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Introduction

Mixed-eects modelling is nowadays established as a gold-standard approach for the analysis of longitudinal pharmacokinetics (PK) and pharmacodynamics (PD) data. These models are widely used for their ability to describe dierent levels of variability, and in particular interindividual variability. Usually, a mixed-eect model is composed by two main components: the model for the observations including the structural model and the residual error model; and the model for the individual parameters, including their relationships with the individual covariates as well as the correlation structure of the random eects [START_REF] Bonate | Pharmacokinetic-pharmacodynamic modeling and simulation[END_REF][START_REF] Lavielle | Mixed Eects Models for the Population Approach: Models, Tasks, Methods and Tools[END_REF].

Model diagnosing represents a key activity aimed at building condence around the developed models before using them for any purpose, such as prediction or simulation. Several diagnostic tools already exist for evaluating the structural model and the residual error model; among them the individual ts, the residual-based diagnostic plots and prediction versus observation plots [START_REF] Comets | Computing normalised prediction distribution errors to evaluate nonlinear mixed-eect models: the npde add-on package for R[END_REF][START_REF] Comets | Model evaluation in nonlinear mixed eect models, with applications to pharmacokinetics[END_REF][START_REF] Karlsson | Diagnosing model diagnostics[END_REF]. Visual predictive checks (VPC) and posterior predictive checks (PPC) are also powerful tools based on the posterior predictive distribution for evaluating simultaneously all the features of the model [START_REF] Lavielle | Automatic data binning for improved visual diagnosis of pharmacometric models[END_REF][START_REF] Yano | Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check[END_REF].

Herein, we will focus on diagnosing the model for the individual parameters where diagnostics are often performed to check their marginal distributions, to detect some possible relationships between individual parameters and covariates, or some possible correlations between random eects. Corresponding diagnostic plots are usually based on the empirical Bayes estimates (EBEs) of the individual parameters and EBEs of the random eects.

It is known that the use of EBEs for diagnostic plots and statistical tests is ecient with rich data, when a signicant amount of information is available in the data for recovering accurately all the individual parameters. On the contrary, in case of sparse data, tests and plots can be misleading when the estimates of the individual parameters shrink towards the same population values. Diagnostic tools relying on EBEs are therefore not recommended for high shrinkage [START_REF] Combes | Powers of the likelihood ratio test and the correlation test using empirical bayes estimates for various shrinkages in population pharmacokinetics[END_REF][START_REF] Savic | Importance of shrinkage in empirical Bayes estimates for diagnostics: problems and solutions[END_REF].

The objective of a diagnostic tool is twofold: rst is to check if the assumptions made on individual parameters are valid ; then, if some assumptions are rejected, diagnosis tools should give some guidance on how to improve the model. Model diagnostics is therefore used to eliminate model candidates that do not seem capable of reproducing the observed data [START_REF] Comets | Model evaluation in nonlinear mixed eect models, with applications to pharmacokinetics[END_REF][START_REF] Karlsson | Diagnosing model diagnostics[END_REF][START_REF] Lavielle | Mixed Eects Models for the Population Approach: Models, Tasks, Methods and Tools[END_REF].

In such process of model building, by denition, none of the features of the nal model should be rejected. As is the usual case in statistics, it is not because this nal model has not been rejected that it is necessarily the true one. All that we can say is that the experimental data does not allow us to reject it. It is merely one of perhaps many models that cannot be rejected.

The objective of this paper is to propose a new approach for diagnosing models using individual conditional distribution and formally compare this method to the EBE-based classical approach through numerical experiments based on simulated data.

There exists few useful methods for statistical testing in mixed-eects models. Several existing test procedures only concern linear mixed-eects models [START_REF] Drikvandi | Testing multiple variance components in linear mixed-eects models[END_REF][START_REF] Li | A new test for random eects in linear mixed models with longitudinal data[END_REF][START_REF] Mun | Diagnostics for repeated measurements in linear mixed eects models[END_REF] or generalized mixed-eects models [START_REF] Alonso | A family of tests to detect misspecications in the random-eects structure of generalized linear mixed models[END_REF][START_REF] Huang | Diagnosis of random-eect model misspecication in generalized linear mixed models for binary response[END_REF][START_REF] Vonesh | Goodness-of-t in generalized nonlinear mixedeects models[END_REF]. Furthermore, the aim of most of these procedures is to detect possible misspecications of the random-eects structure. Other specic features of the model are considered by several authors, such as the normality of the random eects [START_REF] Claeskens | Goodness-of-t tests in mixed models[END_REF][START_REF] Ritz | Goodness-of-t tests for mixed models[END_REF], or the error distribution [START_REF] Meintanis | Specication tests in mixed eects models[END_REF].

Bootstrap is a popular method for the global validation of a nonlinear mixed-eects model [START_REF] Parke | A procedure for generating bootstrap samples for the validation of nonlinear mixed-eects population models[END_REF].

Even if bootstrapping is an appealing approach, it requires an important computing eort for validating a single model which needs to be tted many times. Then, it cannot be used for model building, but only for validating the nal model. Another method for a global test and which relies on the use of a random projection technique is described in [START_REF] Laont | A new exact test for the evaluation of population pharmacokinetic and/or pharmacodynamic models using random projections[END_REF].

We propose a general approach for testing separately several features of a mixed-eects model. The method consists in generating individual parameters and individual random eects using their conditional distributions. Then, the sampled parameters, the sampled random eects and the original observations can be used together for producing diagnostic plots and building statistical tests.

Herein, we use a one compartment PK model for oral administration to illustrate the practical properties of the proposed method. The design is such that a limited information about the individual absorption rate constant ka i , for individual i, can be obtained from the data.

We compare then diagnostic plots and statistical tests when parameters are given by the EBEs or by a random sample of the conditional distributions.

Methods

3.1

Empirical Bayes estimates versus random sampling from the conditional distribution

Calculating the EBE of an individual parameter consists in estimating ψ i by maximizing the conditional distribution p(ψ i |y i ) where y i = (y ij , 1 ≤ j ≤ n i ) is a sequence of observations. This conditional mode, also known as the maximum a posteriori (MAP) estimate of ψ i , is the most likely value of the individual parameter ψ i , given the observations and a given population distribution p(ψ i ).

However, when the data are sparse, individual estimates of a parameter can shrink towards the same population value, which is the mode of the population distribution of this parameter.

For a parameter ψ i which is a function of a random eect η i , we can quantify this phenomena by dening the so-called η-shrinkage [START_REF] Savic | Importance of shrinkage in empirical Bayes estimates for diagnostics: problems and solutions[END_REF] as:

η-shrinkage = 1 - var(η i ) ω 2 ,
where var(η i ) is the empirical variance of the ηi 's and ηi the empirical Bayes estimate of η i that maximizes p(η i |y i ).

Saying that the observations y i provide little information about η i means that ηi is close to 0. This results as a high level of shrinkage (close to 1) whenever var(η i ) ω 2 . Estimates of the ψ i are therefore biased because they do not correctly reect the marginal distribution p(ψ i ). In particular, their empirical variance is much reduced.

Alternatively, individual parameters ψ i can be drawn from the conditional distribution p(ψ i |y i ) rather than taking the mode. The resulting estimator is unbiased in the following sense:

p(ψ i ) = E (p(ψ i |y i )) . ( 1 
)
This relationship is a fundamental one when considering mixed-eects models. It means that, if we randomly draw a vector y i of observations for an individual in a population and then generate a vector ψ i using the conditional distribution p(ψ i |y i ), the distribution of ψ i is the population distribution p(ψ i ). In other words, even if each ψ i is randomly generated using its own conditional distribution, the fact of pooling them allows us to look at them as if they were a sample from p(ψ i ). A consequence of this important property is that any diagnostic plot based on such simulated individual parameters can be used condently.

To conceptually illustrate the dierence between EBEs and sampled parameters, we will 

y i = ψ i +ε i where ψ i ∼ N (ψ pop , ω 2
) and ε i ∼ N (0, σ 2 ). In that case, the conditional distribution of ψ i given y i is a normal distribution with mean µ i = V (y i /σ 2 + ψ pop /ω 2 ) and variance V = σ 2 ω 2 /(σ 2 + ω 2 ). We used ψ pop = 10 and ω 2 = σ 2 = 1 for this numerical example.

Pharmacokinetic model

Throughout the manuscript, we will use a simple and classical PK model to illustrate the proposed approach for model diagnostic and hypothesis testing. The model is a one compartment PK model for single oral administration, with rst order absorption and linear elimination:

C(t, ψ) = D ka V ka -Cl e -(Cl/V ) t -e -ka t .
where D is the amount of drug administered at time 0. Here, the PK parameters are ψ = (ka, V, Cl).

We then assume an exponential error model for the observed concentration:

y ij = C(t ij , ψ i )e ε ij ,
where ε ij ∼ N (0, a 2 ). Here, y ij is the concentration measured for patient i at time t ij and

ψ i = (ka i , V i , Cl i ).
We assume that the individual PK parameters ka i ,V i and Cl i are log-normally distributed.

Furthermore, a linear relationship between log-weight and each log-parameter is assumed:

log(ka i ) = log(ka pop ) + β ka log(w i /w pop ) + η ka,i , log(V i ) = log(V pop ) + β V log(w i /w pop ) + η V,i , log(Cl i ) = log(Cl pop ) + β Cl log(w i /w pop ) + η Cl,i ,
where w i is the weight of patient i and w pop the typical weight in the population.

The random eects are normally distributed:

η i = (η ka,i , η V,i , η Cl,i ) ∼ N (0, Ω). Variances of the random eects, i.e. the diagonal elements of Ω, are (ω 2 ka , ω 2 V , ω 2 
Cl ) and the correlations between random eects are (r ka,V , r ka,Cl , r V,Cl ).

PK data for N = 150 patients were simulated with this model using D = 100mg and the following values of the population parameters: ka pop = 1, V pop = 10, Cl pop = 1, ω ka = 0.3, ω V = 0.2, ω Cl = 0.2 and a = 0.15. The volume is function of weight in this example: β V = 1

while β ka = β Cl = 0. We furthermore assume that log-volume and log-clearance are positively correlated: r V,Cl = 0.6 while r ka,V = r ka,Cl = 0.

Individual weights were sampled from a normal distribution with mean w pop = 70kg and standard deviation 7kg.

Simulated designs and tested model

We used a design with 3 sampling times per patient: (2h, 4h, 8h, 12h) for 1 ≤ i ≤ 50; this data with a wrong model, where β V = 0 and r V,Cl = 0.

Diagnosing tools

The process of model building is an iterative process where, at each iteration, we make some hypotheses about the joint distribution of the individual PK parameters. We then t this model to the PK data and produce some diagnostic plots. The objective of these plots is to evaluate graphically which of the hypotheses can be considered as valid and which one should be rejected. Then, rejecting some of the hypotheses leads to proposing a new model which in turn needs to be evaluated. Ideally, this process of model building should lead to a nal model for which none of the diagnostic plots detect any misspecication.

Here, we will make the following hypotheses:

• The PK parameters are log-normally distributed.

• There is no relationship between the covariate (the weight) and the PK parameters:

β ka = β V = β Cl = 0.
• There is no correlation between random eects:

r ka,V = r ka,Cl = r V,Cl = 0.
We will t this model to the simulated data, calculate individual parameters by using EBE or by sampling from the conditional distributions and produce the following plots:

• Comparison of the empirical distribution of the (ψ i ) with their theoretical distribution given by the model. We can for instance compare histograms and probability density functions (pdf ).

• Visualization of the possible relationships between covariates and parameters, or between covariates and random eects, through scatter plots.

• Visualization of the possible relationships between random eects through scatter plots.

Using diagnostic plots for model building remains quite empirical. Indeed, there is no well dened decision rule to decide which hypotheses made on the model are incorrect and should be rejected. Some quantitative criteria associated to these plots might be helpful for the modeller to take such decision. In other word, we would like to derive formal statistical tests from diagnostic plots.

Testing our hypotheses about the distribution of the individual PK parameters can be carried out with some standard statistical tests, such as:

• Kolmogorov-Smirnov test for testing the t of distributions,

• Pearson's test for testing linear correlations between -possibly transformed -covariates and random eects: the test statistic is based on Pearson's correlation coecient and follows a t-distribution with N -2 degrees of freedom if the samples follow independent normal distributions.

• Pearson's test for testing linear correlations between random eects.

The fundamental property (1) ensures that any statistical test based on such sampled individual parameters is unbiased: the eective level of the implemented test is precisely the desired level α. We can then expect that each of the proposed statistical test will wrongly reject the null hypothesis (i.e. reject the model being evaluated when it is correct) with probability α.

Controlling the level of each of these tests is important of course, but their role is mainly to detect misspecication in the model. It is therefore essential to also evaluate the power of these tests in order to know which kind of misspecication can be identied with a reasonable probability.

Sampling individual parameters from conditional distributions

In practice, sampling ψ i from the conditional distribution p(ψ i |y i ) can be done by Markov Chain Monte Carlo (MCMC) [START_REF] Robert | Monte Carlo Statistical Methods[END_REF].

For the numerical experiments presented below, we used the Metropolis-Hastings (MH) algorithm described in [START_REF] Lavielle | Mixed Eects Models for the Population Approach: Models, Tasks, Methods and Tools[END_REF] and that combines several proposal distributions.

in order to get samples of the individual conditional distributions, we run 200 iterations of this algorithm and used 10 independent Markov chains per individual.

We then kept the individual parameters obtained from all the chains at the last iteration.

This MH algorithm was initially implemented in Monolix1 together with the SAEM algorithm used for the estimation of the population parameters [START_REF] Lavielle | Mixed Eects Models for the Population Approach: Models, Tasks, Methods and Tools[END_REF]. Monolix then returns individual parameters and random eects sampled from the conditional distributions and use them for the diagnostic plots.

the fact that such relationship is related to the central tendency of the distributions of the PK parameters, which is pretty well approximated by the modes.

The η-shrinkage also strongly impacts the joint distribution of the random eects. We can see Figure 3 (bottom row) that the joint distribution of the estimates of the random eects does not reect correctly the true distribution. Articial correlations wrongly appear between all the random eects. This diagnostic plot does not allow to detect that only the correlation between η V and η Cl is relevant. On the other hand, creating diagnostic plots based on sampled parameters and sampled random eects allows us to use all these diagnostic plots for decision making. Figure 4 (top row) shows a very nice t between the empirical distributions of the individual PK parameters and the theoretical pdf 's. Based on this plot, we can conclude that there is no reason for rejecting the hypothesis that the three PK parameters are log-normally distributed.

Figure 4 (middle row) shows a correlation between log(w) and log(V ): based on this plot, we can then reject the hypothesis that β V = 0 while, in the contrary, there is no reason for rejecting the hypothesis that β ka = β Cl = 0.

Only a correlation between η V and η Cl clearly appears Figure 4 (bottom row): we can then reject the hypothesis that r V,Cl = 0, as it was assumed in the model. On the other hand, there is no reason for rejecting the hypothesis that r ka,V = r ka,Cl = 0. what could be seen in Figure 3: because of the strong shrinkage for ka, EBEs of ka do not follow the estimated population distribution. On the other hand, the tests based on sampled PK parameters are not aected by the η-shrinkage. Then, both the diagnostic plot displayed Figure 4 and the p-values of these three tests can be used with condence to decide not to reject the hypothesis that the PK parameters are log-normally distributed.

Then, we can test if there exists some linear correlation between the log-weight and the logparameters. Results presented Table 1 show that EBEs and sampled parameters give similar results for these tests. Both lead to the conclusion that a signicant correlation exists between log-weight and log-volume.

Lastly, we can test if there exists some linear correlation between the random eects. Results

presented Table 1 conrm what could be seen in Figures 3 and4: empirical Bayes estimates of the η's creates some articial correlations while sampled random eects correctly reproduce the correlation structure of the random eects. Based on this test, we can conclude with high condence that r(η V , η Cl ) = 0. Table 1: Kolmogorov-Smirnov tests for the probability distributions of the individual PK parameters, the relationships between weight and parameters, and the joint distribution of the random eects.

Controlling the signicance level α of a statistical test means that the eective rate of type I error, i.e. the rate of falsely rejected null hypotheses, is expected to be α. Here, the probability to reject the null hypothesis cannot be computed in a closed form, but it can be estimated by Monte-Carlo. We have simulated 500 replicates of the data under the null hypothesis and performed each of the proposed statistical tests at levels α = 0.05 and α = 0.10, for each replicate, and using either the EBEs or the sampled parameters and random eects.

Table 2 provides the rates of falsely rejected null hypotheses for each of these tests. We can see that the signicance levels α = 0.05 and α = 0.10 are very well controlled when sampled PK parameters and sampled random eects are used for any of these tests.

On the other hand, a strong bias is observed when the EBEs are used for testing the distribution of the parameters or the correlation between random eects. The rate of type I error of the tests concerning the relationship between weight and PK parameters is more correctly controlled.
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Rates of falsely rejected null hypotheses Null hypothesis EBEs sampled parameters α = 0.05 α = 0.10 α = 0.05 α = 0.10 log(ka) ∼ N (log(1), 0. 

Power of the tests

We nally explore how the statistical tests behave under several alternative hypotheses.

We have simulated 200 replicates of the same experiment using the previous design and under various parameter scenari. For each of these scenari, the estimated power of the test is the proportion of rejected null hypotheses among the 200 replicates. Only tests of level α = 0.05 have been performed for this power analysis (similar conclusions were obtained with α = 0.10).

In the rst experiment, the values of population PK parameters used for drawing the individual PK parameters are dierent from the values dening the null hypothesis, i.e. ka pop = 1,

V pop = 10 and Cl pop = 1. and Cl is correctly detected using either the EBEs or the sampled PK parameters. On the other hand, the design only allows to detect an important eect on ka. We also see that, contrary to the previous examples, tests based on EBEs can be used for detecting a relationship between the covariate and an individual parameter. Indeed, these tests seem to be unbiased and slightly more powerful than the tests based on sampled parameters.

We then investigate if linear correlations between PK parameters can be detected. Figure 5 shows that a clear bias is introduced when EBEs are used, while correlation between V and Cl is correctly detected with sampled parameters. Because of the η-shrinkage on ka, only strong correlations (positive or negative) between ka and V or ka and Cl can be detected with this method. Bottom row: testing linear correlation between parameters. Blue and yellow curves show power when using EBEs and sampled parameters respectively.

Application to the warfarin PK data

We will now use the pharmacokinetics of warfarin [START_REF] Holford | Clinical pharmacokinetics and pharmacodynamics of warfarin. understanding the dose-eect relationship[END_REF] to illustrate the proposed method. 32 healthy volunteers received a 1.5 mg/kg single oral dose of warfarin, an anticoagulant used in the prevention of thrombosis. Supplemental Figure S1 shows the warfarin plasmatic concentration for these patients measured at dierent times.

We will consider a one compartment PK model, assuming a rst-order absorption process after a lag-time and a linear elimination:

C(t, ψ) =      D ka
V ka-Cl e -Cl/V (t-T lag) -e -ka (t-T lag) if t ≥ T lag 0,

otherwise.

Here, ψ = (T lag, ka, V, Cl).

We assume log-normal distributions for these 4 PK parameters and a diagonal variance-covariance matrix Ω for the random eects. The residual error model for the observations is a combined error model of the form

y ij = C(y ij , ψ i ) + (a + bC(y ij , ψ i ))ε ij .
We used Monolix 2016R1 for tting this model to the warfarin PK data. The empirical distribution of the EBEs of the random eects is displayed Supplemental 

Conclusions

In this manuscript, we propose a new method for deriving individual parameters used in a diagnostic perspectives. Instead of using the classical approach of maximizing each conditional distribution, we show that randomly sampling these distribution leads to reliable results and can complement the EBE-based approach widely used. In particular, we show that each proposed test is unbiased, the type I error rate is the desired signicance level of the test and the probability to detect a misspecication in the model increases with the magnitude of this misspecication. This method can therefore be used eciently, possibly in combination with other diagnostic tools, to drive model building in population PKPD analyses.

Our numerical experiments conrmed that EBEs for assessing the distribution of the individual parameters and/or the correlation structure of the random eects may introduce strong biases when η-shrinkage is important. However, interestingly, in our example, we show that the eect of a continuous covariate on a PK parameter is correctly detected using either the EBEs or the sampled parameters. The numerical tests also revealed that the sampling of conditional distribution can also suer and results in lack of power in presence of η-shrinkage (see Figure 5).

Thus, even if using EBEs can be helpful for the search of misspecications, it appears not to be a reliable methods for validation of the nal model and sampled parameters should always be used for this aim.

Herein, we only addressed the problem of diagnosing the model for the individual parameters, but the same approach could be developed for other diagnostic plots and for testing other components of the model including residual error model, structural model, and handling of BLQ data.

consider 10 individual parameters ψ 1

 1 , . . . , ψ 10 and 10 observations y 1 , . . . , y 10 so that each individual only has one unique observation. The 10 conditional distributions and their modes (i.e. the 10 EBEs) are shown Figure 1(a) while 10 parameters randomly sampled from these distributions are displayed Figure 1(b).Because of the η-shrinkage (there is only one observation per individual), we can see Figure1(c) that the empirical distribution of the EBEs is concentrated around the mean ψ pop of the population distribution. On the other hand, Figure1(d)shows that the empirical distribution of the sampled parameters correctly represents this population distribution.

Figure 1 :

 1 Figure 1: Illustration of how sampling from conditional distributions can describe population distribution compared to EBEs in case of shrinkage. (a-b) Conditional distributions of ψ 1 , . . . , ψ 10 and (a) the EBEs maximizing these 10 conditional distributions (circles), (b) individual parameters sampled from these 10 conditional distributions (stars) ; (c-d) Population distribution of ψ and (c) the EBEs, (d) the sampled parameters.The model used to generate this illustration is: y i = ψ i +ε i where ψ i ∼ N (ψ pop , ω 2 ) and ε i ∼ N (0, σ 2 ). In that case, the conditional distribution of ψ i given y i is a normal distribution with mean µ i = V (y i /σ 2 + ψ pop /ω 2 ) and variance V = σ 2 ω 2 /(σ 2 + ω 2 ). We used ψ pop = 10 and ω 2 = σ 2 = 1 for this numerical

  (4h, 12h, 24h, 48h) for 51 ≤ i ≤ 100 and (1h, 8h, 12h, 24h) for 101 ≤ i ≤ 150. The simulated concentrations of the 150 individuals are displayed Figure 2.

Figure 2 :

 2 Figure 2: Simulated PK data for 150 patients with three dierent designs (50 patients per design). Simulated PK data of individuals subjected to design 1 (2h, 4h, 8h, 12h) are depicted in red. Design 2 (1h, 8h, 12h, 24h) in green, and design 3 (4h, 12h, 24h, 48h) in blue.

Figure 3 :

 3 Figure 3: Diagnostic plots with EBEs. Top row: Empirical distributions of the individual parameters maximizing the conditional distributions. The estimated population pdf 's are displayed in solid line. Middle row: Relationships between log-weight and random eects maximizing the conditional distributions. Bottom row: Relationships between random eects maximizing the conditional distributions.

Figure 4 :

 4 Figure 4: Diagnostic plots with sampled parameters. Top row: Empirical distributions of the individual parameters sampled from the conditional distributions. The estimated population pdf 's are displayed in solid line. Middle row: Relationships between log-weight and random eects sampled from the conditional distributions. Bottom row: relationships between random eects sampled from the conditional distributions. For visual purpose, the conditional distributions were sampled ve times for each individual resulting in generating 5 times more points than in the previous gure.

Figure 5

 5 top row conrms that tests based on EBEs are biased and should not be used for testing the marginal distribution of the parameters. Indeed, even if they look quite powerful, the type I error is signicantly overestimated. The three tests based on sampled parameters are unbiased, even if a misspecication in the distribution of ka is dicult to detect with this design.

Figure 5 :

 5 Figure 5: Power of the statistical tests. Top row: testing the probability distributions of the parameters. Middle row: testing a linear correlation between log-weight and log-parameters.

Figure S2 (Figure 6 :Figure 7 : 11 Figure 8 :Figure 9 :

 S2671189 Figure S2 (top row) and shows a strong shrinkage for the absorption parametersT lag and ka. Indeed, more than half of the patients have no measurements during the rst 24 hours. Then, we merely use the population parameters to predict T lag and ka for these patients. This large shrinkage does not mean that the model is misspecied, but that the data does not allow us to correctly estimate these individual parameters. As a consequence, EBEs cannot be used for diagnosing the model.

  In the following, we will test formally each of the hypothesis of the model being evaluated and check if the true model can be identied.First, we can test separately if each PK parameter follows a log-normal distribution dened by the estimated parameters. Table1gives the p-values of the Kolmogorov-Smirnov tests when either the EBEs or the sampled individual PK parameters are used. Results conrm

	4.2	Statistical tests
	4.2.1 Type I error

Table 2 :

 2 3 2 ) Rates of falsely rejected null hypotheses for statistical tests with signicance level α = 0.05 using either the EBEs or the sampled individual PK parameters.

	1	1	0.030	0.090
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On the other hand, diagnostic plots derived from NONMEM 2 are only based on EBEs (individual parameters and random eects). Nevertheless, since the MCMC algorithm implemented in Monolix is also implemented in NONMEM, it should be possible to also return the sampled individual parameters together with the EBEs.

Results

Diagnostic plots

Estimated parameters under this model are: ka pop = 0.99, Vpop = 10.2, Ĉl pop = 1.02, ωka = 0.14, ωV = 0.25, ωCl = 0.19, â = 0.156.

Even if the number of subjects is quite large (N = 150), the data can be considered sparse (4 sampling points per individual), providing especially a limited information on the absorption process. The η-shrinkage for ka, V and Cl are respectively 88%, 20% and 20% when it is computed using the EBEs. Then, even if the histograms of the EBEs displayed Figure 3 (top row) look quite dierent from the log-normal distributions obtained with the estimated population parameters (in solid red lines), we cannot conclude that the population distributions of the individual PK parameters are misspecied.