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What do we mean by identiability in mixed eects models?

We discuss the question of model identiability within the context of nonlinear mixed eects models. Although there has been extensive research in the area of xed eects models, much less attention has been paid to random effects models. In this context we distinguish between theoretical identiability, in which dierent parameter values lead to non-identical probability distributions, structural identiability which concerns the algebraic properties of the structural model, and practical identiability, whereby the model may be theoretically identiable but the design of the experiment may make parameter estimation dicult and imprecise. We explore a number of pharmacokinetic models which are known to be non-identiable at an individual level but can become identiable at the population level if a number of specic assumptions on the probabilistic model hold. Essentially if the probabilistic models are different, even though the structural models are non-identiable, then they will lead to dierent likelihoods. The ndings are supported through simulations.

Introduction

A statistical model is said to be identiable when, given an innite amount of data, it is possible to uniquely estimate the true values of the model parameters. The uniqueness property implies that dierent values of the model parameters generate dierent probability distributions of the observable variables. Conversely if two or more sets of parameters generate identical distributions of the observed values the model is not identiable. However it still may be possible to uniquely identify a 1 subset of parameters: that is, not all the parameters of an unidentiable model are unidentiable. In this case we say that the model is partially identiable.

It should also be noted that even when the parameters of the model are unidentiable, the model itself may perfectly describe the observed variables, in other words perfectly t the data.

A distinction is made in the literature between structural identiability and practical identiability. Structural identiability is related to the structure of the underlying mathematical model. It is concerned with whether the parameters of a model can be exactly identied from a given experiment with perfect input-output data [START_REF] Bellman | On structural identiability[END_REF][START_REF] Cobelli | Parameter and structural identiability concepts and ambiguities: a critical review and analysis[END_REF][START_REF] Shivva | An approach for identiability of population pharmacokineticpharmacodynamic models[END_REF][START_REF] Walter | On the identiability and distinguishability of nonlinear parametric models[END_REF][START_REF] Xia | Identiability of nonlinear systems with application to hiv/aids models[END_REF]. Chappell et al. [START_REF] Chappell | Global identiability of the parameters of nonlinear systems with specied inputs: a comparison of methods[END_REF] compare methods for analyzing the global structural identiability of the parameters of a nonlinear system with a specied input function. Gargash and Mital [START_REF] Gargash | A necessary and sucient condition of global structural identiability of compartmental models[END_REF] study the problem of global and local structural identiability for xed structure compartmental deterministic model of the biological system. Frohlich et al. [START_REF] Fröhlich | Uncertainty analysis for nonidentiable dynamical systems: Prole likelihoods, bootstrapping and more[END_REF] investigate the eect of structural non-identiability on the performance of frequentist methods for standard uncertainty analysis. They observe that the prole likelihood approach is the only one that properly identies structural non-identiability of parameters. On the other hand practical identiability is related to the study design, i.e. the limited amount of information that can be obtained from a given experiment [START_REF] Guedj | Practical identiability of hiv dynamics models[END_REF][START_REF] Petersen | Practical identiability of model parameters by combined respirometric-titrimetric measurements[END_REF][START_REF] Shivva | An approach for identiability of population pharmacokineticpharmacodynamic models[END_REF]. A link exists between practical identiability and sensitivity analysis. Brun et al. [START_REF] Brun | Practical identiability analysis of large environmental simulation models[END_REF] propose a systematic approach for tackling the parameter identiability problem of large models based on local sensitivity analysis.

Model identiability is closely related to model indistinguishability. The objective of indistinguishability analysis is to determine if dierent models are capable to t the available input-output data [START_REF] Godfrey | Identiability and indistinguishability of nonlinear pharmacokinetic models[END_REF][START_REF] Yates | Structural identiability and indistinguishability of compartmental models[END_REF]. Identiability and distinguishability of parametric models are important properties when the parameters to be estimated have a biological meaning or when the model is to be used to reconstruct physiologically meaningful variables that cannot be measured directly [START_REF] Walter | On the identiability and distinguishability of nonlinear parametric models[END_REF].

The question of identiability of pharmacokinetic (PK) and pharmacokinetic-pharmacodynamics (PKPD) models has been previously studied. Evans et al. [START_REF] Evans | An identiability analysis of a parentmetabolite pharmacokinetic model for ivabradine[END_REF] consider the identiability of a parent-metabolite pharmacokinetic model for ivabradine and one of its metabolites. Shivva et al. [START_REF] Shivva | Parameterisation aects identiability of population models[END_REF] use a simple one compartment population pharmacokinetic model to show that identiability of the variances of the random eects are aected by the parameterisation of the xed eects. An approach for assessment of identiability for xed and mixed eects PK or PKPD models is proposed in [START_REF] Shivva | An approach for identiability of population pharmacokineticpharmacodynamic models[END_REF]. Guedj et al. [START_REF] Guedj | Practical identiability of hiv dynamics models[END_REF] study the identiability of parameters in a model of HIV dynamics based on a system of non-linear Ordinary Dierential Equations. Garcia et al. [START_REF] Garcia | Identiability of PBPK models with applications to dimethylarsinic acid exposure[END_REF] discuss dierent types of identiability that occur in physiologically-based pharmacokinetic (PBPK) models and give reasons why they occur.

Identiability in mixed eects models has received much less attention. Identiability of linear mixed eects models is considered in [START_REF] Wang | Identiability of linear mixed eects models[END_REF]. In the context of mixed eects models, identiability is a fundamental prerequisite for model identication.

It concerns uniqueness of the population parameters estimated from a given set of observations obtained from several individuals of a same population [START_REF] Bonate | Pharmacokinetic-pharmacodynamic modeling and simulation[END_REF][START_REF] Lavielle | Mixed Eects Models for the Population Approach: Models, Tasks, Methods and Tools[END_REF][START_REF] Wu | Mixed eects models for complex data[END_REF]. It was the purpose of the current investigation to examine some issues in identiability of mixed eects models.

We dene the concept of identiability of mixed eects models in Section 2. Identiability is usually dened for continuous data models but this concept can be easily extended to categorical, count or time to event data models. We show that a model can be identiable even if it is not structurally identiable. Indeed the probability distribution of the individual parameters plays an important role for characterizing the identiability property of the model. Furthermore, a distinction is made between identiability of the population parameters (the population parameters can be estimated successfully and unequivocally from the observed data) and identiability of the individual parameters (the individual parameters can be estimated successfully and unequivocally from the observed data).

Sections 3 and 4 present some specic results taken from the eld of pharmacokinetics. We consider rst a situation where dierent parameterizations of a PK model are algebraically undistinguishable. The model is shown to be identiable as soon as some hypothesis are made on the correlation structure of the PK parameters.

It is usually claimed that the bioavailability F cannot be estimated using only PK measurements obtained from an oral administration: only the ratio F/V can be properly estimated. We show that the model is identiable under some assumptions on the probabilistic model. Then, both F and V can be simultaneously estimated.

2 Identiability of mixed eects models

Preliminary remarks

The denition of identiability for mixed eects models is not always very precise.

As an example, the denition given in [START_REF] Wu | Mixed eects models for complex data[END_REF] reduces to: parameters or models are called non-identiable if two sets of dierent parameters lead to the same probability distribution. This denitions remain quite ambiguous and needs to be claried. In particular, we will need to distinguish the identiability of the population parameters and the identiability of the individual parameters.

We need also to make a clear distinction between identiability, structural identiability and practical identiability, dening what these properties mean in the context of mixed eects models.

The concept of structural identiability was introduced rst in the area of systems and control (see [START_REF] Bellman | On structural identiability[END_REF]), where the systems are deterministic and depend on nonrandom parameters. The situation is quite dierent in a population approach context where the individual parameters are random variables. In order to analyse the properties of a statistical model it is necessary to take into account the algebraic properties of the structural model as well as the properties of the probabilistic model. In particular, the choice of the parameterization may have a strong impact on the probabilistic properties of the model. For instance, parameterizations of a PK model using volume V and clearance Cl, or using volume V and elimination rate constant k, where k = Cl/V , are absolutely equivalent from a purely algebraic point of view: we can use both interchangeably. That's not the case if we put a distribution on these parameters.

Assume, for instance, that V and Cl are independent and log-normally distributed:

log(V ) ∼ N (log(V pop ), ω 2 V ) log(Cl) ∼ N (log(Cl pop ), ω 2 
Cl ) corr (log(V ), log(Cl)) = 0 where corr (log(V ), log(Cl)) is the linear correlation between log(V ) and log(Cl).

Then, we are implicitly assuming that k is also log-normally distributed with a variance ω 2 k larger than the variance of V and that log(k) and log(V ) are negatively correlated. Indeed, log(k) = log(Cl) -log(V )

Then, since log(Cl) and log(V ) are both normally distributed, log(k) is also normally distributed and

log(k) ∼ N (log(Cl pop /V pop ), ω 2 V + ω 2 
Cl ) Furthermore, the covariance between log(V ) and log(k) is given by

cov (log(V ), log(k)) = -var (log(V )) = -ω 2 V Then, corr (log(V ), log(k)) = -ω V /ω k
On the other hand, if we use parameters (V, k) in the model, assuming independent distributions, then, we implicitly assume that V and Cl are dependent.

Structural identiability

Structural identiability is related to the structure of the underlying mathematical model, for example as discussed above, the PK model.

For sake of simplicity, we will only consider models for univariate data, i.e. for a single outcome.

We need some notation. Let N be the number of individuals. Then, for i = 1, 2, . . . , N , let y i = (y ij , 1 ≤ j ≤ n i ) be the n i observations for individual i collected at times (t ij , 1 ≤ j ≤ n i ).

Let us start with a basic model for continuous data:

y ij = f (t ij ; ψ i ) + ε ij
Here, f is the structural model, which is a parametric function of time, ψ i is a vector of individual parameters, and (ε ij , 1 ≤ j ≤ n i ) is a sequence of residual errors.

We will assume that ε ij is a sequence of random variables with mean 0 and nite variance σ 2 .

Structural identiability of the model is directly related to the properties of the structural model f . We don't take into account possible dierences between individuals.

Without any loss of generality, we will assume that f is dened for t ≥ 0. Let f ( • ; ψ) be the function f dened for a given vector of parameters ψ (we could equivalently use the notation f ψ ). Then, we will say that the model is structurally identiable if there exists a one-to-one mapping between the parameter ψ and the function f

( • ; ψ), i.e. ψ = ψ ⇔ f (t; ψ) = f (t; ψ ) for any t ≥ 0
This denition can be easily extended to any other parametric mixed eects models:

• Continuous data model with non constant residual error model: Assume now that there exists a parametric function g such that

y ij = f (t ij ; ψ i ) + g(t ij ; ψ i )ε ij
Here, the structural model is the pair (f, g).

• Time-to-event data model: The structural model is the hazard function h(t; ψ).

• Count data model: Consider for instance a Poisson model,

y ij ∼ Poisson(λ(t ij , ψ i ))
The structural model is the Poisson intensity λ(t; ψ)

• Categorical data model: Assume a Bernoulli model for binary data as an example,

P(y ij = 1) = 1 -P(y ij = 0) = π(t ij ; ψ i )
Here, the structural model is the function π(t; ψ).

Practical identiability

Practical non-identiability is less clearly dened in the literature compared to structural non-identiability.

Practical identiability not only depends on the model structure, but is also related to the experimental conditions together with the quality and quantity of the measurements [START_REF] Petersen | Practical identiability of model parameters by combined respirometric-titrimetric measurements[END_REF]. Then, a parameter that is structurally identiable may be practically unidentiable with a limited amount and quality of experimental data.

Deriving some relationship between identiability and condence interval of parameter estimates seems natural. Nevertheless, since practical identiability is a non-asymptotic property, it is not possible to propose a rigorous denition based on asymptotic condence intervals.

Raue et al. [START_REF] Raue | Structural and practical identiability analysis of partially observed dynamical models by exploiting the prole likelihood[END_REF] propose an appealing denition of practical identiability based on a likelihood-based condence region instead of asymptotic condence intervals. They suggest an approach that exploits the prole likelihood and enables the detection of both structural and practical non-identiabilities.

Unfortunately, such an approach is cumbersome to adopt for (nonlinear) mixed eects models since it requires the estimation of the population parameters and computation of the likelihood many times.

Methods that can be used in practice for detecting some identiability issues remain quite empirical:

• We can for instance run the estimation algorithm with dierent initial values.

Convergence to dierent solutions may be suspicious.

• Even if it is an asymptotic criteria, the observed Fisher Information Matrix can also be used. Indeed, the inverse of this matrix provides an approximation of the variance-covariance matrix of the estimated parameters. A large condition number of this variance-covariance matrix (i.e. the ratio of its largest and smallest eigenvalues) reects a strong correlation structure between estimates and may indicate some identiability issue.

Identiability of the population parameters

Identiability of the population parameters θ is related to the properties of the statistical model of the observations y = (y i , 1 ≤ i ≤ N ):

p(y; θ) = N i=1 p(y i ; θ) (1) = N i=1 p(y i , ψ i ; θ) dψ i (2) 
We are here in a classical situation where the statistical model is identiable if the mapping between θ and the probability distribution p(y; θ) is one-to-one (we use indiscriminately p(y; θ) for the probability distribution function (pdf ) and for the distribution of y).

By denition, the Maximum Likelihood (ML) estimate of θ maximizes p(y; θ). If the model is identiable, then, the ML estimate converges to the true value of θ when N increases, under very general regularity conditions [START_REF] Lavielle | Mixed Eects Models for the Population Approach: Models, Tasks, Methods and Tools[END_REF]. That means that it is possible to estimate θ as precisely as required as soon as the size N is large enough. On the other hand, if the model is not identiable, then, maximizing p(y; θ) with respect to θ will not lead to a unique solution. We can nd, for instance, θ(1) and θ(2) such that, for any vector of population parameters θ, p(y; θ) ≤ p(y; θ(1) ) = p(y; θ(2) )

A number of particular cases have been reported. For instance, Wang et al. [START_REF] Wang | Identiability of linear mixed eects models[END_REF] study the identiability of the covariance parameters in a linear mixed eects model.

They focus on those models that are not over-parameterized and derive conditions of identiability and study commonly used covariance structures. In an unpublished work, Nuñez and Concordet consider the identiability problem in a nonlinear mixed eects model for continuous data, assuming a nonparametric distribution for the individual parameters. They provide several explicit conditions on f which ensure the identiability of the model.

Since p(y; θ) = p(y, ψ; θ), identiability of the complete model p(y, ψ; θ) is a necessary condition to ensure the identiability of the observed model p(y; θ). Unfortunately, it is not a sucient condition.

For example consider the linear model

y ij = (a i + b i )t ij + ε ij (3) 
where a i and b i are normally distributed with unknown means m 1 and m 2 . Here, the vector of population parameters θ includes m 1 and m 2 . The model p(y; θ) is unidentiable since the population parameters m 1 and m 2 cannot be estimated from a sequence of observations (y ij ): only the sum m 1 + m 2 can be estimated since a i + b i is normally distributed with mean m 1 + m 2 . On the other hand, the joint model p(y i , a i , b i ; θ) is identiable since m 1 and m 2 can be estimated using sequences

(a i , 1 ≤ i ≤ N ) and (b i , 1 ≤ i ≤ N ).
Analyzing the structural identiability of the model is important and useful, but it is not sucient for concluding if the model is identiable or not. For instance, a statistical model may be identiable even if it is not structurally identiable. Indeed, when data coming from various individuals is available, and under some hypothesis, we can take advantage of the probability distribution of the individual parameters to estimate the population parameters. It is then the combination of algebraic relationships and probabilistic relationships that make the model identiable.

Consider again the linear model ( 3). The structural model f (t; a i , b i ) = (a i + b i )t is not identiable since only a i + b i can be estimated. We have seen in the previous example that the statistical model of the observations is not identiable when a i and b i are both normally distributed. Surprisingly, the model becomes identiable in most cases when a i and b i are not both normally distributed.

Assume for instance that a i and b i have exponential distributions with parameters λ 1 and λ 2 . Then, assuming that λ 1 = λ 2 , the sum a i + b i is a random variable with pdf

p(z; λ 1 , λ 2 ) = λ 1 λ 2 λ 1 -λ 2 e -λ 2 z -e -λ 1 z
There is a one-to-one mapping between (λ 1 , λ 2 ) and this pdf: the model is identiable. Identiabililty of the model remains a theoretical property: in practice, accurate estimation of λ 1 and λ 2 will require a huge amount of data.

Identiability of the individual parameters

We can see the problem of estimating the individual parameters (ψ i ) as an inverse problem: we aim to recover these unobserved vectors of parameters using the observations (y i ).

Structural unidentiability means that the problem is ill posed: we can nd dierent vectors ψ i and ψ i that produce the same structural predictions:

ψ i = ψ i and f (t; ψ i ) = f (t; ψ i ) for any t ≥ 0 And then, p(y i |ψ i ) = p(y i |ψ i )
Each individual conditional model p(y i |ψ i ) is therefore unidentiable, but in a mixed eects model, we usually don't estimate each individual parameter ψ i by maximizing this conditional distribution p(y i |ψ i ). Indeed, each individual parameter ψ i is a random vector with distribution p(ψ i ; θ). Then, for a given vector of population parameter θ (given or previously estimated), we rather consider the posterior distribution p(ψ i |y i ; θ) = p(y i |ψ i )p(ψ i ; θ) p(y i ; θ)

Thus, ψ i is identiable as soon as p(ψ i ; θ) = p(ψ i ; θ).

In other words, the population distribution of the individual parameters plays the role of a prior distribution that now makes the problem well posed.

Example 1: Consider a bi-exponential model:

f (t; A i , B i , α i , β i ) = A i e -α i t + B i e -β i t
This structural model is locally identiable but globally unidentiable since (A i , α i ) and (B i , β i ) are interchangeable. The model becomes identiable if we introduce some information about α i and β i , assuming for instance that P(α i > β i ) > 0.5. The use of this prior leads to select the solution where α i > β i and discard the other solution where α i < β i .

Example 2: Consider again model (3) where ε ij ∼ i.i.d. (0, σ 2 ).

This structural model f (t; a i , b i ) = (a i + b i )t is clearly locally unidentiable since only the sum a i + b i can be estimated maximizing the conditional pdf of y i . Let c i = a i + b i and dene ĉi as ĉi = Argmax

c i p(y i |c i ) = Argmin c i j (y ij -c i t ij ) 2
Thus, âi + bi = ĉi = j y ij t ij / j t 2 ij , but it is impossible to decompose this sum and compute âi and bi without any additional information.

Assume for instance that

a i b i ∼ N m 1 m 2 , Ω Let T i be the n i × 2 matrix T i = t i,1 t i,2 . . . t i,n i t i,1 t i,2 . . . t i,n i
The posterior distribution of a i and b i is now a well dened normal distribution:

a i b i |y i ∼ N µ i,1 µ i,2 , Γ i where Γ i = T i T i σ 2 + Ω -1 -1 and µ i,1 µ i,2 = Γ i T i y i σ 2 + Ω -1 m 1 m 2 
The maximum a posteriori (MAP) estimates of a i and b i are, respectively, µ i,1 and µ i,2 . They are well dened and unique: the individual parameters of the model are now identiable.

Remark: introduction of a Gaussian prior information for estimating the parameters of a linear ill-posed problem is equivalent to introduce a Tikhonov regularization term [START_REF] Tikhonov | Numerical methods for the solution of ill-posed problems[END_REF].

3 Illustration: the ip-op phenomenon

In this example, the structural model is not identiable without some physiological constraint (we can nd two dierent sets of PK parameters that produce identical PK proles). Nevertheless, identiability is ensured under some assumptions on the probabilistic model.

For a sake of simplicity, we will consider a single individual and omit the subscript i in the notation.

The structural PK model

Consider a basic PK model for a single oral administration at time 0,

f (t; k a , V, k) = Dk a V (k a -k) e -k t -e -ka t . (4) 
It is easy to see that, for any t ≥ 0,

f (t; k a , V, k) = f (t; k a , V , k )
where k a = k , k = k a and V = (k/k a )V .

Without any assumptions on the parameter values, the two solutions are indistinguishable. Some assumptions on the parameter space may make the model identiable (e.g. k a > k).

The probabilistic model

Without any assumption on the parameter space the structural model is not identiable but the probabilistic model may be identiable under some assumptions.

If we assume log-normal distributions for (k a , V, k), then (k a , V , k ) are also lognormally distributed since log(V ) = log(V ) + log(k) -log(k a ).

Furthermore, if we assume that log(k a ), log(V ) and log(k) are uncorrelated, then log(V ) and log(k a ) are implicitly correlated, as well as log(V ) and log(k ).

Thus, the two following models are distinguishable:

M 1 : corr (k a , V ) = corr (k a , k) = corr (k, V ) = 0 M 2 : corr (k a , V ) = corr (k a , k ) = corr (k , V ) = 0
In other words, if we assume that the variance-covariance matrix Ω of (log(k a ), log(V ), log(k))

is diagonal, then the model is identiable since we cannot have simultaneously both Ω and Ω diagonal, where Ω is the variance-covariance matrix of (log(k a ), log(V ), log(k )).

On the other hand, if we don't make any assumption on Ω, then the model is not identiable: we can nd two sets of xed parameters (ka pop , V pop , k pop ) and (ka pop , V pop , k pop ) and two covariance matrices Ω and Ω such that p(y, ψ; ka pop , V pop , k pop , Ω) = p(y, ψ; ka pop , V pop , k pop , Ω )

where y = (y j , 1 ≤ j ≤ n) is a vector of observed concentrations and ψ = (k a , V, k)

is the vector of individual PK parameters.

Statistical implications

Assume now that we have some PK data and we want to use the PK model dened in (4) to t this data. Then, it is expected to obtain dierent values of the likelihood under M 1 and M 2 since the two probabilistic models are dierent (we cannot have simultaneously corr (k, V ) = 0 and corr (k , V ) = 0).

Simulation:

Data with N = 100 subjects and n = 12 measurements per subject were simulated with the following parameter values: k a,pop = 1, V pop = 10, k pop = 0.1, ω ka = 0.25, ω V = 0.3, ω k = 0.15.

We can then try to estimate the population parameters of the model, using any software tool such as Monolix or NONMEM. According to the initial value, the SAEM algorithm [START_REF] Lavielle | Mixed Eects Models for the Population Approach: Models, Tasks, Methods and Tools[END_REF] in Monolix converges to two solutions: ( k (1) a , V (1) , k(1) ) = (1, 10.4, 0.099) and ( k(2) a , V (2) , k(2) ) = (0.097, 0.99, 1.04). The estimated log-likelihood for these two solutions are, respectively, -1126 and -1145. We see that, in this example, the rst solution, which is the right solution (i.e. close to the true values used for the simulation), correspond to the global maximum of the likelihood, while the other one correspond to a local maximum.

In other words, the model is identiable if we assume a diagonal matrix Ω, and maximizing the likelihood allows to select the right solution.

Here, it is not the values of the population PK parameters that allows one to select a model, but the (strong) hypothesis that we make concerning the covariance structure of the random eects. Indeed, if we simulate uncorrelated PK parameters using the other parameterization, then, the likelihood criteria will select this solution.

On the other hand, if we don't make any assumption about the covariance matrix, i.e. if we estimate a full variance-covariance matrix, then the model is not identiable and the likelihood criteria cannot select a model. Indeed, the log-likelihood still exhibits two maxima, (1, 10.4, 0.1) and (0.098, 1, 1.03), but with very close values: -1125.7 and -1126.2, respectively.

Remark 1: As expected, even if independent random eects were simulated using the rst parameterization, estimated variance-covariance matrix associated to the second solution is not diagonal: estimated correlations between log(k a ) and log(V ) and between log(k ) and log(V ) are, respectively, 0.41 and -0.62.

Remark 2: Similar results are obtained with NONMEM and FOCE: k(1) a = 1.01, V (1) = 10.4, k(1) = 0.099 using the rst set of initial estimates and k(2)

a = 0.098, V (2) 
= 0.995, k(2) = 1.04 using the second one. We have simulated rich data in this example. Then, up to the exchangeability issue between k a and k, the individual PK parameters can be estimated accurately from the individual PK data. FOCE works very well here because this algorithm is precisely based on the estimation of the individual parameters.

4 Illustration: Identiability of the bioavailability We show with this example that, even if the structural model only allows the identication of the ratio V /F , the probabilistic model, under some assumptions, makes the model identiable and allows the estimation of both V and F . We will consider again a single individual and omit the subscript i in the notation.

The model and its properties

• The PK model is a one compartment model for oral administration with parameters (F, k a , V, k) where F is the bioavailability, i.e. the fraction of administered dose which is absorbed. Let f (t; F, k a , V, k) be the predicted concentration given by this model at time t:

f (t; F, k a , V, k) = D F k a V (k a -k) e -k t -e -ka t (5) 
• The residual error model is an exponential model, i.e. observed concentrations are log-normally distributed:

log(y j ) = log(f (t j ; F, k a , V, k)) + ε j
• k a , V and k are log-normally distributed while F has a logit-normal distribution:

logit(F ) ∼ N (logit(F pop ), ω F ) where logit(x) = log(x/(1 -x)) for 0 < x < 1.
First of all, it is easy to see that the structural model is not identiable. Indeed, let

(F, k a , V, k) and (F , k a , V , k ) be two set of individual parameters such that k a = k a , k = k, V /F = V /F , then f (t; F, k a , V, k) = f (t; F , k a , V , k ) for any t > 0.
The structural model is therefore partially identiable since only k a , k and R = V /F are identiable.

Even if the structural model is not identiable, the model itself is identiable. We will use a two step procedure to demonstrate that we can derive a consistent estimator for all the population parameters of the model. Here, consistency means that this estimator converges to the true values of the population parameters when both the number of individuals and the number of observations per individual tend to innity.

1. The structural model is partially identiable. Then, for each individual i = 1, 2, . . . , N , the set of identiable individual parameters k a i , k i and R i = V i /F i can be perfectly recovered when the number of measurements n i for individual i tends to innity, by maximizing the conditional distribution p(y i |k a i , k i , R i ).

2. The ratio R = V /F is a random variable dened as the ratio of a logitnormal and a log-normal variable. This distribution depends on parameters F pop , V pop , ω F and ω V and there exists a one-to-one mapping between these four parameters and the distribution of R. Thus, the maximum likelihood estimator of these four parameters, derived from a N -sample R 1 , R 2 , . . . R N of R, is consistent: it converges to the true values of these parameters when the number of individual N tends to innity. ML estimators of k a,pop and ω ka (resp. k pop and ω k ) obtained from k a 1 , . . . , k a N (resp. k 1 , . . . , k N ) are also consistent.

Remark 1: The model is not identiable if both V and F are log-normally distributed. Indeed, the log-ratio log(R) is normally distributed:

log(R) ∼ N (log(V pop ) -log(F pop ), ω 2 V + ω 2 F )
and there exists an innity of possible decompositions leading to the same probability distribution.

Remark 2: This interesting result remains an asymptotical result. In practice, it means that we can expect to estimate all the population parameters of the model with a desired precision, if we have enough data for that. When the number of individuals and measurements is nite, the properties of the ML estimator be derived analytically. A Monte-Carlo study can be used to evaluate these properties for a given design.

Simulation study

We simulate PK data from this model for N = 5000 individuals. A single dose D = 100 is administrated at time 0 and n = 23 measurements are collected at times 0.5, 1, 3, 5, . . . , 21, 23.

The standard deviation of the residual errors (ε ij ) is σ = 0.1.

Values of the population PK parameters are k a,pop = 1, V pop = 10, k pop = 0.1, ω ka = 0.25, ω V = 0.3 and ω k = 0.15. We will consider two logit distributions for F .

Model A: logit(F ) ∼ N (logit(0.9), 1)

The pdf of F is displayed in Figure 1. We see that this distribution is very dierent from a log-normal distribution. We can then expect to be able to estimate the population parameters.

We used the SAEM algorithm implemented in Monolix for computing the ML estimate of the population parameters and their standard errors. Table 1 shows that population parameters are indeed very well estimated in this example.

Even if the population parameters are almost perfectly estimated, the individual parameters cannot be estimated very precisely. Figure 2 compares the simulated individual parameters, considered here as the true values, with the Maximum a Posteriori (MAP) estimates, i.e. the modes of the conditional distributions p(V i |y i , θ) and p(F i |y i , θ) for i = 1, 2, . . . , N . On the other hand, the ratio F i /V i is estimated very accurately.

In this example, the likelihood has a maximum which is very well dened and SAEM converges easily even with poor initial guesses. Figure 3 displays the convergence of 5 runs of SAEM obtained with dierent initial values. Thus, thanks to the design (i.e. a very large number of subjects and a large number of measurement per subject) and thanks to the probability distribution of the individual parameters, the model can be considered as "practically identiable".

Estimations obtained with NONMEM FOCE are F = 0.764, ka = 1.00, V = 8.88, k = 0.100. We can see that FOCE introduces some bias in the estimation of F and V . Indeed, it is not possible to estimate correctly the individual parameters since the model is not structurally identiable. Then, any method based on estimation of the individual parameters cannot work as well as maximum likelihood estimation.

Model B: logit(F ) ∼ N (logit(0.4), 0.2 2 )

Things will change with this distribution for F . Indeed, we can see Figure 4 that this distribution is now very close to a log-normal one. Even if the model remains identiable in theory, we cannot expect anymore a good estimation of the population parameters.

Table 2 displays the results obtained with a single run of SAEM. We see that population parameters F pop and V pop are poorly estimated with this run. The ratio F pop /V pop remains very well estimated (0.401 instead of 0.4) as well as the total variance ω 2 F + ω 2 V (0.139 instead of 0.13). We also notice a clear degradation of the results obtained with FOCE ( Fpop = 0.830, Vpop = 20.8, ωF = 0.56, ωV = 0.3).

This poor estimation of the population parameters leads to a misspecied population distribution and a bias in the estimation of the individual parameters. Figure 5 shows that the V i and the F i are underestimated. Nevertheless, ratios R i = V i /F i are correctly estimated.

In this example and because of the lack of identiability of some parameters, the likelihood does not exhibit a unique isolated maximum. Figure 6 shows that the convergence of SAEM strongly depends on the initial value. The very high correlation (0.9989) between the estimates of F pop and V pop conrms that we should not rely on the estimated values of these parameters.

When such lack of practical identiability is revealed, a solution with this example consists in xing either F pop or V pop . A less radical solution may consist in introducing a prior information on F pop or V pop . If we introduce, for instance, a logit-normal distribution for F pop , with mean logit(0.4) and standard deviation 0.2, then the population parameters are correctly estimated ( Fpop = 0.41, Vpop = 10.1) as well as the individual parameters.

We should notice that removing the inter-individual variability of F i is not a solution since that makes the model non identiable. Indeed, if F i = F pop , then V i /F i follows a log-normal distribution with mean log(V pop /F pop ) (in the log domain) and standard deviation ω F . Then, only the ratio V pop /F pop is identiable in this model.

Conclusions

We have shown that models that are non-identiable at an individual level may become identiable at the population level under conditions in which the probabilistic models dier between alternate models. This requires strong assumptions about the probabilistic models which may be dicult to validate in practice. Similarly, even if the models are identiable at the individual level it may prove dicult to estimate the parameters of the model unless supported by good experimental design. From a pharmacokinetic point of view it means that the dierences between individuals can break the non-identiability seen at the population level and this may allow better mechanistic understanding of the interindividual dierences in pharmacokinetics.

We have mainly considered here the most theoretical aspects of the identiability of a model. For the numerical examples, we have been using an EM-like algorithm, assuming that the maximum likelihood estimate of the population parameters could be computed. Our rst partial results suggest that linearization methods (FO, FOCE) are more sensitive to a lack of identiability than maximum likelihood methods with no approximation on the model. A detailed discussion around the impact of of the estimation method -and its implementation in a software tool -on the results is beyond the scope of this paper. Such discussion as well as practical suggestions on how to proceed when the model shows signs of un-identiability clearly deserve to be the subject of further work. (logit(0.9), 1). 
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 6 Figure 6: Model B: convergence of 5 runs of SAEM obtained with dierent initial values.

Table 1 :

 1 Model A: ML estimates of the population parameters.

	parameter	true value	initial value	estimation	relative s.e. (%)
	F pop	0.9	0.4	0.909	0.8
	k a,pop	1	0.5	1.006	0.4
	V pop	10	5	10.188	0.9
	k pop	0.1	0.3	0.100	0.2
	ω F	1	3	1.007	7.0
	ω ka	0.25	1	0.249	1.3
	ω V	0.30	1	0.306	1.4
	ω k	0.15	1	0.148	1.1
	σ	0.10	1	0.100	0.3
	parameter	true value	initial value	estimation	relative s.e. (%)
	F pop	0.4	0.2	0.245	9.9
	k a,pop	1	2	0.999	0.40
	V pop	10	5	6.11	9.8
	k pop	0.1	0.05	0.10	0.2
	ω F	0.2	1	0.289	24.0
	ω ka	0.25	1	0.249	1.3
	ω V	0.30	1	0.236	20.5
	ω k	0.15	1	0.148	1.1
	σ	0.10	1	0.01	0.3

Table 2 :

 2 Model B: ML estimates of the population parameters.
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