows the iden-
ti�cation of the ratio V/F , the probabilistic model, under some assumptions, makes
the model identi�able and allows the estimation of both V and F .

We will consider again a single individual and omit the subscript i in the notation.
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4.1 The model and its properties

• The PK model is a one compartment model for oral administration with pa-
rameters (F, ka, V, k) where F is the bioavailability, i.e. the fraction of admin-
istered dose which is absorbed. Let f(t;F, ka, V, k) be the predicted concen-
tration given by this model at time t:

f(t;F, ka, V, k) =
DF ka

V (ka − k)

(
e−k t − e−ka t

)
(5)

• The residual error model is an exponential model, i.e. observed concentrations
are log-normally distributed:

log(yj) = log(f(tj;F, ka, V, k)) + εj

• ka, V and k are log-normally distributed while F has a logit-normal distribu-
tion:

logit(F ) ∼ N (logit(Fpop), ω2
F )

where logit(x) = log(x/(1− x)) for 0 < x < 1.

First of all, it is easy to see that the structural model is not identi�able. Indeed, let
(F, ka, V, k) and (F ′, k′a, V

′, k′) be two set of individual parameters such that k′a = ka,
k′ = k, V ′/F ′ = V/F , then f(t;F, ka, V, k) = f(t;F ′, k′a, V

′, k′) for any t > 0. The
structural model is therefore partially identi�able since only ka, k and R = V/F are
identi�able.

Even if the structural model is not identi�able, the model itself is identi�able. We
will use a �two step procedure� to demonstrate that we can derive a consistent
estimator for all the population parameters of the model. Here, consistency means
that this estimator converges to the true values of the population parameters when
both the number of individuals and the number of observations per individual tend
to in�nity.

1. The structural model is partially identi�able. Then, for each individual i =
1, 2, . . . , N , the set of identi�able individual parameters kai , ki and Ri = Vi/Fi
can be perfectly recovered when the number of measurements ni for individual
i tends to in�nity, by maximizing the conditional distribution p(yi|kai , ki, Ri).

2. The ratio R = V/F is a random variable de�ned as the ratio of a logit-
normal and a log-normal variable. This distribution depends on parameters
Fpop, Vpop, ωF and ωV and there exists a one-to-one mapping between these
four parameters and the distribution of R. Thus, the maximum likelihood
estimator of these four parameters, derived from a N -sample R1, R2, . . .RN

of R, is consistent: it converges to the true values of these parameters when
the number of individual N tends to in�nity. ML estimators of ka,pop and
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ωka (resp. kpop and ωk) obtained from ka1 , . . . , kaN (resp. k1, . . . , kN) are also
consistent.

Remark 1: The model is not identi�able if both V and F are log-normally dis-
tributed. Indeed, the log-ratio log(R) is normally distributed:

log(R) ∼ N (log(Vpop)− log(Fpop), ω2
V + ω2

F )

and there exists an in�nity of possible decompositions leading to the same probability
distribution.

Remark 2: This interesting result remains an asymptotical result. In practice, it
means that we can expect to estimate all the population parameters of the model
with a desired precision, if we have enough data for that. When the number of
individuals and measurements is �nite, the properties of the ML estimator cannot be
derived analytically. A Monte-Carlo study can be used to evaluate these properties
for a given design.

4.2 Simulation study

We simulate PK data from this model for N = 5000 individuals. A single dose
D = 100 is administrated at time 0 and n = 23 measurements are collected at times
0.5, 1, 3, 5, . . . , 21, 23.

The standard deviation of the residual errors (εij) is σ = 0.1.

Values of the population PK parameters are ka,pop = 1, Vpop = 10, kpop = 0.1,
ωka = 0.25, ωV = 0.3 and ωk = 0.15. We will consider two logit distributions for F .

Model A: logit(F ) ∼ N (logit(0.9), 1)

The pdf of F is displayed in Figure 1. We see that this distribution is very di�erent
from a log-normal distribution. We can then expect to be able to estimate the
population parameters.

We used the SAEM algorithm implemented in Monolix for computing the ML esti-
mate of the population parameters and their standard errors. Table 1 shows that
population parameters are indeed very well estimated in this example.

Even if the population parameters are �almost� perfectly estimated, the individual
parameters cannot be estimated very precisely. Figure 2 compares the simulated
individual parameters, considered here as the �true� values, with the Maximum a
Posteriori (MAP) estimates, i.e. the modes of the conditional distributions p(Vi|yi, θ̂)
and p(Fi|yi, θ̂) for i = 1, 2, . . . , N . On the other hand, the ratio Fi/Vi is estimated
very accurately.

In this example, the likelihood has a maximum which is very well de�ned and SAEM
converges easily even with poor initial guesses. Figure 3 displays the convergence of
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5 runs of SAEM obtained with di�erent initial values. Thus, thanks to the design
(i.e. a very large number of subjects and a large number of measurement per subject)
and thanks to the probability distribution of the individual parameters, the model
can be considered as "practically identi�able".

Estimations obtained with NONMEM FOCE are F̂ = 0.764, k̂a = 1.00, V̂ = 8.88,
k̂ = 0.100. We can see that FOCE introduces some bias in the estimation of F
and V . Indeed, it is not possible to estimate correctly the individual parameters
since the model is not structurally identi�able. Then, any method based on the
estimation of the individual parameters cannot work as well as maximum likelihood
estimation.

Model B: logit(F ) ∼ N (logit(0.4), 0.22)

Things will change with this distribution for F . Indeed, we can see Figure 4 that
this distribution is now very close to a log-normal one. Even if the model remains
identi�able in theory, we cannot expect anymore a good estimation of the population
parameters.

Table 2 displays the results obtained with a single run of SAEM. We see that pop-
ulation parameters Fpop and Vpop are poorly estimated with this run. The ratio
Fpop/Vpop remains very well estimated (0.401 instead of 0.4) as well as the total
variance ω2

F + ω2
V (0.139 instead of 0.13). We also notice a clear degradation of the

results obtained with FOCE (F̂pop = 0.830, V̂pop = 20.8, ω̂F = 0.56, ω̂V = 0.3).

This poor estimation of the population parameters leads to a misspeci�ed population
distribution and a bias in the estimation of the individual parameters. Figure 5
shows that the Vi and the Fi are underestimated. Nevertheless, ratios Ri = Vi/Fi
are correctly estimated.

In this example and because of the lack of identi�ability of some parameters, the
likelihood does not exhibit a unique isolated maximum. Figure 6 shows that the
convergence of SAEM strongly depends on the initial value. The very high correla-
tion (0.9989) between the estimates of Fpop and Vpop con�rms that we should not
rely on the estimated values of these parameters.

When such lack of practical identi�ability is revealed, a solution with this example
consists in �xing either Fpop or Vpop. A less radical solution may consist in introduc-
ing a prior information on Fpop or Vpop. If we introduce, for instance, a logit-normal
distribution for Fpop, with mean logit(0.4) and standard deviation 0.2, then the pop-
ulation parameters are correctly estimated (F̂pop = 0.41, V̂pop = 10.1) as well as the
individual parameters.

We should notice that removing the inter-individual variability of Fi is not a solution
since that makes the model non identi�able. Indeed, if Fi = Fpop, then Vi/Fi follows
a log-normal distribution with mean log(Vpop/Fpop) (in the log domain) and standard
deviation ωF . Then, only the ratio Vpop/Fpop is identi�able in this model.
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5 Conclusions

We have shown that models that are non-identi�able at an individual level may be-
come identi�able at the population level under conditions in which the probabilistic
models di�er between alternate models. This requires strong assumptions about the
probabilistic models which may be di�cult to validate in practice. Similarly, even if
the models are identi�able at the individual level it may prove di�cult to estimate
the parameters of the model unless supported by good experimental design. From a
pharmacokinetic point of view it means that the di�erences between individuals can
break the non-identi�ability seen at the population level and this may allow better
mechanistic understanding of the interindividual di�erences in pharmacokinetics.

We have mainly considered here the most theoretical aspects of the identi�ability of
a model. For the numerical examples, we have been using an EM-like algorithm, as-
suming that the maximum likelihood estimate of the population parameters could be
computed. Our �rst partial results suggest that linearization methods (FO, FOCE)
are more sensitive to a lack of identi�ability than maximum likelihood methods with
no approximation on the model. A detailed discussion around the impact of of the
estimation method - and its implementation in a software tool - on the results is
beyond the scope of this paper. Such discussion as well as practical suggestions on
how to proceed when the model shows signs of un-identi�ability clearly deserve to
be the subject of further work.
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parameter true value initial value estimation relative s.e. (%)
Fpop 0.9 0.4 0.909 0.8
ka,pop 1 0.5 1.006 0.4
Vpop 10 5 10.188 0.9
kpop 0.1 0.3 0.100 0.2
ωF 1 3 1.007 7.0
ωka 0.25 1 0.249 1.3
ωV 0.30 1 0.306 1.4
ωk 0.15 1 0.148 1.1
σ 0.10 1 0.100 0.3

Table 1: Model A: ML estimates of the population parameters.

parameter true value initial value estimation relative s.e. (%)
Fpop 0.4 0.2 0.245 9.9
ka,pop 1 2 0.999 0.40
Vpop 10 5 6.11 9.8
kpop 0.1 0.05 0.10 0.2
ωF 0.2 1 0.289 24.0
ωka 0.25 1 0.249 1.3
ωV 0.30 1 0.236 20.5
ωk 0.15 1 0.148 1.1
σ 0.10 1 0.01 0.3

Table 2: Model B: ML estimates of the population parameters.

19



Figure 1: Model A: pdf of the logit-normal distribution with parameters
(logit(0.9), 1).

Figure 2: Model A: estimated values versus true values of log(Vi), logit(Fi) and
Ri = Vi/Fi.
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Figure 3: Model A: convergence of 5 runs of SAEM obtained with di�erent initial
values.

Figure 4: Model B: pdf of the logit-normal distribution with parameters
(logit(0.4), 0.22).

Figure 5: Model B: estimated values versus true values of log(Vi), logit(Fi) and
Ri = Vi/Fi.
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Figure 6: Model B: convergence of 5 runs of SAEM obtained with di�erent initial
values.
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