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Abstract

Purpose: For nonlinear mixed-e�ects pharmacometric models, diagnostic approaches of-

ten rely on individual parameters, also called empirical Bayes estimates (EBEs), esti-

mated through maximizing conditional distributions. When individual data are sparse,

the distribution of EBEs can �shrink� towards the same population value, and as a direct

consequence, resulting diagnostics can be misleading.

Methods: Instead of maximizing each individual conditional distribution of individual

parameters, we propose to randomly sample them in order to obtain values better spread

out over the marginal distribution of individual parameters.

Results: We evaluated, through diagnostic plots and statistical tests, hypothesis related

to the distribution of the individual parameters and show that the proposed method leads

to more reliable results than using the EBEs. In particular, diagnostic plots are more

meaningful, the rate of type I error is correctly controlled and its power increases when the

degree of misspeci�cation increases. An application to the warfarin pharmacokinetic

data con�rms the interest of the approach for practical applications.

Conclusions: The proposed method should be implemented to complement EBEs-based

approach for increasing the performance of model diagnosis.
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1 Abbreviations section

Abbreviations Description
EBE Empirical Bayes estimates
MAP Maximum a posteriori
MCMC Markov Chain Monte Carlo
PK Pharmacokinetics
PD Pharmacodynamics
PPC Posterior predictive checks
VPC Visual predictive checks
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2 Introduction

Mixed-e�ects modelling is nowadays established as a gold-standard approach for the analysis

of longitudinal pharmacokinetics (PK) and pharmacodynamics (PD) data. These models are

widely used for their ability to describe di�erent levels of variability, and in particular inter-

individual variability. Usually, a mixed-e�ect model is composed by two main components:

the model for the observations including the structural model and the residual error model;

and the model for the individual parameters, including their relationships with the individual

covariates as well as the correlation structure of the random e�ects [1, 2].

Model diagnosing represents a key activity aimed at building con�dence around the de-

veloped models before using them for any purpose, such as prediction or simulation. Several

diagnostic tools already exist for evaluating the structural model and the residual error model;

among them the individual �ts, the residual-based diagnostic plots and prediction versus obser-

vation plots [3, 4, 5]. Visual predictive checks (VPC) and posterior predictive checks (PPC) are

also powerful tools based on the posterior predictive distribution for evaluating simultaneously

all the features of the model [6, 7].

Herein, we will focus on diagnosing the model for the individual parameters where di-

agnostics are often performed to check their marginal distributions, to detect some possible

relationships between individual parameters and covariates, or some possible correlations be-

tween random e�ects. Corresponding diagnostic plots are usually based on the empirical Bayes

estimates (EBEs) of the individual parameters and EBEs of the random e�ects.

It is known that the use of EBEs for diagnostic plots and statistical tests is e�cient with

rich data, when a signi�cant amount of information is available in the data for recovering

4



accurately all the individual parameters. On the contrary, in case of sparse data, tests and

plots can be misleading when the estimates of the individual parameters shrink towards the

same population values. Diagnostic tools relying on EBEs are therefore not recommended for

high shrinkage [8, 9].

The objective of a diagnostic tool is twofold: �rst is to check if the assumptions made on

individual parameters are valid ; then, if some assumptions are rejected, diagnosis tools should

give some guidance on how to improve the model. Model diagnostics is therefore used to

eliminate model candidates that do not seem capable of reproducing the observed data [4, 5, 2].

In such process of model building, by de�nition, none of the features of the ��nal model� should

be rejected. As is the usual case in statistics, it is not because this ��nal� model has not been

rejected that it is necessarily the �true� one. All that we can say is that the experimental data

does not allow us to reject it. It is merely one of perhaps many models that cannot be rejected.

The objective of this paper is to propose a new approach for diagnosing models using indi-

vidual conditional distribution and formally compare this method to the EBE-based classical

approach through numerical experiments based on simulated data.

There exists few useful methods for statistical testing in mixed-e�ects models. Several

existing test procedures only concern linear mixed-e�ects models [10, 11, 12] or generalized

mixed-e�ects models [13, 14, 15]. Furthermore, the aim of most of these procedures is to detect

possible misspeci�cations of the random-e�ects structure. Other speci�c features of the model

are considered by several authors, such as the normality of the random e�ects [16, 17], or the

error distribution [18].

Bootstrap is a popular method for the global validation of a nonlinear mixed-e�ects model [19].

Even if bootstrapping is an appealing approach, it requires an important computing e�ort for
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validating a single model which needs to be �tted many times. Then, it cannot be used for

model building, but only for validating the �nal model. Another method for a global test and

which relies on the use of a random projection technique is described in [20].

We propose a general approach for testing separately several features of a mixed-e�ects

model. The method consists in generating individual parameters and individual random e�ects

using their conditional distributions. Then, the sampled parameters, the sampled random

e�ects and the original observations can be used together for producing diagnostic plots and

building statistical tests.

Herein, we use a one compartment PK model for oral administration to illustrate the prac-

tical properties of the proposed method. The design is such that a limited information about

the individual absorption rate constant kai, for individual i, can be obtained from the data.

We compare then diagnostic plots and statistical tests when parameters are given by the EBEs

or by a random sample of the conditional distributions.

3 Methods

3.1 Empirical Bayes estimates versus random sampling from the con-

ditional distribution

Calculating the EBE of an individual parameter consists in estimating ψi by maximizing

the conditional distribution p(ψi|yi) where yi = (yij, 1 ≤ j ≤ ni) is a sequence of observations.

This conditional mode, also known as the maximum a posteriori (MAP) estimate of ψi, is the
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most likely value of the individual parameter ψi, given the observations and a given population

distribution p(ψi).

However, when the data are sparse, individual estimates of a parameter can �shrink� towards

the same population value, which is the mode of the population distribution of this parameter.

For a parameter ψi which is a function of a random e�ect ηi, we can quantify this phenomena

by de�ning the so-called η-shrinkage [9] as:

η-shrinkage = 1− var(η̂i)

ω2
,

where var(η̂i) is the empirical variance of the η̂i's and η̂i the empirical Bayes estimate of ηi that

maximizes p(ηi|yi).

Saying that the observations yi provide little information about ηi means that η̂i is close to

0. This results as a high level of shrinkage (close to 1) whenever var(η̂i)� ω2. Estimates of the

ψi are therefore biased because they do not correctly re�ect the marginal distribution p(ψi). In

particular, their empirical variance is much reduced.

Alternatively, individual parameters ψi can be drawn from the conditional distribution

p(ψi|yi) rather than taking the mode. The resulting estimator is unbiased in the following

sense:

p(ψi) = E (p(ψi|yi)) . (1)

This relationship is a fundamental one when considering mixed-e�ects models. It means

that, if we randomly draw a vector yi of observations for an individual in a population and

then generate a vector ψi using the conditional distribution p(ψi|yi), the distribution of ψi is

the population distribution p(ψi). In other words, even if each ψi is randomly generated using
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its own conditional distribution, the fact of pooling them allows us to look at them as if they

were a sample from p(ψi). A consequence of this important property is that any diagnostic plot

based on such simulated individual parameters can be used con�dently.

To conceptually illustrate the di�erence between EBEs and sampled parameters, we will

consider 10 individual parameters ψ1, . . . , ψ10 and 10 observations y1, . . . , y10 so that each

individual only has one unique observation. The 10 conditional distributions and their modes

(i.e. the 10 EBEs) are shown Figure 1(a) while 10 parameters randomly sampled from these

distributions are displayed Figure 1(b).

Because of the η-shrinkage (there is only one observation per individual), we can see Figure

1(c) that the empirical distribution of the EBEs is concentrated around the mean ψpop of the

population distribution. On the other hand, Figure 1(d) shows that the empirical distribution

of the sampled parameters correctly represents this population distribution.
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Figure 1: Illustration of how sampling from conditional distributions can describe popula-
tion distribution compared to EBEs in case of shrinkage. (a-b) Conditional distributions of
ψ1, . . . , ψ10 and (a) the EBEs maximizing these 10 conditional distributions (circles), (b) indi-
vidual parameters sampled from these 10 conditional distributions (stars) ; (c-d) Population
distribution of ψ and (c) the EBEs, (d) the sampled parameters. The model used to generate
this illustration is: yi = ψi+εi where ψi ∼ N (ψpop, ω

2) and εi ∼ N (0, σ2). In that case, the con-
ditional distribution of ψi given yi is a normal distribution with mean µi = V (yi/σ

2 +ψpop/ω
2)

and variance V = σ2ω2/(σ2 + ω2). We used ψpop = 10 and ω2 = σ2 = 1 for this numerical
example.

3.2 Pharmacokinetic model

Throughout the manuscript, we will use a simple and classical PK model to illustrate the

proposed approach for model diagnostic and hypothesis testing. The model is a one compart-

ment PK model for single oral administration, with �rst order absorption and linear elimination:
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C(t, ψ) =
Dka

V ka− Cl
(
e−(Cl/V ) t − e−ka t

)
.

where D is the amount of drug administered at time 0. Here, the PK parameters are ψ =

(ka, V, Cl).

We then assume an exponential error model for the observed concentration:

yij = C(tij, ψi)e
εij ,

where εij ∼ N (0, a2). Here, yij is the concentration measured for patient i at time tij and

ψi = (kai, Vi, Cli).

We assume that the individual PK parameters kai ,Vi and Cli are log-normally distributed.

Furthermore, a linear relationship between log-weight and each log-parameter is assumed:

log(kai) = log(kapop) + βka log(wi/wpop) + ηka,i,

log(Vi) = log(Vpop) + βV log(wi/wpop) + ηV,i,

log(Cli) = log(Clpop) + βCl log(wi/wpop) + ηCl,i,

where wi is the weight of patient i and wpop the typical weight in the population.

The random e�ects are normally distributed: ηi = (ηka,i, ηV,i, ηCl,i) ∼ N (0,Ω). Variances

of the random e�ects, i.e. the diagonal elements of Ω, are (ω2
ka, ω

2
V , ω

2
Cl) and the correlations

between random e�ects are (rka,V , rka,Cl, rV,Cl).

PK data for N = 150 patients were simulated with this model using D = 100mg and the

following values of the population parameters: kapop = 1, Vpop = 10, Clpop = 1, ωka = 0.3,
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ωV = 0.2, ωCl = 0.2 and a = 0.15. The volume is function of weight in this example: βV = 1

while βka = βCl = 0. We furthermore assume that log-volume and log-clearance are positively

correlated: rV,Cl = 0.6 while rka,V = rka,Cl = 0.

Individual weights were sampled from a normal distribution with mean wpop = 70kg and

standard deviation 7kg.

3.3 Simulated designs and tested model

We used a design with 3 sampling times per patient: (2h, 4h, 8h, 12h) for 1 ≤ i ≤ 50; (4h,

12h, 24h, 48h) for 51 ≤ i ≤ 100 and (1h, 8h, 12h, 24h) for 101 ≤ i ≤ 150. The simulated

concentrations of the 150 individuals are displayed Figure 2.

Figure 2: Simulated PK data for 150 patients with three di�erent designs (50 patients per
design). Simulated PK data of individuals subjected to design 1 (2h, 4h, 8h, 12h) are depicted
in red. Design 2 (1h, 8h, 12h, 24h) in green, and design 3 (4h, 12h, 24h, 48h) in blue.
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While the data were simulated with a model where βV = 1 and rV,Cl = 0.6, we �rst �tted

this data with a �wrong� model, where βV = 0 and rV,Cl = 0.

3.4 Diagnosing tools

The process of model building is an iterative process where, at each iteration, we make

some hypotheses about the joint distribution of the individual PK parameters. We then �t this

model to the PK data and produce some diagnostic plots. The objective of these plots is to

evaluate graphically which of the hypotheses can be considered as valid and which one should

be rejected. Then, rejecting some of the hypotheses leads to proposing a new model which in

turn needs to be evaluated. Ideally, this process of model building should lead to a �nal model

for which none of the diagnostic plots detect any misspeci�cation.

Here, we will make the following hypotheses:

• The PK parameters are log-normally distributed.

• There is no relationship between the covariate (the weight) and the PK parameters:

βka = βV = βCl = 0.

• There is no correlation between random e�ects:

rka,V = rka,Cl = rV,Cl = 0.

We will �t this model to the simulated data, calculate individual parameters by using EBE

or by sampling from the conditional distributions and produce the following plots:

12



• Comparison of the empirical distribution of the (ψi) with their theoretical distribution

given by the model. We can for instance compare histograms and probability density

functions (pdf).

• Visualization of the possible relationships between covariates and parameters, or between

covariates and random e�ects, through scatter plots.

• Visualization of the possible relationships between random e�ects through scatter plots.

Using diagnostic plots for model building remains quite empirical. Indeed, there is no well

de�ned decision rule to decide which hypotheses made on the model are incorrect and should be

rejected. Some quantitative criteria associated to these plots might be helpful for the modeller

to take such decision. In other word, we would like to derive formal statistical tests from

diagnostic plots.

Testing our hypotheses about the distribution of the individual PK parameters can be

carried out with some standard statistical tests, such as:

• Kolmogorov-Smirnov test for testing the �t of distributions,

• Pearson's test for testing linear correlations between - possibly transformed - covariates

and random e�ects: the test statistic is based on Pearson's correlation coe�cient and

follows a t-distribution with N − 2 degrees of freedom if the samples follow independent

normal distributions.

• Pearson's test for testing linear correlations between random e�ects.

The fundamental property (1) ensures that any statistical test based on such sampled indi-

vidual parameters is unbiased : the e�ective level of the implemented test is precisely the desired

13



level α. We can then expect that each of the proposed statistical test will wrongly reject the

null hypothesis (i.e. reject the model being evaluated when it is correct) with probability α.

Controlling the level of each of these tests is important of course, but their role is mainly

to detect misspeci�cation in the model. It is therefore essential to also evaluate the power of

these tests in order to know which kind of misspeci�cation can be identi�ed with a reasonable

probability.

3.5 Sampling individual parameters from conditional distributions

In practice, sampling ψi from the conditional distribution p(ψi|yi) can be done

by Markov Chain Monte Carlo (MCMC) [21].

For the numerical experiments presented below, we used the Metropolis-Hastings

(MH) algorithm described in [2] and that combines several proposal distributions.

in order to get samples of the individual conditional distributions, we run 200 it-

erations of this algorithm and used 10 independent Markov chains per individual.

We then kept the individual parameters obtained from all the chains at the last

iteration.

This MH algorithm was initially implemented in Monolix1 together with the

SAEM algorithm used for the estimation of the population parameters [2]. Mono-

lix then returns individual parameters and random e�ects sampled from the con-

ditional distributions and use them for the diagnostic plots.

1http://lixoft.com/products/monolix/
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On the other hand, diagnostic plots derived from NONMEM2 are only based on

EBEs (individual parameters and random e�ects). Nevertheless, since the MCMC

algorithm implemented in Monolix is also implemented in NONMEM, it should be

possible to also return the sampled individual parameters together with the EBEs.

4 Results

4.1 Diagnostic plots

Estimated parameters under this model are: k̂apop = 0.99, V̂pop = 10.2, Ĉlpop = 1.02,

ω̂ka = 0.14, ω̂V = 0.25, ω̂Cl = 0.19, â = 0.156.

Even if the number of subjects is quite large (N = 150), the data can be considered sparse (4

sampling points per individual), providing especially a limited information on the absorption

process. The η-shrinkage for ka, V and Cl are respectively 88%, 20% and 20% when it is

computed using the EBEs. Then, even if the histograms of the EBEs displayed Figure 3

(top row) look quite di�erent from the log-normal distributions obtained with the estimated

population parameters (in solid red lines), we cannot conclude that the population distributions

of the individual PK parameters are misspeci�ed.

Figure 3 (middle row) shows that identi�cation of relationships between covariates and

individual parameters is much less sensitive to shrinkage: EBEs correctly identify the linear

relationship existing between log-weight and log-volume, while the other PK parameters ka

and Cl do not clearly seem to be function of weight. This good behavior can be explained by

2https://nonmem.iconplc.com/
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the fact that such relationship is related to the central tendency of the distributions of the PK

parameters, which is pretty well approximated by the modes.

The η-shrinkage also strongly impacts the joint distribution of the random e�ects. We can

see Figure 3 (bottom row) that the joint distribution of the estimates of the random e�ects

does not re�ect correctly the true distribution. Arti�cial correlations wrongly appear between

all the random e�ects. This diagnostic plot does not allow to detect that only the correlation

between ηV and ηCl is relevant.
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Figure 3: Diagnostic plots with EBEs. Top row: Empirical distributions of the individual
parameters maximizing the conditional distributions. The estimated population pdf's are
displayed in solid line. Middle row: Relationships between log-weight and random e�ects
maximizing the conditional distributions. Bottom row: Relationships between random e�ects
maximizing the conditional distributions.

On the other hand, creating diagnostic plots based on sampled parameters and sampled

random e�ects allows us to use all these diagnostic plots for decision making. Figure 4 (top

row) shows a very nice �t between the empirical distributions of the individual PK parameters

and the theoretical pdf's. Based on this plot, we can conclude that there is no reason for

rejecting the hypothesis that the three PK parameters are log-normally distributed.
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Figure 4 (middle row) shows a correlation between log(w) and log(V ): based on this plot,

we can then reject the hypothesis that βV = 0 while, in the contrary, there is no reason for

rejecting the hypothesis that βka = βCl = 0.

Only a correlation between ηV and ηCl clearly appears Figure 4 (bottom row): we can then

reject the hypothesis that rV,Cl = 0, as it was assumed in the model. On the other hand, there

is no reason for rejecting the hypothesis that rka,V = rka,Cl = 0.
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Figure 4: Diagnostic plots with sampled parameters. Top row: Empirical distributions of the
individual parameters sampled from the conditional distributions. The estimated population
pdf's are displayed in solid line. Middle row: Relationships between log-weight and random
e�ects sampled from the conditional distributions. Bottom row: relationships between random
e�ects sampled from the conditional distributions. For visual purpose, the conditional distri-
butions were sampled �ve times for each individual resulting in generating 5 times more points
than in the previous �gure.
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4.2 Statistical tests

4.2.1 Type I error

In the following, we will test formally each of the hypothesis of the model being evaluated

and check if the �true� model can be identi�ed.

First, we can test separately if each PK parameter follows a log-normal distribution de�ned

by the estimated parameters. Table 1 gives the p-values of the Kolmogorov-Smirnov tests

when either the EBEs or the sampled individual PK parameters are used. Results con�rm

what could be seen in Figure 3: because of the strong shrinkage for ka, EBEs of ka do not

follow the estimated population distribution. On the other hand, the tests based on sampled

PK parameters are not a�ected by the η-shrinkage. Then, both the diagnostic plot displayed

Figure 4 and the p-values of these three tests can be used with con�dence to decide not to

reject the hypothesis that the PK parameters are log-normally distributed.

Then, we can test if there exists some linear correlation between the log-weight and the log-

parameters. Results presented Table 1 show that EBEs and sampled parameters give similar

results for these tests. Both lead to the conclusion that a signi�cant correlation exists between

log-weight and log-volume.

Lastly, we can test if there exists some linear correlation between the random e�ects. Results

presented Table 1 con�rm what could be seen in Figures 3 and 4: empirical Bayes estimates

of the η's creates some arti�cial correlations while sampled random e�ects correctly reproduce

the correlation structure of the random e�ects. Based on this test, we can conclude with high

con�dence that r(ηV , ηCl) 6= 0.
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Null hypothesis p-value
EBEs sampled parameters

log(ka) ∼ N (log(0.99), 0.142) < 10−10 0.58
log(V ) ∼ N (log(10.2), 0.252) 0.43 0.71
log(Cl) ∼ N (log(1.02), 0.192) 0.85 0.82
r(log(w), log(ka)) = 0 0.11 0.66
r(log(w), log(V )) = 0 < 10−10 < 10−10

r(log(w), log(Cl)) = 0 0.19 0.40
r(ηka, ηV ) = 0 0.007 0.40
r(ηka, ηCl) = 0 0.02 0.49
r(ηV , ηCl) = 0 3 10−6 9 10−6

Table 1: Kolmogorov-Smirnov tests for the probability distributions of the individual PK pa-
rameters, the relationships between weight and parameters, and the joint distribution of the
random e�ects.

Controlling the signi�cance level α of a statistical test means that the e�ective rate of type I

error, i.e. the rate of falsely rejected null hypotheses, is expected to be α. Here, the probability

to reject the null hypothesis cannot be computed in a closed form, but it can be estimated

by Monte-Carlo. We have simulated 500 replicates of the data under the null hypothesis and

performed each of the proposed statistical tests at levels α = 0.05 and α = 0.10, for each

replicate, and using either the EBEs or the sampled parameters and random e�ects.

Table 2 provides the rates of falsely rejected null hypotheses for each of these tests. We can

see that the signi�cance levels α = 0.05 and α = 0.10 are very well controlled when sampled

PK parameters and sampled random e�ects are used for any of these tests.

On the other hand, a strong bias is observed when the EBEs are used for testing the

distribution of the parameters or the correlation between random e�ects. The rate of type

I error of the tests concerning the relationship between weight and PK parameters is more

correctly controlled.
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Rates of falsely rejected null hypotheses
Null hypothesis EBEs sampled parameters

α = 0.05 α = 0.10 α = 0.05 α = 0.10
log(ka) ∼ N (log(1), 0.32) 1 1 0.030 0.090
log(V ) ∼ N (log(10), 0.22) 0.158 0.288 0.056 0.120
log(Cl) ∼ N (log(1), 0.22) 0.068 0.142 0.060 0.102
βka = 0 0.034 0.092 0.044 0.088
βV = 0 0.038 0.060 0.052 0.118
βCL = 0 0.034 0.068 0.036 0.092
rka,V = 0 0.870 0.912 0.042 0.096
rka,Cl = 0 0.344 0.440 0.046 0.092
rV,Cl = 0 0.140 0.234 0.042 0.094

Table 2: Rates of falsely rejected null hypotheses for statistical tests with signi�cance level
α = 0.05 using either the EBEs or the sampled individual PK parameters.

4.2.2 Power of the tests

We �nally explore how the statistical tests behave under several alternative hypotheses.

We have simulated 200 replicates of the same experiment using the previous design and under

various parameter scenari. For each of these scenari, the estimated power of the test is the

proportion of rejected null hypotheses among the 200 replicates. Only tests of level α = 0.05

have been performed for this power analysis (similar conclusions were obtained with α = 0.10).

In the �rst experiment, the values of population PK parameters used for drawing the indi-

vidual PK parameters are di�erent from the values de�ning the null hypothesis, i.e. kapop = 1,

Vpop = 10 and Clpop = 1. Figure 5 top row con�rms that tests based on EBEs are biased and

should not be used for testing the marginal distribution of the parameters. Indeed, even if they

look quite powerful, the type I error is signi�cantly overestimated. The three tests based on

sampled parameters are unbiased, even if a misspeci�cation in the distribution of ka is di�cult

to detect with this design.
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We see Figure 5 bottom row that an e�ect of moderate size of the covariate (weight) on V

and Cl is correctly detected using either the EBEs or the sampled PK parameters. On the other

hand, the design only allows to detect an important e�ect on ka. We also see that, contrary to

the previous examples, tests based on EBEs can be used for detecting a relationship between

the covariate and an individual parameter. Indeed, these tests seem to be unbiased and slightly

more powerful than the tests based on sampled parameters.

We then investigate if linear correlations between PK parameters can be detected. Figure 5

shows that a clear bias is introduced when EBEs are used, while correlation between V and Cl

is correctly detected with sampled parameters. Because of the η-shrinkage on ka, only strong

correlations (positive or negative) between ka and V or ka and Cl can be detected with this

method.
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Figure 5: Power of the statistical tests. Top row: testing the probability distributions of the
parameters. Middle row: testing a linear correlation between log-weight and log-parameters.
Bottom row: testing linear correlation between parameters. Blue and yellow curves show power
when using EBEs and sampled parameters respectively.

4.3 Application to the warfarin PK data

We will now use the pharmacokinetics of warfarin [22] to illustrate the proposed

method. 32 healthy volunteers received a 1.5 mg/kg single oral dose of warfarin,

an anticoagulant used in the prevention of thrombosis. Supplemental Figure S1

shows the warfarin plasmatic concentration for these patients measured at di�erent
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times.

We will consider a one compartment PK model, assuming a �rst-order absorp-

tion process after a lag-time and a linear elimination:

C(t, ψ) =


Dka

V ka−Cl

(
e−Cl/V (t−T lag) − e−ka (t−T lag)

)
if t ≥ T lag

0, otherwise.

Here, ψ = (T lag, ka, V, Cl).

We assume log-normal distributions for these 4 PK parameters and a diagonal

variance-covariance matrix Ω for the random e�ects. The residual error model

for the observations is a combined error model of the form yij = C(yij, ψi) + (a +

bC(yij, ψi))εij.

We used Monolix 2016R1 for �tting this model to the warfarin PK data. The

empirical distribution of the EBEs of the random e�ects is displayed Supplemental

Figure S2 (top row) and shows a strong shrinkage for the absorption parameters

T lag and ka. Indeed, more than half of the patients have no measurements during

the �rst 24 hours. Then, we merely use the population parameters to predict T lag

and ka for these patients. This large shrinkage does not mean that the model

is misspeci�ed, but that the data does not allow us to correctly estimate these

individual parameters. As a consequence, EBEs cannot be used for diagnosing the

model.

On the other hand, individual PK parameters sampled from the conditional

distributions can be used with con�dence. The distribution of the random e�ects

25



displayed Supplemental Figure S2 (bottom row) shows that there is no reason for

rejecting the hypothesis of log-normal distributions. A relationship between weight

and volume is clearly visible Supplemental Figure S3 as well as a possible relation-

ship between weight and clearance. Lastly, Supplemental Figure S4 identi�es a

correlation between ηV and ηCl. The hypothesis of independent random e�ects

should also be rejected.

In summary, based on these diagnostic plots and statistical tests, the model

used for �tting the warfarin PK data should be rejected. A new model to be

tested should integrate a correlation between ηV and ηCl, a relationship between

weight and volume, and possibly between weight and clearance.
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Figure 6: Supplemental Figure S1: Warfarin PK data.
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Figure 7: Supplemental Figure S2: Empirical distribution of the individual parameters. The
estimated pdf's are displayed in solid line. Top: EBEs, bottom: sampled from the conditional
distributions.
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Figure 8: Supplemental Figure S3: Sampled individual parameters versus weight. The correla-
tion coe�cient and the p-value of the test r = 0 are displayed for each parameters.
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Figure 9: Supplemental Figure S4: Joint distributions of the sampled random e�ects.The
correlation coe�cient and the p-value of the test r = 0 are displayed for each pair of parameters.

5 Conclusions

In this manuscript, we propose a new method for deriving individual parameters used in a

diagnostic perspectives. Instead of using the classical approach of maximizing each conditional

distribution, we show that randomly sampling these distribution leads to reliable results and can

complement the EBE-based approach widely used. In particular, we show that each proposed

test is unbiased, the type I error rate is the desired signi�cance level of the test and the

probability to detect a misspeci�cation in the model increases with the magnitude of this

misspeci�cation. This method can therefore be used e�ciently, possibly in combination with

other diagnostic tools, to drive model building in population PKPD analyses.
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Our numerical experiments con�rmed that EBEs for assessing the distribution of the indi-

vidual parameters and/or the correlation structure of the random e�ects may introduce strong

biases when η-shrinkage is important. However, interestingly, in our example, we show that the

e�ect of a continuous covariate on a PK parameter is correctly detected using either the EBEs

or the sampled parameters. The numerical tests also revealed that the sampling of conditional

distribution can also su�er and results in lack of power in presence of η-shrinkage (see Figure

5).

Thus, even if using EBEs can be helpful for the search of misspeci�cations, it appears not to

be a reliable methods for validation of the �nal model and sampled parameters should always

be used for this aim.

Herein, we only addressed the problem of diagnosing the model for the individual parame-

ters, but the same approach could be developed for other diagnostic plots and for testing other

components of the model including residual error model, structural model, and handling of

BLQ data.
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